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Abstract
Lymphatic filariasis and onchocerciasis are two common filarial diseases caused by a group of parasitic nematodes called 
filarial worms, which play host to the bacteria organism Wolbachia. One good treatment approach seeks Wolbachia as drug 
target. Here, a QSAR study was conducted to investigate the anti-wolbachia activities  (pEC50) of 52 pyrazolopyrimidine ana-
logues, while using the built model to predict the  pEC50 values of the newly designed analogues. Density Functional Theory 
was used for the structural optimization, while the model building was based on Genetic Function Algorithm approach. 
The built QSAR model was validated thus:  R2 = 0.8104,  R2

adj = 0.7629,  Q2
cv = 0.6981,  R2

test = 0.7501 and  cRp2 = 0.7476. 
The predicted  pEC50 of all newly designed compounds were higher than that of the template (43). The new compounds 
were; observed to pass the drug-likeness criteria, uniformly distributed to the brain, and found to be non-mutagenic. Also, 
the new compounds and the reference drug (doxycycline), were docked onto Ovarian Tumor (OTU) deubiquitinase recep-
tor (PDB ID: 6W9O) using iGEMDOCK tool. This protein is known to help Wolbachia subvert host ubiquitin signaling. 
The resulting binding scores of the newly designed compounds except A5 were higher than that of doxycycline, while the 
protein–ligand interactions were majorly characterized by Hydrogen-bonding and hydrophobic interaction types. Therefore, 
the newly designed molecules could be developed as potential drug candidates for the treatment of lymphatic filariasis and 
onchocerciasis.
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AD  Applicability domain
ADMET  Absorption, distribution, metabolism, excre-

tion, and toxicity
AIDS  Acquired immuno-deficiency syndrome
ALA  Alanine
ARG   Arginine
ASN  Asparagine
ASP  Aspartic acid
BBB  Blood brain barrier
LogBB  Logarithmic ratio of brain to plasma drug 

concentration
B3LYP  Becke’s three-parameter read-Yang-Parr hybrid

DFT  Density functional theory
DTC  Drug theoretical and cheminformatics
EC50  Half-maximal effective concentration
pEC50  Negative log of  EC50
ESOL  Estimated solubility
LOF  Friedman lack-of-fit
GFA  Genetic function approximation
GLN  Glutamine
GLU  Glutamic acid
GLY  Glycine
h*  Warning leverage
HIA  Human intestinal absorption
HIS  Histidine
HIV  Human immuno-deficiency virus
HBA  Hydrogen bond acceptor
HBD  Hydrogen bond donor
H-Bond  Hydrogen bond
ILE  Isoleucine
LEU  Leucine
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LYS  Lysine
MDA  Mass Drug Administration
MRTD  Maximum recommended tolerated dose
ME  Mean Effect
MLogP  Lipophilicity
MMFF  Molecular mechanics force field
MW  Molecular weight
MLR  Multi-linear regression
NTD  Neglected tropical diseases
OUT  Ovarian tumor
PaDEL  Pharmaceutical Data Exploration Laboratory
PDB  Protein Data Bank
PHE  Phenylalanine
PRO  Proline
LogPS  Blood–brain permeability-surface area product
QSAR  Quantitative structure activity relationship
RO5  Rule of five
SER  Serine
SEE  Standard error of estimation
THR  Threonine
TPSA  Topological polar surface area
TB  Tuberculosis
TRP  Tryptophan
TYR   Tyrosine
VAL  Valine
VDW  Van der Waal interaction
VIF  Variance inflation factor
WHO  World Health Organization

Introduction

Neglected tropical diseases (NTDs) are a group of infec-
tious diseases which are endemic in developing countries 
majorly tropics and sub-tropics. Unlike Human Immuno-
deficiency Virus (HIV)/Acquired immuno-deficiency syn-
drome (AIDS), tuberculosis (TB) and malaria which are 
receiving greater treatment and research funding, NTDs 
are truly neglected (Wilsher 2011). According to the World 
Health Organization (WHO), ailments like human African 
trypanosomiasis, schistosomiasis, onchocerciasis (river 
blindness), lymphatic filariasis (elephantiasis), rabies, and 
buruli cancer are amongst many others classified as NTDs 
(Hotez et al. 2020). This study is focused on two common 
filarial diseases; Lymphatic filariasis and onchocerciasis. 
Lymphatic filariasis is caused by wuchereria bancrofti, 
Brugia malayi and Brugia timori, while onchocerca volvu-
lus is the causative organism for onchocerciasis (Bakowski 
et al. 2019). Elephantiasis has been reported to cause over 
2.8 million disabilities worldwide, whereas river blindness 
is the global second leading cause of blindness (Jacobs 
et al. 2019; Cooper and Nutman 2013). Both diseases were 
equally reported to further aggravate the health of those who 

are already down with life-threatening infections like HIV, 
TB or malaria (McGillan 2017). Elephantiasis is transmitted 
by a wide range of mosquitoes, while onchocerca volvulus 
is transmitted to its hosts by the blackflies (McGillan 2017).

