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Abstract
Lymphatic filariasis and onchocerciasis are common filarial diseases caused by filarial worms, which co-habit symbiotically 
with the Wolbachia organism. One good treatment method seeks Wolbachia as a drug target. Here, a computer-aided molecu-
lar docking screening and 3-D QSAR modeling were conducted on a series of Fifty-two (52) pyrazolopyrimidine derivatives 
against four Wolbachia receptors, including a pharmacokinetics study and Molecular Dynamic (MD) investigation, to find 
a more potent anti-filarial drug. The DFT approach (B3LYP with 6-31G** option) was used for the structural optimization. 
Five ligand-protein interaction pairs with the highest binding affinities were identified in the order; 23_7ESX (-10.2 kcal/
mol) > 14_6EEZ (− 9.0) > 29_3F4R (− 8.0) > 26_6W9O (− 7.7) ≈ doxycycline_7ESX (− 7.7), with good pharmacological 
interaction profiles. The built 3-D QSAR model satisfied the requirement of a good model with  R2 = 0.9425,  Q2

LOO = 0.5019, 
SDEC = 0.1446, and F test = 98.282. The selected molecules (14, 23, 26, and 29) perfectly obeyed Lipinski’s RO5 for oral 
bio-availability, and showed excellent ADMET properties, except 14 with positive AMES toxicity. The result of the MD 
simulation showed the great stability associated with the binding of 23 onto 7ESX’s binding pocket with an estimated bind-
ing free energy (MM/GBSA) of − 60.6552 kcal/mol. Therefore, 23 could be recommended as a potential anti-filarial drug 
molecule, and/or template for the design of more prominent inhibitors.

Keywords Filarial diseases · Wolbachia · Pyrazolopyrimidine · Molecular docking · 3-D QSAR · Pharmacokinetics · 
Molecular dynamics
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LogBB  Logarithmic ratio of brain to 
plasma drug concentration

LogPS  Blood-brain permeability-surface 
area product

LOO  Leave one out
LTO  Leave two out
LF  Lymphatic filariasis
LYS  Lysine
MD  Molecular dynamics
MDA  Mass drug administration
MIFs  Molecular interaction fields
MMFF  Molecular mechanics force field
MM/GBSA  Molecular mechanics generalized 

born surface area
MRTD  Maximum recommended tolerated 

dose
MW  Molecular weight
NAMD  Nano-scale molecular dynamics
NTD  Neglected tropical diseases
O3A  Open3D align
PC  Principal component
PDB  Protein data bank
pEC50  Negative log of  EC50
PHE  Phenylalanine
PRO  Proline
QSAR  Quantitative structure activity 

relationship
Rg  Radius of gyration
RAM  Random access memory
RMSD  Root-mean-square deviation
RMSF  Root-mean-square fluctuation
RO5  Rule of five
SA  Synthetic accessibility
SDEC  Standard error of correlation
SDEP  Standard error of prediction
SEE  Standard error of estimation
SER  Serine
SASA  Solvent accessible surface area
TPSA  Topological polar surface area
TRP  Tryptophan
TYR   Tyrosine
UVE-PLS  Un-informative variable elimina-

tion-partial least square
VAL  Valine
VMD  Visual molecular dynamics

Introduction

Lymphatic Filariasis (LF) also known as elephantiasis and 
Onchocerciasis (river blindness) are common Neglected 
Tropical Diseases (NTD), which are caused by some para-
sitic nematode worms (Sightsavers 2013). LF is caused by 

filarial worms like Wuchereria bancrofti, Brugia timori and 
Brugia malayi, which are been transmitted by mosquitoes, 
while Onchocerca volvulus is the causative agent for oncho-
cerciasis, which is transmitted from one person to another by 
blood-feeding black flies (Bakowski et al. 2019). Elephan-
tiasis alone is responsible for not less than 2.8 million dis-
abilities globally (Jacobs et al. 2019). The global program 
intended to eliminate these filarial diseases started far back 
through the Mass Drug Administration (MDA) of anti-filar-
ial such as ivermectin, albendazole, and diethylcarbamazine, 
either as a dual (annual to bi-annual) or as triple-drug (once 
every 3 years) treatment (Jacobs et al. 2019; Carter et al. 
2020). However, it became unlikely that the MDA regimen 
will be adequate to eliminate these filarial diseases in all 
endemic areas, majorly due to their inability to kill the mac-
rofilariae (Lakshmi et al. 2010). Given the current scenario, 
therefore, a macrofilaricidal agent is required to kill worms 
to reduce both diseases’ elimination time frames (Sashidhara 
et al. 2014).

Fortunately, one unique characteristic of these filarial 
worms is their symbiotic co-existence with a known bac-
terium referred to as Wolbachia (Slatko et al. 2010). In the 
search for new anti-filarial drugs, some researchers have cho-
sen the option of targeting Wolbachia, which past research 
has shown that its elimination from the host filarial nema-
todes leads to antifilarial effects with the reduction of adult 
worm’s lifespan (Bouchery et al. 2013; McGillan 2017). 
Although the anti-bacteria drug, doxycycline has been used 
clinically for the treatment of filarial diseases over the years, 
the treatment method is not efficient enough for use in mass 
administration including requirements for long treatment 
periods (4–6 weeks) as well as contraindications in preg-
nancy and children (McGillan 2017). Therefore, advances 
in the development of new anti-Wolbachia agents with short 
treatment periods and reduced complications are necessary.