One specific approach adopted generally over the years to 
reduce the impact of these filarial infections on the popula-
tion, is the method of Mass Drug Administration (MDA) 
(Carter et al. 2020). Notable drugs administered through 
MDA programs over time include ivermectin, albenda-
zole, and diethyl carbamazine, either as a dual (annual to 
bi-annual) or as triple-drug (once every 3 years) treatment 
(Jacobs et al. 2019; Carter et al. 2020). Unfortunately, the 
various drugs administered through MDA programs lack 
enough efficiency to eliminate the adult worms. It is there-
fore, important to identify new approaches to eliminate adult 
worms so as to effectively cut down the time frames for 
both diseases’ elimination (Jacobs et al. 2019; Lakshmi et al. 
2010). Fortunately, these nematodes causing filarial diseases 
are said to endosymbiotically co-habit with a gram-negative 
bacterium called Wolbachia (Ugbe et al. 2021). Wolbachia 
is known to be widely distributed and infects a wide range 
of insects and nematodes species of the phylum arthropod 
(Kurz et al. 2008). Wolbachia pipientis is the strain which is 
common to nematodes causing filarial diseases (McGillan 
2017). The nature of endosymbiotic relationship between 
Wolbachia and infected worm is unclear, it has however been 
reported that wolbachia is important during the embryonic 
development process in infected nematodes (Townson et al. 
2000). It has also been suggested that wolbachia can syn-
thesize detoxification enzymes such as catalase, while other 
reports suggested that the bacteria may play a significant 
role in nutrition for the host (Henkle-Duhrsen et al. 1998). 
In the search for new anti-filarial drugs, some researchers 
have chosen to target wolbachia, which past researches have 
shown that its elimination from the host filarial nematodes 
leads to antifilarial effects with the reduction of adult worm’s 
lifespan (McGillan 2017; Bouchery et al. 2013). A clinically 
relevant anti-bacteria drug, doxycycline (Reference drug in 
this study) has over the years been used for the treatment of 
lymphatic filariasis and onchocerciasis. However, the treat-
ment method lacks the necessary efficiency to be adminis-
tered through the MDA owing to its requirement for long 
treatment periods of about 4–6 weeks, contraindications 
in pregnancy and in children (McGillan 2017). Therefore, 
efforts in the development of novel wolbachia inhibitors 
with short treatment periods and reduced complications are 
important.

Computational tools play a major role in lead optimiza-
tion phase of drug discovery (Sliwoski et al. 2014). It saves 
cost, time and tends to be more effective than the traditional 
methods (Lawal et al. 2021). The knowledge of Quantita-
tive Structure Activity Relationship (QSAR) helps in estab-
lishing a relationship between various molecular structures 
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of molecules and their experimental activities (Adeniji 
et al. 2019). Molecular docking simulation is a computer 
aided virtual screening method which probes the binding 
of ligands in the active sites of the protein target using a 
valid docking tool (Ibrahim et al. 2020). Pharmacokinetics 
analysis is important in the pre-clinical study of new drug 
compounds in order to ascertain how such drug compounds 
affect the living organism when administered. Some of the 
most important pharmacokinetics properties to be deter-
mined during pre-clinical testing include Absorption, Dis-
tribution, Metabolism, Excretion, and Toxicity (ADMET) 
(Lawal et al. 2021; Ibrahim et al. 2021). Physico-chemical 
properties such as molecular weight, Topological Polar Sur-
face Area (TPSA), lipophilicity, water solubility, hydrogen 
bond donors, and hydrogen bond acceptors are necessary 
to predict drug’s likelihood of being orally bioavailable 
(Lipinski et al. 2001). The choices of molecules for oral 
bioavailability have been guided by several rules such as the 
Lipinski’s ‘rule of 5’ (RO5), Veber rule, Ghose rule, Egan, 
and Muegge etc. (Sun et al. 2020).

Ubiquitination play a critical role in the regulation of 
many cellular processes in living cells especially eukaryotes 
(Bailey-Elkin et al. 2014). Manipulating host ubiquitin sign-
aling is becoming an increasing occurrence amongst bacte-
rial and viral pathogens including Wolbachia. This is pos-
sible because most pathogens encode deubiquitinases, which 
helps them to subvert host signalling (Schubert et al. 2020). 
Therefore, the bacteria viability within the host environment 
may be heavily affected by inactivation of deubiquitinases. 
Some deubiquitinases have been reported to belong to the 
Ovarian Tumor (OTU) family (Bailey-Elkin et al. 2014). In 
this study therefore, Crystal structure of an OTU deubiqui-
tinase from Wolbachia pipientis wMel (PDB: 6W9O) was 
used as the therapeutic protein receptor for docking with 
the newly designed compounds of pyrazolopyrimidine class. 
The structure of OTU deubiquitinase used in this study was 
predicted by the method of X-ray diffraction and expressed 
in Escherichia coli (Schubert et al. 2020).

Many Pyrazolopyrimidine compounds have been reported 
as having a variety of different biological activities such as 
anti-tuberculosis, anti-malarial, and antiviral agents, anti-
depressants and inhibitors of kinase (Asati et  al. 2021; 
McGillan et al. 2021). However, most of the drugs belonging 
to this class marketed to date are said to produce hypnotic 
and/or anxiolytic effects. In order to exploit the anti-filarial 
effect of the pyrazolopyrimidine class therefore, McGillan 
et al. (2017) synthesized a series of 52 pyrazolopyrimidine 
analogues and reported their biological activities against 
Wolbachia (wAlbB) infected insect cells (Aedes albopictus, 
C6/36). The purpose of this study is to: develop a QSAR 
model capable of predicting the activities of some pyrazo-
lopyrimidine derivatives as potent anti-wolbachia agents; 
carry out a theoretical design of new pyrazolopyrimidine 

derivatives as anti-wolbachia agents based on the established 
QSAR theoretical model, while subjecting same to pharma-
cokinetics and molecular docking studies in order to evaluate 
their drug-likeness properties and binding interaction pattern 
respectively.

Materials and methods

Data collection

McGillan in his Ph.D. thesis (2017) reported the synthesis of 
several small molecules anti-wolbachia agents of the pyra-
zolopyrimidine class, as part of the Anti-Wolbachia drug 
discovery and development programme towards identifying 
alternate drugs for the treatment of filarial diseases. Their 
biological activities were tested against Wolbachia (wAlbB) 
infected insect cells (Aedes albopictus, C6/36) and reported 
in nanomolar. Consequently, a dataset of 52 pyrazolopyrimi-
dine analogues with relatively better half-maximal effective 
concentration  (EC50) values were extracted and used for this 
theoretical study. The bioactivities  (EC50) were converted 
from nanomolar (nM) to logarithmic scale  (pEC50) using 
Eq. (1) (Wang et al. 2020). Figure 1 shows the structural 
template of pyrazolopyrimidine, while the molecular struc-
tures of the various pyrazolopyrimidine derivatives and their 
observed  EC50 and  pEC50 values are shown in Table 1.