Some compounds of the pyrazolopyrimidine class were 
earlier reported to show a variety of bioactivities such as 
anti-viral agents, anti-malarial, anti-depressants, anti-tuber-
culosis, and kinase inhibitors (McGillan et al. 2021; Ugbe 
et al. 2022a). However, certain side effects have been asso-
ciated with most of the drugs in this class such as hypnotic 
and/or anxiolytic effects. To further explore the anti-filarial 
effect of the pyrazolopyrimidine compounds, McGillan 
(2017) synthesized several pyrazolopyrimidine derivatives 
and reported their inhibitory activities against Wolbachia 
infected insect cells (Aedes albopictus, C6/36). Notable 
targets of Wolbachia pipientis include Oxidoreductase 
α-DsbA1 (PDB ID: 3F4R), OTU deubiquitinase (6W9O), 
thiol-disulfide exchange protein alpha-DsbA2 (6EEZ), and 
Cytoplasmic incompatibility factor CidA (7ESX) amongst 
others.

Computer-aided drug design plays a crucial role in the 
discovery of new drug molecules in pharmaceutical design, 
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drug metabolism, and medicinal chemistry. It saves time, 
and cost and tends to be highly effective for the evaluation 
of a large virtual database of chemical compounds (Adeniji 
et al. 2020). Molecular docking simulation computer-aided 
screening method which probes the binding of ligands in 
the active sites of the protein target using a valid docking 
tool (Ibrahim et al. 2020). Pharmacokinetics analysis on the 
other hand is important in the pre-clinical study of new drug 
compounds to ascertain how such drug compounds affect 
the living organism when administered. Some of the most 
important pharmacokinetic properties to be determined dur-
ing pre-clinical testing include Absorption, Distribution, 
Metabolism, Excretion, and Toxicity (ADMET) (Lawal et al. 
2021; Ibrahim et al. 2021). Physico-chemical properties 
such as molecular weight, Topological Polar Surface Area 
(TPSA), lipophilicity, hydrogen bond donors, and hydrogen 
bond acceptors amongst others are necessary to predict a 
drug’s likelihood of being orally bioavailable (Lipinski et al. 
2001). This work focuses on the virtual molecular docking 
screening of a series of Fifty-two (52) pyrazolopyrimidine 
derivatives against Four (4) Wolbachia targets, 3-D QSAR 
modeling, Molecular Dynamics (MD) simulation, and pre-
diction of pharmacokinetic properties of some selected ana-
logs, to find a more potent drug molecule which would be 
suitable for the treatment of filarial diseases.

Materials and methods

Data acquisition

A series of Fifty-two (52) pyrazolopyrimidine derivatives 
with reported bioactivities  (EC50 in nM) against Wolbachia-
infected insect cells (Aedes albopictus, C6/36), were sourced 
from the literature (McGillan 2017). The various bioactiv-
ity  (EC50) values were separately converted to  pEC50 using 
Eq. (1) (Ugbe et al. 2022a). The molecular structures of 
the various pyrazolopyrimidine derivatives were shown in 
Online Resource 1.

Ligand preparation

The molecular structures of all the compounds were drawn 
using the ChemDraw Ultra, saved as MDL molfile format, 
and thereafter imported separately onto the Spartan ’14 
Graphical User Interface while enabling the auto conver-
sion of 2-D models to 3-D. The imported molecules were 
initially subjected to energy minimization and then saved 
in Spartan file format. The resulting structures were then 
fully optimized first by using Molecular Mechanics Force 

(1)pEC
50

= −log
10

(

EC
50
× 10

−9
)

Field (MMFF) and thereafter Density Functional Theory 
(DFT) with Becke’s three-parameter read-Yang-Parr hybrid 
(B3LYP) option and utilizing the 6-31G basis set. The 
optimized structures were then saved as PDB and SD file 
formats for subsequent use in molecular docking and 3-D 
QSAR studies respectively (Wang et al. 2020; Ugbe et al. 
2021).

Preparation of the protein receptors

The crystal structures of Four (4) Wolbachia target proteins 
(PDB codes: 3F4R, 6EEZ, 6W9O, and 7ESX) were retrieved 
from the RCSB Protein Data Bank in PDB file format, and 
then prepared separately using the Molegro virtual docker by 
eliminating water molecules, cofactors and co-crystallized 
ligands contained within the protein structures (Ugbe et al. 
2022b). The various receptors used in the virtual docking 
screening were described in Table 1.

Molecular docking‑based screening

Molecular docking investigation was performed separately 
between the Four (4) different receptors of Wolbachia pipi-
entis and all 52 compounds, including the reference drug 
(Doxycycline) using the Auto Dock Vina of PyRx v software 
tool (Ugbe et al. 2021). The screening was conducted to 
ascertain the most active pyrazolopyrimidine compounds 
against the various protein targets. PyRx calculates the bind-
ing affinities of the receptor-ligand interactions which are 
necessary to describe how fit the molecules bind to the tar-
get protein. A more negative binding affinity will indicate 
a greater chance of the potential drug molecule to initiate 
protein biochemical action/reaction (Kumar et al. 2016).

Evaluation of pharmacokinetic properties

Predicting pharmacokinetics properties plays a critical role in 
the early stage of drug discovery. This is because only mol-
ecules which demonstrate good ADMET and drug-likeness 
properties reach the pre-clinical research phase (Ugbe et al. 
2021). Therefore, Four (4) pyrazolopyrimidine analogs (14, 

Table 1  Description of enzymes used for the docking screening

PDB ID – 3F4R, 6EEZ, 6W9O, 7ESX

S. No Enzyme Organism PDB ID Resolution (Å)

1 Alpha-DsbA1 Wolbachia 3F4R 1.60
2 Alpha-DsbA2 Wolbachia 6EEZ 2.25
3 OTU deubiquitinase Wolbachia 6W9O 1.47
4 Cytoplasmic incom-

patibility factor 
CidA

Wolbachia 7ESX 1.80
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23, 26, and 29) having the highest binding scores with 6EEZ, 
7ESX, 6W9O, and 3F4R respectively were subjected to drug-
likeness and ADMET tests using two online web servers; 
http:// www. swiss adme. ch/ index. php and http:// biosig. unime 
lb. edu. au/ pkcsm respectively. Lipinski’s rule of five (RO5) 
also called the Pfizer rule is a well-established provision for 
determining the oral bioavailability of a given compound 
(Lipinski et al. 2001; Lawal et al. 2021). Consequently, these 
analogs were subjected to the RO5 criterion to ascertain their 
oral bioavailability.