Molecular geometry optimization

The two-dimensional (2-D) structures of the various 
compounds were drawn using the ChemDraw Ultra (ver-
sion 12.0.2), saved as MDL mol file format and then fed 
separately into the Spartan 14 software (version 1.1.4) in 

(1)pEC50 = − log10
(
EC50 × 10−9

)

Fig. 1  Pyrazolopyrimidine structural template
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Table 1  Molecular structures and anti-wolbachia activities of pyrazolopyrimidine derivatives

Comp ID R1 R2 R3 R4 R5 EC50 (nM) pEC50

1 H Phenyl Isopropyl H 647 6.1891

2 H Pyridin-2-ylmethyl Phenyl Tert-butyl H 1854 5.7319
3 H Benzyl Phenyl Methyl H 3012 5.5211
4 H 2-chlorobenzyl Phenyl Methyl H 5176 5.2860
5 H Phenyl Methyl H 1384 5.8589

6 H Pyridin-2-ylmethyl Phenyl Methyl H 145 6.8386
7 H Phenyl Methyl Methyl 90 7.0458

8 H 4-fluorophenyl Methyl Methyl 93 7.0315

9 H Pyrimidin-2-ylmethyl 4-fluorophenyl Methyl Methyl 33 7.4815
10 H Pyrazin-2-ylmethyl 4-fluorophenyl Methyl Methyl 183 6.7375
11 H Pyrimidin-4-ylmethyl 4-fluorophenyl Methyl Methyl 518 6.2857
12 H 4-fluorophenyl Methyl Methyl 456 6.3410

13 methyl Pyridin-2-ylmethyl 4-fluorophenyl Methyl Methyl 2500 5.6021
14 H Pyridin-2-ylmethyl 4-fluorophenyl Fused cyclopentane at positions 5 

and 6
93 7.0315

15 H Pyridin-2-ylmethyl 4-fluorophenyl Methyl Chloro 51 7.2924
16 H Pyridin-2-ylmethyl 4-fluorophenyl Methyl 2,2,2-trifluoro-

ethyl
15 7.8239

17 H Pyridin-2-ylmethyl 4-chlorophenyl Methyl H 674 6.1713
18 H Pyridin-2-ylmethyl Methyl Methyl 664 6.1778

19 H Pyridin-2-ylmethyl Methyl Methyl 143 6.8446

20 H Pyridin-2-ylmethyl Benzonitrile Methyl Methyl 664 6.1778
21 H Pyridin-2-ylmethyl 4-chlorophenyl Methyl Methyl 84 7.0757
22 H Pyridin-2-ylmethyl o-tolyl Methyl Methyl 102 6.9914
23 H Pyridin-2-ylmethyl methylbenzoate methyl methyl 179 6.7471
24 H Pyridin-2-ylmethyl Methyl Methyl 175 6.7570

25 H Pyridin-2-ylmethyl Methyl Methyl 131 6.8827
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Table 1  (continued)

Comp ID R1 R2 R3 R4 R5 EC50 (nM) pEC50

26 H Pyridin-2-ylmethyl Methyl Methyl 1479 5.8300

27 H Pyridin-2-ylmethyl Methyl Methyl 119 6.9245

28 H Pyridin-2-ylmethyl Methyl Methyl 43 7.3665

29 H Pyridin-2-ylmethyl Methyl Methyl 680 6.1674

30 H Pyridin-2-ylmethyl Methyl Methyl 844 6.0737

31 H Pyridin-2-ylmethyl Methyl Methyl 1228 5.9108

32 H Pyridin-2-ylmethyl H Methyl Methyl 105 6.9788
33 H Pyridin-2-ylmethyl Bromo Methyl Methyl 176 6.7544
34 H Pyridin-2-ylmethyl Chloro Methyl Methyl 122 6.9136
35 H Pyridin-2-ylmethyl Fluoro Methyl Methyl 164 6.7851
36 H Pyridin-2-ylmethyl Difluoromethoxy Methyl Methyl 251 6.6003
37 H Pyridin-2-ylmethyl Fluoromethoxy Methyl Methyl 629 6.2013
38 H Pyridin-2-ylmethyl Chloro Methyl Chloro 311 6.5072
39 H Pyridin-2-ylmethyl Methyl Methyl 52 7.2840

40 H Pyridin-2-ylmethyl Tetrahydro-2H-pyran-4-yl Methyl Chloro 73 7.1367
41 H Pyridin-2-ylmethyl Methyl Chloro 561 6.2510

42 H Pyridin-2-ylmethyl Methyl Chloro 38 7.4202

43 H Pyridin-2-ylmethyl Methyl Chloro 16 7.7959
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three-dimensional (3-D) structural form. The 3-D structures 
were first optimized geometrically by energy minimization. 
Thereafter, Molecular Mechanics Force Field (MMFF) 
was used to minimize their chemical structures in order 
to remove tension energy of the molecules’ conformation. 
Further optimization was then conducted using Density 
Functional Theory (DFT) with Becke’s three-parameter 
read-Yang-Parr hybrid (B3LYP) option and utilizing the 
6-31G basis set. The thoroughly optimized structures were 
then saved in SD file format for use in descriptor calculation 
(Wang et al. 2020; Li et al. 2004).

Molecular descriptor calculation

The resulting data in SD file format obtained earlier from the 
optimization process were imported into the Pharmaceutical 
Data Exploration Laboratory (PaDEL)-descriptor software 
(version 2.20) to calculate the molecular descriptors for all 

fifty two (52) pyrazolopyrimidine derivatives (Lawal et al. 
2021).

Data‑set pretreatment and splitting into training 
and test sets

The pretreatment of the generated descriptor pool was car-
ried out using the Drug Theoretical and Cheminformatics 
Laboratory (DTC Lab) based software GUI 1.2 so as to 
remove descriptors which were not informative (Adeniji 
et al. 2020). The pretreated data were then divided into 
the modeling train set data and external evaluation test 
set data in the ratio of 70:30 respectively, with the help 
of DTC Lab derived software which utilizes the Kennard 
Stone method for data set division (Kennard and Stone 
1969). The splitting of data set into training and test sets 
was based on the closeness of the representative points of 
the test set to the representative points of the training set in 
the multidimensional descriptor space (Ugbe et al. 2021).

Table 1  (continued)

Comp ID R1 R2 R3 R4 R5 EC50 (nM) pEC50

44 H Pyridin-2-ylmethyl Methyl Chloro 1183 5.9270

45 H Pyridin-2-ylmethyl Chloro H Methyl 201 6.6968
46 H Pyridin-2-ylmethyl 4-fluorophenyl H Methyl 38 7.4202
47 H Pyridin-2-ylmethyl H Methyl 293 6.5331

48 H Pyridin-2-ylmethyl H Methyl 32 7.4948

49 H H Methyl 14 7.8539

50 H H Methyl 23 7.6383

51 H H Methyl 34 7.4685

52 H Pyridin-2-ylmethyl H Methyl 49 7.3098
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MLR‑GFA model building

The Genetic Function Approximation (GFA) as a statistical 
technique in the Material Studio software (version 8.0) was 
used to generate the models based on Multi-Linear Regres-
sion (MLR) approach. GFA was used to obtain the optimum 
descriptor combinations constituting the QSAR models, while 
MLR helps to establish the relationship between the biologi-
cal activities,  pEC50 (dependent variable) and the molecular 
descriptors (independent variables) (Arthur et al. 2020). The 
Multi-linear regression equation assumes the following form 
(Eq. 2) (Adawara et al. 2020):

where Y represents the dependent variable; ‘k’s and ‘x’s 
represent respectively regression coefficients and independ-
ent variables; ‘C’ equals intercept or regression constant.

Assessment of model quality (internal validation)

Internal validation assessment of the built models was car-
ried out on Material studio by GFA approach using the Fried-
man formula, correlation coefficient  (R2) and cross validation 
coefficient  (Q2cv). Determination of the Friedman Lack-Of-Fit 
(LOF) allows for the best fitness score to be obtained. LOF is 
defined as follows (Eq. 3):

where: SEE is the Standard Error of Estimation (SEE), with 
low values indicating high quality model. SEE is defined 
thus (Eq. 4):

c represents number of terms in the model, d is a user-
defined smoothing parameter, p is total number of descrip-
tors in the model while M equals the number of data in the 
training set (Adeniji et al., 2018).

Another important parameter, the correlation coefficient 
 (R2) measures the degree of fitness of the regression equa-
tion.  R2 value closer to 1 is an indicative of high quality model.

R2 is a commonly used internal validation parameter and is 
expressed thus (Eq. 5):

(2)Y = k1x1 + k2x2 + k3x3 +…C

(3)LOF =
SEE

(1 −
c+dxp

M
)
2

(4)SEE =

√
(Yexp − Ypred)

2

N − P − 1

(5)R2 = 1 −

⎡⎢⎢⎢⎣

∑�
Yexp − Ypred

�2
∑�

Yexp − Ytraining

�2

⎤⎥⎥⎥⎦

where: Ῡtraining, Yexp, and Ypred equal respectively, the 
mean  pEC50, experimental activity and the predicted activ-
ity in the training set.

R2 is usually adjusted in order to afford the model stabil-
ity and reliability because it directly varies with increase 
in number of descriptors. The adjusted  R2 is defined thus:

where: p is the number of descriptors in the model, and n 
equals the number of compounds in the training set.

Another important parameter is the leave-one-out (LOO) 
cross-validation regression coefficient  (Q2cv), which deter-
mines the ability of a built QSAR model to predict the activ-
ity of new compounds. A high value of  Q2cv indicates a 
high internal predictive power and a good robustness of the 
QSAR model.  Q2cv is defined as follows (Eq. 7):

Yexp and  Ypred represent the experimental activity and pre-
dicted activity in the training set respectively. Ῡ training 
equals the average  pEC50 in the training set.

Assessment of model quality (external validation)

The model’s predictive power was assessed externally to 
show if the model could predict the activity values of the 
test set compounds. The predictive strength of the model 
depends on the value of the predicted  R2  (R2 test) defined 
thus (Eq. 8) (Isyaku et al. 2020):

Ypredtest = predicted activity of test set,  Yexptest = experi-
mental activity of test set, Ῡtraining = mean value of experi-
mental activity of the training set.

Furthermore, the data was subjected to the Golbraikh and 
Tropsha acceptable model criteria using the MLRplusVali-
dation tool (version 1.3) as follows (Roy et al. 2013; Edache 
et al. 2020).

||r2o − r�2
o
|| (Threshold value < 0.3).

||||r
2 −

r�2
o

r2

|||| (Threshold value < 0.1).

k′ (threshold value 0.85 ≤ k ≤ 1.15).
where:  r2 = square correlation coefficients of the plot 

of experimental activity versus predicted activity values. 

(6)R2
adj

=
R2 − p(n − 1)

n − p + 1

(7)Q2
cv
= 1 −

� ∑�
Ypred − Yexp

�2
∑
(Yexp − Ytraining)

2

�

(8)R2
test

= 1 −

∑�
Ypredtest − Yexptest

�2
∑�

Ypredtest − Ytraining

�2
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 ro
2 = square correlation coefficients of the plot of experi-

mental activity versus predicted activity values at zero 
intercept. r′o2 = square correlation coefficients of the plot 
of predicted activity versus experimental activity at zero 
intercept. k′ = slope of the plot of predicted activity against 
experimental activity at zero intercept.