Molecular dynamics simulation and MM/GBSA 
calculation

Molecular dynamics (MD) simulation of 7ESX_23 complex 
was performed using the combined approach of Chemistry 
at Harvard Macromolecular Mechanics (CHARMM) force 
field, Nano-scale Molecular Dynamics (NAMD), and Vis-
ual Molecular Dynamics (VMD). The CHARMM-GUI, an 
established web-based platform that utilizes the CHARMM 
force field, was used to generate the input files for the simula-
tion by NAMD (Lee et al. 2016). The periodic boundary con-
dition was utilized while fitting the system into a cubic water 
box for solvation. The protein was solvated and neutralized 
explicitly in an aqueous solution of 0.10 M concentration 
of potassium chloride salt (Edache et al. 2022). To stabilize 
the complex structure and to ensure steric clashes will not 
result, energy minimization was performed. The resulting 
system of ions and solvent was then equilibrated to stabi-
lize the system at a temperature chosen for the simulation 
(310.15 K) at a constant number of particles, volume, and 
temperature (NVT ensemble), and to stabilize the pressure by 
keeping the number of particles, pressure, and temperature 
(NPT ensemble) constant using 100ps time frame (Muniba 
2019). MD was then performed on the resulting system for 
1ns (500,000 steps), while the results were visualized using 
VMD and the Biovia discovery studio, all on an HP laptop 
computer; Processor (Intel(R) Core(TM) i5-4210U CPU @ 
1.70 GHz 2.40 GHz), Installed RAM (8.00 GB), System 
type (64-bit operating system, x64-based processor), Edi-
tion (Windows 10 Home Single Language), Version 21H2. 
A similar procedure was described elsewhere (Edache et al. 
2022). Additionally, MolAICal software was used to com-
pute the ligand-binding affinity by Molecular Mechanics 
Generalized Born Surface Area (MM/GBSA) method based 
on the resulting MD log files obtained with NAMD (Bai 
et al. 2020). MM/GBSA is estimated using Eqs. (2)–(4) (Bai 
et al. 2020).

(2)�Gbind = �H − T�S ≈ �EMM + �Gsol − T�S

(3)�EMM = �Einternal + �Eele + �Evdw

Where, ∆EMM and −T∆S represent respectively the gas 
phase MM energy and conformational entropy. ∆EMM contains 
electrostatic ∆Eele, van der Waals energy ∆Evdw and ∆Einternal 
of bond, angle, and dihedral energies. ∆Gsol is the solvation 
free energy equal to the sum of the nonelectrostatic solvation 
component ∆GSA and electrostatic solvation energy ∆GGB.

3 – D QSAR modeling

The alignment of molecular structures plays a critical role 
in 3D-QSAR modeling (Al-Attraqchi and Mordi 2022) as 
it strongly determines the predictive accuracy and statistical 
quality of any given 3D-QSAR model (ElMchichi et al. 2020). 
Different alignment methods have been reported previously 
such as atom-based, docking-based, pharmacophore-based, 
and co-crystallized conformer-based alignments amongst 
others (Zhang et al. 2020; Al-Attraqchi and Mordi 2022). In 
this study, the atom-based alignment was adopted using the 
Open3DAlign (O3A) tool. The atom-based method attempts 
to match the atoms of the various structures to be aligned with 
those of the template structure, based on the atom’s properties 
such as the partial charge.

The aligned structures were used for building the 3-D 
QSAR model using the Open3DQSAR software (Zhang et al. 
2020). The Comparative Molecular Field Analysis (CoMFA) 
which is concerned with steric and electrostatic fields’ con-
tributions was studied (ElMchichi et al. 2020). A dataset of 
52 compounds was divided into a training set and a test set 
of 36 and 16 molecules respectively, i.e. percentage ratio of 
70:30. The steric and electrostatic Molecular Interaction Fields 
(MIFs) analysis was carried out on the aligned compounds 
placed within a 3-D cubic lattice of grid size 1.5 Å and a 5.0 
Å out gap (Tosco and Balle 2011). Variables pretreatment was 
carried out as follows; energy cut-off (30.0 kJ/mol), elimina-
tion of variables having constant or near-constant values, 
and standard deviation cut-off (level = 2.0) (Al-Attraqchi and 
Mordi 2022). The Un-informative Variable Elimination-Par-
tial Least Square (UVE-PLS) was used to build the statistical 
model and for generating the steric and electrostatic contour 
plots (Edache et al. 2022). The resulting model was then cross-
validated using the Leave-One-Out (LOO), Leave-Two-Out 
(LTO), and Leave-Many-Out (LMO). The steric and electro-
static contour maps were visualized on Maestro v. 12.3.

Results and discussion

Virtual docking screening

The results (binding affinities) of the docking simulation 
conducted between the Four (4) receptors of Wolbachia 

(4)�Gsol = �GSA + �GGB

http://www.swissadme.ch/index.php
http://biosig.unimelb.edu.au/pkcsm
http://biosig.unimelb.edu.au/pkcsm
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pipientis and the various pyrazolopyrimidine derivatives, 
as well as the reference drug (Doxycycline), were reported 
in Table 2.. It can be observed from Table 2 that no par-
ticular ligand best interacted with all the studied receptors 
combined. That is, a ligand may bind very strongly with a 
given receptor but shows a weak interaction with another 
receptor. However, Four (4) ligand-protein interaction pairs 
with the greatest negative binding scores were identified in 
the order; compound 23 with 7ESX (-10.2 kcal/mol)> 14 
with 6EEZ (− 9.0 kcal/mol)> 29 with 3F4R (− 8.0 kcal/
mol) > 26 with 7ESX (− 7.7 kcal/mol). Also, no ligand-pro-
tein interaction pair involving the reference drug (Doxycy-
cline) was identified that could compare with the identified 
interaction pairs, except doxycycline_7ESX complex with 
a binding score of − 7.7 kcal/mol equal to that of 26_7ESX 
complex. Therefore, the virtual screening was effective and 
subsequent discussion shall be based on these more active 
molecules (Table 3).