Y‑randomization test

The Robustness of the built QSAR model was assessed by 
Y-randomization technique in which MLR models are gen-
erated by randomly shuffling the dependent variable while 
keeping the independent variables constant (Adawara et al. 
2020). This is for a confirmation that the QSAR model built 
is strong and not created by chance. A low  R2 and  Q2 values 
for several iteration indicates a good applicability of the built 
model. The coefficient of determination ( cR2

p
 ) is defined as 

follows (Eq. 9):

where: cR2
p
 = Y-randomization coefficient, R = correlation 

coefficient for Y-Randomization, Rr = average ‘R’ of random 
models. cR2

p
 value greater than 0.50 is a requirement for the 

model to pass Y-randomization test.

Statistical analysis of the descriptors

Mean effect (ME)

The mean effect (ME) value shows the relative contribution 
of each descriptor in a model, defined as (Eq. 10):

where: βj is the coefficient of the descriptor j in the model, 
Dj is the value of each descriptor in the data matrix for each 
molecule in the training set, m is the number of the descrip-
tor that appears in the model, n is the number of molecules 
in the training set (Abdullahi et al. 2019).

Variance inflation factor (VIF)

The degree of multi-co-linearity or correspondence between 
the descriptors is measured by the Variance Inflation Factor 
(VIF), usually defined as (Eq. 11):

(9)cR2
p
= RX

[
R2 −

(
Rr

)2]2

(10)ME =
Bj

∑n

i
Dj∑m

j
(Bj

∑n

i
Dj)

(11)VIF =
1

(1 − R2)

where:  R2 is the correlation coefficient of the multiple 
regression between the variables within the model. VIF 
value of 1 indicates no inter-correlation exists for each 
variable, for VIF in the range of 1–5, the related model is 
acceptable; and if VIF is greater than 10, the related model 
is unstable and unacceptable (Abdullahi et al. 2019).

Evaluation of the model applicability domain

Evaluating the applicability domain (AD) of a QSAR model 
is important to ascertain the reliability and robustness of the 
built QSAR model. AD provides one the chance to estimate 
the uncertainty in the prediction of compounds based on 
their similarity with the training set compounds, used in the 
model building (Tropsha et al. 2003). The leverage approach 
was used to describe the AD of the developed model. The 
leverage (h) of a particular chemical compound is defined 
thus (Eq. 12):

where: X = m × k descriptor matrix of the training set com-
pound,  XT = transpose matrix of X.

The warning leverage (h*) which is the range of values 
used to check for influential molecule or outlier is defined 
below (Eq. 13):

where: m = number of training set compounds, j = number 
of descriptors in the model.

A plot of the standardized residuals against leverages 
otherwise called the William’s plot was used to evaluate 
the significant area in the model’s chemical space. As a 
rule, compounds which fall within this area on the plot are 
the approved predicted compounds (Adeniji et al. 2020; 
Veerasamy et al. 2011).

Ligand based drug design

The ligand based drug design approach was adopted in 
designing Six (6) new pyrazolopyrimidine analogues basi-
cally by deletion, substitution and insertion of substituent(s) 
into the template structure (43) based on the information 
provided by the molecular descriptors (Majorly GATS2v, 
GATS6s, ATSC4e and GATS8s) (Adeniji et al. 2020). The 
newly designed compounds and reference drug used in this 
study (doxycycline) were prepared in four steps as earlier 
reported under ‘molecular geometry optimization’ section; 
drawing of chemical structures, energy minimization, mini-
mization by MMFF, and optimization by DFT approach.

(12)h = X(XTX)−1XT

(13)h∗ = 3
(j + 1)

m
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Prediction of pharmacokinetic properties

Pharmacokinetics properties prediction constitute an abso-
lutely necessary stage in drug discovery’s early phase 
because only molecules with good drug-likeness properties 
and excellent ADMET profiles advance into the pre-clinical 
research phase (Lawal et al. 2021). Hence, Two (2) pyra-
zolopyrimidine derivatives (16 and 43) with better inhibi-
tory activities and lower residual values alongside the newly 
designed compounds (A1–A6) were investigated for their 
drug-likeness and ADMET properties using the online web 
servers; http:// www. swiss adme. ch/ index. php and http:// 
biosig. unime lb. edu. au/ pkcsm respectively. The Lipinski’s 
rule of five (RO5) is a widely used criterion for oral bio-
availability. Hence, the tested compounds would be assessed 
for oral bioavailability using the RO5 criteria (Lipinski et al. 
2001).

Molecular docking study

The newly designed compounds and the reference drug 
(doxycycline) were docked onto the receptor (OTU 
deubiquitinase)’s binding pocket using the iGEMDOCK 
software, while using Biovia Discovery Studio Visualizer 
to analyze the resulting protein–ligand interaction profiles 
(Ibrahim et al. 2021; Kumar et al. 2016).

Results and discussion

QSAR study

A theoretical study (QSAR) was conducted on fifty two 
(52) pyrazolopyrimidine derivatives, in order to establish a 
quantitative relationship between their structures and their 
anti-wolbachia activities. The built models were subjected 
to both internal and external validation tests, in which model 
3 (Eq. 14) best satisfied the requirement for a good QSAR 
model. Table 2 described the various descriptors used in the 
model, while the experimental and predicted activity values 

together with their residual values for pyrazolopyrimidine 
derivatives were presented in Table 3. Also, the predicted 
activity values were plotted against those of experimental 
activity for both training and test sets and presented in Fig. 2. 
A further plot of standardized residual against experimen-
tal activities was obtained and presented in Fig. 3. In order 
to ascertain the stability, robustness, reliability and predic-
tive power of the built QSAR model, internal and external 
validation tests were conducted, and the results presented 
in Table 4.