The pharmacological interactions between the receptors’ 
amino acid residues and the selected compounds (14, 23, 26, 
and 29) as well as the reference drug (Doxycycline) were 
summarized in Table 4, while the 2D and 3D views of the 
binding interactions as adapted from the Discovery Studio 
Visualizer were shown in Figs. 1, 2, 3, 4, and 5. This was 
to provide insight into the mode of binding of these ligands 
with the active sites of the various target proteins.These 
compounds were said to interact very adequately with the 
respective target receptors as shown by the presence of 
hydrogen bonding (H-bond), hydrophobic interactions, and 
in some cases electrostatic interactions. (Table 4). How-
ever, more interactions were visible from the binding pro-
file of compound 23 with 7ESX, involving a total of Four 
(4) conventional H-bonds, One (1) π-donor H-bond, One 
(1) π-anion electrostatic interaction, and up to Eight (8) 
hydrophobic interactions. Four groups can be identified 
in the molecular structure of compounds 23 as pyridine, 
pyrimidine, pyrazole, and benzoate groups, all interact-
ing significantly with the receptor’s amino acid residues. 
The carbonyl group (C = O) oxygen of the benzoate group 

Table 2  Summary of binding affinities of interactions between pyra-
zolopyrimidine derivatives and different Wolbachia pipientis recep-
tors used for the target fishing

Comp ID Protein-ligand binding affinities (kcal/mol)

3F4R 6EEZ 6W9O 7ESX 

1 − 7.0 − 8.5 − 7.1 − 8.3
2 − 6.9 − 8.1 −  6.8 − 8.0
3 − 7.4 − 8.3 − 7.2 − 9.4
4 − 7.6 − 8.3 − 7.3 − 8.1
5 − 7.2 − 8.8 − 7.3 − 8.0
6 − 7.1 − 8.6 − 7.1 − 7.8
7 − 6.9 − 8.1 − 7.0 − 8.2
8 − 6.9 − 8.4 − 7.2 − 8.5
9 − 7.2 − 7.9 − 7.5 − 8.2
10 − 7.0 − 7.7 − 7.0 − 8.0
11 − 6.9 − 8.0 − 7.0 − 8.0
12 − 7.0 − 8.4 − 7.3 − 7.9
13 − 7.1 − 8.0 − 7.4 − 7.5
14 − 7.5 − 9.0 − 7.3 − 8.8
15 − 7.4 − 8.6 − 6.8 − 8.1
16 − 7.3 − 8.7 − 6.9 − 8.7
17 − 7.2 − 8.3 − 7.4 − 8.6
18 − 6.9 − 8.4 − 7.5 − 8.4
19 − 6.8 − 7.5 − 6.9 − 8.7
20 − 7.4 − 7.6 − 7.3 − 8.5
21 − 7.0 − 7.6 − 7.1 − 8.4
22 − 7.3 − 8.6 − 6.9 − 7.8
23 − 7.4 − 7.4 − 7.0 − 10.2
24 − 7.1 − 6.9 − 7.2 − 8.0
25 − 6.6 − 7.4 − 7.3 − 7.3
26 − 7.7 − 8.2 − 7.7 − 8.1
27 − 7.6 − 8.2 − 7.3 − 8.9
28 − 7.8 − 8.5 − 7.6 − 9.0
29 − 8.0 − 8.1 − 7.7 − 7.8
30 − 7.3 − 8.0 − 7.2 − 7.8
31 − 7.1 − 7.5 − 7.2 − 7.8
32 − 6.3 − 6.2 − 5.8 − 7.7
33 − 6.3 − 6.6 − 6.0 − 7.6
34 − 6.3 − 6.3 − 6.3 − 7.2
35 − 6.7 − 6.6 − 6.5 − 7.5
36 − 6.9 − 6.6 − 6.8 − 7.4
37 − 5.9 − 6.8 − 5.8 − 7.2
38 − 6.4 − 6.4 − 6.6 − 7.4
39 − 6.7 − 7.3 − 6.5 − 7.9
40 − 6.7 − 7.6 − 6.6 − 8.9
41 − 7.2 − 7.7 − 6.8 − 7.7
42 − 6.6 − 7.9 − 7.0 − 8.2
43 − 6.8 − 7.6 − 6.9 − 8.2
44 − 6.8 − 7.5 − 7.3 − 7.8
45 − 6.2 − 6.3 − 6.0 − 8.0
46 − 7.1 − 8.5 − 7.3 − 7.5
47 − 6.7 − 7.0 − 7.0 − 7.7

PDB ID – 3F4R, 6EEZ, 6W9O, 7ESX, Ref reference drug (Doxycy-
cline)

Table 2  (continued)

Comp ID Protein-ligand binding affinities (kcal/mol)