A combined GFA and MLR approaches led to the selec-
tion of seven (7) descriptors, and generation of four (4) 
QSAR models respectively. Model 3 (Eq. 14) was found to 
best satisfied the requirement for a reliable QSAR model. 
The low residual values between the experimental and pre-
dicted activities as shown in Table 3 imply that the model 
has a high predictive strength. The  R2 values of 0.8104 and 
0.750 for training set and test set respectively as obtained 
from Fig. 2 compare perfectly well with those obtained from 
GFA (0.8104 and 0.7501) and MLRplusValidation analysis 
(0.8104 and 0.7501) as reported in Table 4. The grouping 
together of points along the line of best fit in Fig. 2 shows 
that the experimental and predicted activity values are well 
correlated, indicating that the built model is reliable and 
robust. The random spread of standardized residuals on both 
sides of zero in Fig. 3 is an indication that the built model is 
free of any systematic error.

Additionally, Pearson’s correlation statistical analyses 
were performed on the values of all seven descriptors in 

(14)

pEC
50

= −1.067945613 ∗ ATSC4e

− 4.379278216 ∗ AATSC4s

+ 4.035879647 ∗ GATS2v

+ 0.922556367 ∗ GATS8e

+ 1.109246296 ∗ GATS6s

− 0.097883280 ∗ nsSeH

+ 0.696906031 ∗ SssSnH2

− 0.253197268

Table 2  Selected descriptors used in the QSAR model

S/no Descriptor symbol Description Class

1 ATSC4e Centred Broto-Moreau autocorrelation of lag 4 weighted by Sanderson electronegativ-
ity

2D

2 AATSC4s Average centered Broto-Moreau autocorrelation—lag 4/weighted by I-state 2D
3 GATS2v Geary autocorrelation—lag2/weighted by van der waals volume 2D
4 GATS8e Geary autocorrelation of lag 8 weighted by Sanderson electronegativity 2D
5 GATS6s Geary autocorrelation of lag 6 weighted by I-state 2D
6 nsSeH Count of atom-type E-State 2D
7 SssSnH2 Sum of atom-type E-State 2D

http://www.swissadme.ch/index.php
http://biosig.unimelb.edu.au/pkcsm
http://biosig.unimelb.edu.au/pkcsm
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the built QSAR Model and the results were reported in 
Table 5. Another significant validation test is the Y- Ran-
domization test, which was also performed and the result 
presented in Table 6. The low correlation coefficients (less 
than 0.50) which exist between each descriptor in the built 
model (Table 5) indicate no inter-correlation between each 
descriptor. The Variance Inflation Factor (VIF) for all 7 
descriptors has values ranging from 1 – 5, an indication of 
the stability and acceptability of the built model (Table 5). 
The absolute t-statistics of each descriptor is greater than 
2, showing that the selected descriptors were good (Adeniji 
et al. 2018). Also, Table 5 shows that the evaluated p val-
ues at 95% confidence level for all descriptor were less than 
0.05. This means that the alternative hypothesis which posits 
that there is a relationship between inhibitory activities and 
the descriptors holds. Additionally, the values of the Mean 

Table 3  Experimental, predicted and residual values of pyrazolopy-
rimidine derivatives

Compound ID Exp.  pEC50 Pred.  pEC50 Residuals

1 6.189096 6.475834 − 0.28674
2 5.73189 5.751861 − 0.01997
3 5.521145 5.551556 − 0.03041
*4 5.286006 5.419773 − 0.13377
5 5.858864 5.603058 0.255806
*6 6.838632 6.452273 0.386359
*7 7.045757 6.526182 0.519576
*8 7.031517 6.618447 0.41307
*9 7.481486 6.98818 0.493306
10 6.737549 6.939861 − 0.20231
11 6.28567 6.527686 − 0.24202
12 6.341035 6.075156 0.265879
13 5.60206 5.855867 − 0.25381
14 7.031517 7.368888 − 0.33737
15 7.29243 6.795143 0.497287
16 7.823909 7.953198 − 0.12929
17 6.17134 6.463977 − 0.29264
18 6.177832 6.233958 − 0.05613
19 6.844664 6.388609 0.45606
20 6.177832 6.342709 − 0.16488
21 7.075721 6.765542 0.310179
22 6.9914 6.664351 0.327049
*23 6.747147 6.191564 0.555583
24 6.756962 6.979128 − 0.22217
*25 6.882729 7.061255 − 0.17853
26 5.830032 5.933092 − 0.10306
*27 6.924453 6.055529 0.868924
28 7.366532 6.817488 0.549044
29 6.167491 6.400326 − 0.23283
30 6.073658 6.288886 − 0.21523
*31 5.910802 5.980347 − 0.06955
32 6.978811 7.056629 − 0.07782
33 6.754487 6.4994 0.255087
*34 6.91364 6.585139 0.328501
35 6.785156 7.247238 − 0.46208
36 6.600326 6.799095 − 0.19877
*37 6.201349 6.589389 − 0.38804
38 6.50724 6.487985 0.019255
39 7.283997 7.00048 0.283517
40 7.136677 6.998007 0.13867
41 6.251037 6.644402 − 0.39336
*42 7.420216 7.105898 0.314319
43 7.79588 7.55812 0.23776
44 5.927015 5.932727 − 0.00571
45 6.696804 6.588648 0.108156
46 7.420216 7.251703 0.168513
47 6.533132 6.667723 − 0.13459
48 7.49485 7.305925 0.188925
*49 7.853872 7.278034 0.575837

Key: *-test set compound,  EC50- half-maximal effective concentration

Table 3  (continued)