3F4R 6EEZ 6W9O 7ESX 

48 − 6.8 − 7.6 − 6.5 − 7.9
49 − 6.8 − 7.4 − 6.8 − 8.1
50 − 6.9 − 7.2 − 6.9 − 7.4
51 − 6.8 − 7.1 − 6.7 − 8.7
52 − 6.8 − 6.5 − 6.1 − 7.5
Ref − 6.9 − 6.9 − 7.4 − 7.7
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formed 2 H-bonds with LYS-232 at interaction distances of 
2.68 and 2.91 Å. The remaining 2 conventional H-bonds 
were formed by GLU-188 with the pyridine group and the 
linker amine group at 2.01 Å and 3.05 Å respectively. Also, 
the π-donor H-bond was between ASN-77 and the pyrazole 
π-system at 2.96 Å. Visible were the π-anion interactions 
between the π-electrons systems of GLU-191 and the benzo-
ate group at 4.06Å. Several hydrophobic interactions were 

formed including π- π T shaped with PHE-228 (5.22 Å), 
π-sigma with ARG-74 (3.57 Å), π-alkyl with TRP-37 at 5.39 
Å, LEU-75 at 5.44 Å, and ARG-74 at 4.30 Å and 5.49Å, and 
alkyl interactions with ARG-36 and LEU-75 at distances 
of 4.95 Å and 4.64 Å respectively. It is important to note 
that no unfavorable interaction was seen in the 23_7ESX 
binding interaction profile (Fig. 1). The complex involving 
the reference drug, doxycycline_7ESX on the other hand 

Table 3  Molecular 
structures of some selected 
pyrazolopyrimidine analogs

Comp ID Molecular structures

14

 
23

 
26

 
29

 
Doxycycline
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Table 4  Predicted binding 
interaction profiles of 14, 23, 
26, 29, and Doxycycline with 
the receptors

 ALA alanine, ARG  arginine, ASN asparagine, ASP aspartic acid, GLU glutamic acid, ILE isoleucine, LEU 
leucine, LYS lysine, PHE phenylalanine, PRO proline, SER serine, TRP tryptophan, TYR tyrosine, VAL 
valine

Complex Binding 
affinity (kcal/
mol)

Amino acid Bond type Interaction Distance (Å)

7ESX_23 − 10.20 GLU-188 Hydrogen bond Conventional hydrogen bond 2.01, 3.05
LYS-232 Hydrogen bond Conventional hydrogen bond 2.68, 2.91
ASN-77 Hydrogen bond π-donor hydrogen bond 2.96
GLU-191 Electrostatic π-anion 4.06
PHE-228 Hydrophobic π- π T shaped 5.22
ARG-74 Hydrophobic π-sigma 3.57
TRP-37 Hydrophobic π-alkyl 5.39
LEU-75 Hydrophobic π-alkyl 5.44
ARG-74 Hydrophobic π-alkyl 4.30, 5.49
ARG-36 Hydrophobic Alkyl 4.95
LEU-75 Hydrophobic Alkyl 4.64

6EEZ_14 − 9.00 LYS-155 Hydrogen bond Conventional hydrogen bond 2.30, 2.57
TYR-89 Hydrogen bond Carbon hydrogen bond 2.99
LYS-118 Hydrogen bond Carbon hydrogen bond 3.49
PHE-159 Hydrophobic π- π stacked 3.85
TYR-89 Hydrophobic π- alkyl 5.47

3F4R_29 − 8.00 ASP-103 Hydrogen bond Conventional hydrogen bond 2.94
LYS-109 Hydrogen bond Conventional hydrogen bond 2.41, 2.67
ASP-103 Hydrogen bond Carbon hydrogen bond 3.73
ASN-106 Hydrophobic π-sigma 3.97
ALA-110 Hydrophobic π-alkyl 4.63
ALA-110 Hydrophobic Alkyl 3.64

6W9O_26 − 7.70 GLU-81 Hydrogen bond Carbon hydrogen bond 3.62
ARG-131 Electrostatic π-cation 3.61
GLU-135 Electrostatic π-anion 4.44
PHE-82 Hydrophobic π- π T shaped 4.71
PRO-88 Hydrophobic π-sigma 3.64
TRP-90 Hydrophobic π-alkyl 4.88
PRO-88 Hydrophobic π-alkyl 5.43
PRO-88 Hydrophobic Alkyl 4.25
LYS-85 Hydrophobic Alkyl 4.74
LYS-85 Donor-donor Unfavorable 2.01

7ESX_ − 7.70 ILE-288 Hydrogen bond Conventional hydrogen bond 2.03
Doxycycline TYR-251 Hydrogen bond Conventional hydrogen bond 2.56

LEU-243 Hydrogen bond Conventional hydrogen bond 2.67
LYS-246 Hydrogen bond Conventional hydrogen bond 2.09
LYS-248 Hydrogen bond Conventional hydrogen bond 2.03
PHE-289 Hydrogen bond Conventional hydrogen bond 2.81
SER-290 Hydrogen bond Carbon hydrogen bond 3.51
LYS-287 Hydrogen bond Carbon hydrogen bond 3.22
SER-244 Hydrogen bond Carbon hydrogen bond 3.03
LYS-287 Hydrophobic π-alkyl 5.50
VAL-250 Donor-donor Unfavorable 1.17
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showed more H-bonding interactions than 23_7ESX, con-
sisting of a total of Six (6) conventional H-bonds and Three 
(3) Carbon-H-bonds. Only One (1) hydrophobic interaction 
was however visible. More so, an unfavorable donor-donor 

clash with VAL-250 was formed (Fig. 5). Therefore, com-
pound 23 exhibited stronger and safer binding interactions 
with the Cytoplasmic incompatibility factor CidA than the 
reference drug (doxycycline)

Fig. 1  Binding interaction between 23 and Cytoplasmic incompatibility factor CidA (PDB: 7ESX)

Fig. 2  Binding interaction between 14 and Alpha-DsbA2 (PDB: 6EEZ)
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Evaluation of pharmacokinetic properties

Drug-likeness analysis and ADMET study were conducted 
on the Four (4) compounds (14, 23, 26, and 29) to ascertain 
their oral bioavailability. The results of both investigations 

were presented in Tables 5 and 6 respectively, while Fig. 6 
shows their Boiled Egg’s representation.

Lipinski’s RO5 for oral-bioavailability has been widely 
applied in the discovery of new drug molecules (Ugbe 
et al. 2022b). It asserts that a drug molecule may likely 

Fig. 3  Binding interaction between 29 and Alpha-DsbA1 (PDB: 3F4R)

Fig. 4  Binding interaction between 26 and OTU deubiquitinase (PDB: 6W9O)
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not be orally bio-available when it has Hydrogen Bond 
Donors (HBD) of greater than 5, Hydrogen Bond Accep-
tors (HBA) > 10, Molecular Weight (MW) > 500, and 
lipophilicity (MLOGP > 4.15 or WLOGP > 5) (Lipinski 
et al. 2001). Whenever a molecule passed at least three 
of the four provisions of the RO5, it is said to comply 
with Lipinski’s rule for oral bioavailability (Lawal et al. 
2021). Table 5 showed that all the tested pyrazolopyrimi-
dine derivatives passed the drug-likeness test (Lipinski 
RO5) by showing no violation. The reported values of 
Topological Polar Surface Area (TPSA) for the molecules 
were less than 140 Å2. Also, the values of the synthetic 
accessibility (SA) scores of these compounds were less 
than 5.00 (easy portion on a scale of 1–10), suggesting 
easy laboratory synthesis. The predicted values of the 
estimated water solubility (Log S) are in the range of 
− 4 > Log S > − 6, indicating these molecules are mod-
erately soluble. The compounds were equally estimated 
to be free from pains and brenk alerts.

The estimated ADMET properties reported in Table 6, 
showed a very high Human Intestinal Absorption (HIA) 
(greater than 90%) for all tested compounds. Skin perme-
ability is a key factor in transdermal drug delivery develop-
ment. Values of skin permeation constant LogKp > − 2.50 
indicates poor skin permeability. As a result, the various 
compounds tested showed LogKp values < − 2.50, con-
noting good skin permeability. Drug molecule penetration 
through the Blood-Brain Barrier (BBB) and Central Nervous 
System (CNS) comes with certain criteria. To enable a drug 
molecule penetrates the BBB and CNS readily, the loga-
rithmic ratio of brain to plasma drug concentration (logBB) 
must be > 0.3 and the blood-brain permeability-surface area 
product (logPS) be > − 2 respectively. Consequently, only 
14 with logBB of 0.325 readily penetrate the BBB as also 
indicated by its location within the boiled egg’s yolk shown 
in Fig. 6, while the various compounds are non-CNS perme-
able. Also, 23, 26, and 29 were located in the Boiled Egg’s 
white, an indication that they were predicted to be passively 
absorbed by the gastrointestinal tract.

Fig. 5  Binding interaction between doxycycline and Cytoplasmic incompatibility factor CidA (PDB: 7ESX)

Table 5  Predicted drug-likeness properties of some selected pyrazolopyrimidine derivatives

MW molecular weight, TPSA topological polar surface area, ESOL estimated solubility, HBD hydrogen bond donors, HBA hydrogen bond accep-
tors, RO5 Lipinski rule of five violation, SA synthetic accessibility score

Comp ID MW (g/mol) TPSA (Å2) MLOGP Log S (ESOL) HBD HBA RO5 PAINS BRENK SA

14 359.40 55.11 3.56 − 4.60 1 4 0 0 0 3.28
23 387.43 81.41 2.79 − 4.49 1 5 0 0 0 3.26
26 437.54 72.93 3.26 − 5.47 1 4 0 0 0 3.67
29 442.51 84.65 2.23 − 4.28 1 5 0 0 0 3.58
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Furthermore, some group of enzymes called cytochrome 
P450 enzymes are important in the body to facilitate drug 
metabolism and to help in their excretion. The two major 
isoforms enhancing drug metabolism, CYP-34 A and CYP-
2D6 were tested. The tested molecules are not substrates and 
inhibitors of CYP2D6 but are both substrates and inhibitors 
of CYP3A4, an indication of a well-moderated metabolic 
process. Figure 6 showed that only compound 23 was pre-
dicted not to be effluated from the central nervous system 
by P-glycoprotein. P-glycoprotein acts as a biological barrier 
by extruding toxins and xenobiotics, including drugs out of 
cells. The extent of drug removal from the body is deter-
mined by the drug’s total clearance. The range of values of 
total clearance for all the tested molecules is good. Addition-
ally, all the compounds except 14 showed no AMES toxic-
ity, implying that they are non-mutagenic and cannot act 
as carcinogens. Also available in Table 5 is the Maximum 
Recommended Tolerated Dose (MRTD) predicted for the 
various molecules. MRTD value of ≤ 0.477 log (mg/kg/day) 
is considered low, while a value > 0.477 log (mg/kg/day) 
is considered high. The overall drug-likeness and ADMET 
properties of the selected compounds showed good phar-
macokinetic profiles, except compound 14 which showed 
positive AMES toxicity. Therefore, these molecules could 
be considered potential drug candidates for the treatment of 
filarial diseases.

Molecular dynamics simulation

To analyze the dynamics of the protein-ligand interaction, 
MD simulation was performed on the best protein-ligand 
interaction pair (23_7ESX complex) for 1ns (1000 ps) of 
chemical time (500,000 iterations). The results of this sim-
ulation as plots of Root-Mean-Square Deviation (RMSD), 
Root-Mean-Square Fluctuation (RMSF), Solvent Accessible 
Surface Area (SASA), and Radius of gyration (Rg) versus 
the time in ps were presented in Figs. 7, 8 and 9, and 10 
respectively.