Compound ID Exp.  pEC50 Pred.  pEC50 Residuals

*50 7.638272 7.278034 0.360238
*51 7.468521 7.278034 0.190487
*52 7.309804 6.722164 0.58764
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Effect (ME) reported in Table 5 provide vital information 
on the effect and degree of each descriptor’s contributions 
in the model. The magnitudes and signs of ME values sig-
nify their respective strength and direction on the molecules’ 
inhibitory activities. All the descriptors except nsSeH have 
positive ME, indicating that increasing or decreasing their 

values will lead to a corresponding increase or decrease in 
the anti-proliferative activities respectively. Increasing the 
values of nsSeH on the other hand will lead to a decrease in 
the anti-wolbachia activities. GATS2V with the highest ME 
value has the greatest influence on the molecules’ inhibitory 
activities. GATS2v which is the Geary autocorrelation—lag 

Table 4  Validated parameters of 
the QSAR model

Validation parameters Model QSAR validation standard
Training set

Friedman LOF 0.4123 –
R-squared  (R2) 0.8104  ≥ 0.6
Adjusted R-squared ( R2

adj
) 0.7629 –

Cross validated R-squared ( Q2

cv
) 0.6981  ≥ 0.5

R2—Q2
cv 0.1123  ≤ 0.3

Significant Regression YES –
Significance-of-regression F-value 17.0924 –
Critical SOR F-value (95%) 2.3672 –
Replicate points 0 –
Computed experimental error 0.0000 –
Lack-of-fit points 28 –
Min expt. error for non-significant LOF (95%) 0.2447 –

Test set

R-squared ( R2

test
 ) i.e. r2 0.7501  ≥ 0.6

Number of test set compounds  (Ntest set) 16  ≥ 5
|||r2o − r

�2

o

||| 0.10742 < 0.3

||||r
2 −

r2
o

r2

||||
0.00123 < 0.1

k 1.04568 0.85 < k < 1.15

Table 5  Pearson’s correlation and statistical analyses of descriptors used in the QSAR model

Inter-correlation

ATSC4e AATSC4s GATS2v GATS8e GATS6s nsSeH SssSnH2

ATSC4e 1
AATSC4s 0.525345 1
GATS2v 0.307996 0.028935 1
GATS8e 0.478104 0.241975 − 0.12161 1
GATS6s 0.62834 0.558828 0.260268 0.258477 1
nsSeH − 0.13871 0.184628 − 0.43041 − 0.03379 0.147126 1
SssSnH2 0.039192 0.270547 − 0.04425 0.106862 0.24912 0.310204 1

Statistical parameters

VIF 2.630942 1.737761 1.631929 1.496797 2.174509 1.558148 1.229976
ME 0.138695 0.035656 0.518466 0.115025 0.15305 − 0.05164 0.090747
Coefficients − 1.0679 − 4.3793 4.035879 0.922556 1.10925 − 0.09788 0.69691
Std. Error 0.181153 1.285964 1.23684 0.274962 0.268721 0.028934 0.127429
t Stat − 5.8953 − 3.40544 3.263056 3.355218 4.127868 − 3.38294 5.468995
p-value 2.40E−06 0.002014 0.002901 0.002292 0.000298 0.002134 7.71E−06
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2/weighted by van der Waals volumes, which has a positive 
ME is suggested to contribute positively to anti-wolbachia 
activity. It measures the strength of the relationship between 
van der Waals volumes of two atoms in a molecule that are 
two bond apart (Adawara et al. 2020).

The low values of  R2 and  Q2 obtained from the random 
reshuffling (Table 6) inferred that the built model is stable, 
robust and reliable. The value of coefficient for Y-randomi-
zation,  cR2p (0.747636) greater than 0.50, supports the claim 
that the built model is powerful and not inferred by chance.

The scatter plot of the standardized residuals versus the 
leverages (William’s Plot) obtained to ascertain the model’s 
applicability domain is as shown in Fig. 4. The William’s 
plot clearly shows that all the compounds falls within the 
square area ± 3 of standardized cross-validated residual. It 
can therefore be inferred that no outlier is present in the data 

set. However, eight compounds (2, 3, 4, 5, 7, 9, 23 and 42) 
were found with leverage values greater than the calculated 
warning leverage (h* = 0.67), and are said to be influential 
molecules.

Consequently, compounds 16 and 43 with relatively 
higher predicted inhibitory activities of 7.953 and 7.558 
respectively (Table 3), having also contained within the 
model’s applicability domain space (Fig. 4), were subjected 
to drug-likeness test for possible selection as lead molecule 
for designing new prominent analogues.

Ligand‑based drug design

The molecular structure of the lead compound (43) and 
the structural template are presented in Fig. 5A, B, while 
predicted activities of the newly designed compounds are 
presented in Table 7.

One of the objectives of the ligand-based design is to be 
able to design new molecules with better inhibitory activi-
ties than their template molecule. Here, the predicted  pEC50 
values of the designed compounds were higher than that of 
the template molecule (43) in the order: A4 (8.9601) > A1 
> A6 > A5 > A3 > A2 > 43 (7.5581) as shown in Table 7. It 
therefore affirmed that the various structural modifications 
of the template structure were based on the information pro-
vided by the molecular descriptors in the built QSAR model.

Pharmacokinetics properties prediction

Results of the pharmacokinetics investigation conducted 
on 16, 43 and the six (6) newly designed compounds were 
presented in Table 8, 9, while Fig. 6a, b shows the oral bio-
availability radar of 16 and 43.