The average RMSD value was estimated as 1.6801 Å 
which showed that the protein-ligand complex deviated only 
a little from its original conformation during the trajectory. 
The deviation was maximum during the first 100ps of the 
simulation, after which it drops and tends to remain slightly 
unstable until a further drastic drop in the RMSD at 1000 ps, 
an indication that the system was fast attaining stability and 
nearing equilibrium (Edache et al. 2020). RMSF is more like 
a calculation of the flexibility or the extent of movement of 
individual residue during a simulation. As seen from Fig. 8, 
the RMSF tends to drop as the simulation nears 1000ps, a 
further indication that the system was fast attaining stability. 
The SASA is simply the surface area that is in contact with 
the solvent in which the complex resides. From Fig. 9, it can 
be observed that the SASA only fluctuates slightly between 
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10.50 Å2 and 11.6 Å2 during the trajectory, an indication of 
stability (Edache et al. 2022). The Rg is the measure of the 
degree of compactness of a protein during the trajectory. 
Decreasing Rg indicates reducing residues’ flexibilities and 
more stability for the protein. Throughout the trajectory, the 
Rg varies between 27.283 Å and 28.365 Å which is equiva-
lent to a difference of approximately 1.0 Å for the complex 
studied, connoting slight changes in the protein compact-
ness as the simulation progresses, and therefore means the 
stability of the complex. Furthermore, it will not be com-
plete without inspecting the simulated complex for possible 

protein-ligand interactions. As a result, the simulated com-
plex was visualized using the Biovia discovery studio and 
the resulting binding interaction of 23 with the active site of 
7ESX is presented in Fig. 11.

The binding interaction pattern of the simulated complex 
(Fig. 11) deviated significantly from that of the non-simu-
lated complex (Fig. 1) as several interactions majorly the 
hydrophobic interactions, electrostatic, and π-donor H-bond 
were lost. However, a significant number of important inter-
actions were visible including Two (2) conventional H-bond-
ing with SER-187 and ASN-77 at interaction distances of 
2.32 Å and 1.94 Å respectively, Two (2) carbon H-bonding 

Fig. 6  The boiled-egg representation of compounds 14, 23, 26, and 29 
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Fig. 7  The plot of RMSD versus time for MD simulation of 23 with 
7ESX
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with ASN-77 and LEU-75 at 2.96 Å and 2.75 Å respectively. 
Others are hydrophobic interactions with ARG-36 and ARG-
74 at 4.12 Å and 4.66 Å respectively. Additionally, no unfa-
vorable steric bumps or clashes were visible. Furthermore, 
the result of binding free energy (MM/GBSA) computed for 
23_7ESX by MolAICal is shown in Table 7.

The negative value of the estimated binding free energy 
(MM/GBSA) of the complex (− 60.6552 kcal/mol) indicates 
the favorability of the ligand-protein binding. Also, Van-
der Waals energy (− 50.0611 kcal/mol) contributed most 
to the binding free energy of the complex, connoting that 
Vander Waal/hydrophobic interactions played a crucial role 
in the binding process (Xu et al. 2019). It can therefore be 
inferred that compound 23 binds readily with the Cytoplas-
mic incompatibility factor CidA even within a dynamically 
perturbed system, and hence could be considered as a poten-
tial drug candidate for the treatment of filariasis.

3 – D QSAR modeling

Molecular structural alignment represents a key factor in 
ascertaining the predictive strength of a built 3-D QSAR 
model. Figure 12 (a–b) shows the molecular structure of the 
alignment template (compound 30) and the aligned struc-
tures as obtained from the super-imposition of the remain-
ing 51 molecules on the template. The UVEPLS approach 
was used to develop the model. Some significant statisti-
cal parameters calculated for the model were presented in 
Table 8. Reported in Table 9 were the experimental  pEC50, 
predicted  pEC50, and their residuals together with their O3A 
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Fig. 9  The plot of SASA versus time for MD simulation of 23 with 
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Fig. 11  Binding interaction between 23 and Cytoplasmic incompatibility factor CidA (PDB: 7ESX) after MD simulation
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scores. Additionally, a plot showing the correlation between 
predicted and experimental activities for both training and 
test sets was obtained and presented in Fig. 13. Also, the 
CoMFA model equation was summarized graphically as 3D 
contour maps as shown in Figs. 14 (a–b) and 15 (a–b).

The alignment process involves an early step that pro-
vided all the 52 compounds the opportunity of being cho-
sen as the alignment template based on the compound with 
the highest Open3DAlign (O3A) score. The O3A scores 
of the various compounds were included in Table 8. Com-
pound 30 had the highest O3A score of 9057.78 and hence 
was selected as the template upon which the remaining 
structures were superimposed. The model’s statistical 
parameters were computed for Five (5) Principal Compo-
nents (PC) amongst which the fifth PC (PC = 5) performed 

relatively better with  R2 value of 0.9425, SDEC = 0.1446, 
and F-test = 98.282. The statistical parameters available 
in Table 9 were those associated with PC 5. The predic-
tive strength of the regression models on new datasets of 
compounds can be estimated by cross-validation (Grohm-
ann and Schindler 2008). A cross-validated coefficient of 
correlation  (Q2) ≥ 0.50 indicates a good QSAR model. 
Here, three (3) types of  Q2 were calculated; Leave-one-
out (LOO), Leave-two-out (LTO), and Leave-many-out 
(LMO), together with their associated Standard Error of 
Prediction (SDEP). Only  Q2

LOO (0.5019) passed this cri-
terion and was reported alone.

A linear correlation between the CoMFA descriptors 
(independent variables) and the activity values (dependent 
variables) was established by the PLS analysis method. The 
lower residual values between the predicted and observed 
activity values (Table 8) shows a strong predictive strength 
of the model. This was supported by the clustering of points 
along the lines of best fit in the plots of predicted  pEC50 

Table 7  Binding free energy parameters of 23_7ESX complex

Parameter Value (kcal/mol)

∆E(internal) + 15.1432
∆E(electrostatic) + ∆G(solvation) − 25.7373
∆E (Van der Waal) − 50.0611
∆G binding (MM/GBSA) − 60.6552 ± 0.528 

Fig. 12  Molecular alignment of structures for the QSAR modeling a Alignment template (compound 30 with the highest O3A_Score of 
9057.78); b All structures aligned

0
1
2
3
4
5
6
7
8
9

0 2 4 6 8 10

P
re

di
ct

ed
 a

ct
iv

it
y

Experimental activity
Training Test

Fig. 13  Correlation between predicted and experimental  pEC50 for 
training and test sets
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versus the experimental  pEC50 (Fig. 13). This observation 
was supported by the conformation of the model to the Gol-
braikh and Tropsha criteria (Table 5) (Roy et al. 2016). The 
CoMFA QSAR equation is summarized graphically as a 3D 

contour map, which shows the regions within the molecules’ 
3-D structural space where steric and electrostatic fields are 
associated with extreme values. The underlying principle 
behind CoMFA is that variations in the shape and strength 
of non-covalent interaction fields surrounding the molecules, 
such as steric or electrostatic fields can be related to changes 
in binding affinities (Kakarla et al. 2016). Therefore, molec-
ular fields are key factors in binding affinity. The steric and 
electrostatic field contributions were 50.93% and 49.07% 
respectively (Table 9).

From the steric field contour maps available in Fig. 14 
(a–b), the red contours represent regions of unfavorable 
steric bulk, while the blue contours show regions of favora-
ble steric bulk. Regions in which steric bulk may reduce 
activity or affinity of the compound include positions 3 and 
4 on the pyridine group, position 5 on the pyrimidine group, 
and position 2 on the benzoate group (Fig. 14b). For exam-
ple, substituting the methyl group on position 5 of the pyrim-
idine group with a more bulky group like ethyl, isopropyl or 
tert-butyl could reduce the activity or binding affinity of the 
compound. On the other hand, more steric bulk favorable 
regions were identified (Fig. 14a), which include position 
6 in the pyrimidine group, position 6 in the pyridine group, 
and position 2 in the benzoate group. This implies that the 
introduction of bulky substituent groups at these positions 
will improve the inhibitory activity of the molecule. From 
the electrostatic field contour maps available in Fig. 15(a–b), 
yellow contours represent regions favored by high electron 
density or unfavorable to electron-withdrawing substituents, 
while the green contours represent regions of unfavorable 
high electron density or favorable to electron-withdrawing 

Fig. 14  Steric field contour maps of compound 23 a Blue contours represent regions of favorable steric bulk; b Red contours showing regions of 
unfavorable steric bulk

Table 8  Statistical parameters of the built model

PC principal components, SDEP standard error of prediction, F test 
Fischer’s statistics, LOO leave one out, Q2 cross-validated correlation 
coefficient, R2 Correlation coefficient, SDEC standard error of a cor-
relation, k slope of the plot of predicted activity against experimental 
activity, r2 square correlation coefficients of the plot of experimental 
activity versus predicted activity values, ro

2 square correlation coef-
ficients of the plot of experimental activity versus predicted activity 
values at zero intercept, r′o2 square correlation coefficients of the plot 
of predicted activity versus experimental activity at zero intercept

Parameters (UVEPLS)

PC 5
R2 0.9425
SDEC 0.1446
 F test 98.282
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LOO 0.5019
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groups. Five (5) regions in which the introduction of elec-
tron-withdrawing groups could reduce the inhibitory activ-
ity or binding affinity include all positions in the pyridine 
group, positions 5 and 6 in the pyrimidine group, position 
2 in the pyrazole group, and the carbonyl group of the ben-
zoate moiety (Fig. 15b). Also, regions of unfavorable high 
electron density were visible around the benzene ring system 
of the benzoate group and between the linker amine group 
and the pyrazole hetero atom. These regions need not be 
too electron-dense, hence electron-withdrawing groups will 
keep these regions at a low electron density which in turn 
will enhance the molecule’s inhibitory activity or binding 
affinity. In general, contour map analysis serves as a guide to 
designing new molecules with improved potency by adher-
ing to the information encoded in the contour maps.

Conclusion

In this study, a molecular docking-based virtual screening, 
pharmacokinetics analysis, molecular dynamic simulation, 
and 3-D QSAR modeling were performed on the pyrazo-
lopyrimidine derivatives. The molecular docking screening 
was effective as the Five (5) best protein-ligand interaction 

pairs were identified and ranked as 23_7ESX (– 10.2 kcal/
mol) > 14_6EEZ (– 9.0 kcal/mol) > 29_3F4R (– 8.0 kcal/
mol) > 26_6W9O (– 7.7 kcal/mol) ≈ doxycycline_7ESX 
(– 7.7 kcal/mol). The selected analogs (14, 23, 26, and 
29) all obeyed Lipinski’s RO5 for oral bio-availability and 
showed excellent ADMET properties except 14, with posi-
tive AMES toxicity. Results of the MD simulation showed 
the stability of the 23_7ESX complex, exhibiting a favorable 
ligand-protein binding process with an estimated ∆G bind-
ing (MM/GBSA) of – 60.6552 kcal/mol. The 3 – D QSAR 
(CoMFA) model was developed and found to satisfy the 
requirement for validation tests with  R2 value of 0.9425, 
 Q2

LOO = 0.5019, SDEC = 0.1446, and F test = 98.282. The 
anti-Wolbachia activities of the various compounds were 
well predicted by the model. The analysis of the steric and 
electrostatic contour maps could provide a useful guide for 
the future design of more active analogs. Special emphasis 
on compound 23 because it appears to be consistent with 
the various employed validation protocols, being that it pos-
sessed the highest binding score, showed excellent pharma-
cokinetic properties, and binds pharmacologically well with 
the target protein (7ESX). Therefore, 23 could be considered 
as a potential filarial drug candidate, and/or template for the 
design of more prominent Wolbachia inhibitors.

Fig. 15  Electrostatic field contour maps of compound 23 a Green 
contours showing regions of unfavorable high electron density or 
favorable to electron-withdrawing groups; b Yellow contours repre-

sent regions favored by high electron density or unfavorable to elec-
tron-withdrawing substituents
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