The Lipinski’s rule for oral-bioavailability states that a 
drug molecule is more likely to have poor absorption or 
permeation when it has Hydrogen Bond Donors (HBD) 

Table 6  Y-Randomization test parameters

Model R R2 Q2

Original 0.900199 0.810358 0.698051
Random 1 0.218226 0.047622 − 0.58138
Random 2 0.410592 0.168586 − 0.39194
Random 3 0.292327 0.085455 − 0.66299
Random 4 0.307793 0.094737 − 0.54198
Random 5 0.322781 0.104187 − 0.41129
Random 6 0.471172 0.222003 − 0.41909
Random 7 0.358435 0.128476 − 0.36971
Random 8 0.38892 0.151258 − 0.41459
Random 9 0.278492 0.077558 − 0.72302
Random 10 0.423864 0.179661 − 0.58126
Random models parameters
 Average r 0.34726
 Average  r2 0.125954
 Average  Q2 − 0.50973
  cRp2 0.747636
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Table 7  Predicted  pEC50 of the newly designed pyrazolopyrimidine compounds

Compound ID Molecular structure Predicted  pEC50

Template (43) 7.5581

A1 8.1887

A2 7.7178

A3 7.7894

A4 8.9601
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Table 7  (continued)

Compound ID Molecular structure Predicted  pEC50

A5 7.9997

A6 8.0403

Table 8  Predicted drug-likeness properties of selected and newly designed compounds

MW-molecular weight, TPSA-topological polar surface area, ESOL-estimated solubility, HBD-hydrogen bond donors, HBA-hydrogen bond 
acceptors, RO5-Lipinski rule of five violation, SA-synthetic accessibility score

Comp ID MW (g/mol) TPSA (Å2) MLOGP Log S (ESOL) HBD HBA RO5 PAINS Brenk SA

16 415.39 55.11 3.88 − 5.44 1 7 0 0 0 3.27
43 378.81 58.35 2.67 − 4.28 1 5 0 0 0 3.07
A1 360.36 78.58 1.64 − 3.54 2 6 0 0 0 3.11
A2 359.38 84.37 1.64 − 3.33 2 5 0 0 0 3.10
A3 426.39 58.35 2.97 − 4.85 1 8 0 0 0 3.32
A4 430.35 58.35 3.12 − 4.90 1 9 0 0 0 3.38
A5 272.28 81.13 1.32 − 2.46 2 4 0 0 0 2.73
A6 334.30 58.12 2.08 − 3.54 1 6 0 0 2 2.97

Table 9  Predicted ADMET properties of the newly designed compounds

BBB blood brain barrier, CNS central nervous system, HIA human intestinal absorption, Skin skin permeability, LogBB logarithmic ratio of brain 
to plasma drug concentration, LogPS blood–brain permeability-surface area product, CYP34A cytochrome p450 isoform, CYP2D6 cytochrome 
p450 isoform, S substrate, I inhibitor, MRTD maximum recommended tolerated dose

Comp ID Absorption Distribution Metabolism Excretion Toxicity

HIA (%) Skin LogKp BBB LogBB CNS LogPS CYP34A CYP2D6 Total clearance AMES MRTD

S I S I

A1 95.466 − 2.741 − 0.902 − 3.104 NO NO NO NO 0.032 NO 0.105
A2 95.798 − 2.737 − 0.854 − 3.105 NO NO NO NO − 0.006 NO 0.090
A3 93.318 − 2.908 0.142 − 3.00 YES NO NO NO − 0.015 NO − 0.344
A4 92.762 − 2.894 0.003 − 3.049 YES NO NO NO − 0.523 NO − 0.276
A5 96.258 − 2.782 − 0.595 − 3.069 NO NO NO NO − 0.042 NO 0.145
A6 95.801 − 2.864 0.170 − 3.063 YES NO NO NO − 0.225 NO − 0.159
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of greater than 5, Hydrogen Bond Acceptors (HBA) > 10, 
Molecular Weight (MW) > 500, and lipophilicity 
(MLOGP > 4.15 or WLOGP > 5) (Lipinski et al. 2001). Mol-
ecules that satisfy at least three out of the four requirements 
are said to obey the Lipinski’s rule for oral-bioavailability 
(Lawal et al. 2021). As shown in Table 8, all tested mol-
ecules perfectly obeyed the Lipinski’s rule by showing no 
violation. Also, the reported values of Topological Polar 
Surface Area (TPSA) for all molecules are less than 140 
Å2. Additionally, the synthetic accessibility scores of all 
tested molecules are in the easy portion (˂ 5.00), indicating 
easy laboratory synthesis. Notwithstanding the relatively 
higher inhibitory activity of compound 16, ligand 43 was 
the preferred lead molecule, because it possessed a more 
suitable physico-chemical properties for oral bioavailability 
as shown from the oral bioavailability radar in Fig. 5. The 
estimated water solubility (Log S) ranges from moderately 
soluble (16, 43, A3 and A4) to soluble (A1, A2, A5 and A6). 
All compounds showed no pains and brenk alerts except A6 
which showed 2 structural alerts due to the presence of N 
– C – Halogen and 3-membered heterocycle moieties.

The predicted ADMET properties in Table 9 showed that, 
the Human Intestinal Absorption (HIA) was high (> 90%) 
for all newly designed compounds. Skin permeability is a 
significant consideration for the development of transder-
mal drug delivery. A skin permeability constant LogKp of 
greater than − 2.50 is an indication of low skin permeabil-
ity. Consequently, all the newly designed compounds have 
LogKp of less than − 2.50, showing good skin penetration 
ability. Also, all the tested compounds are non-substrates of 
P-glycoprotein, an enzyme which acts as a biological barrier 
by extruding toxins and xenobiotics, including drugs out 
of cells, while A3 and A4 are inhibitors of both P-glyco-
protein I and II, indicating that these molecules may easily 
mediate to reach their target sites with little or no resistance 
from P-glycoprotein. For a drug molecule to penetrate the 
Blood–Brain Barrier (BBB) and Central Nervous System 
(CNS), it is recommended that the logarithmic ratio of brain 
to plasma drug concentration (logBB) be greater than -1 and 
the blood–brain permeability-surface area product (logPS) 

be greater than -3 respectively. Consequently, all the newly 
designed compounds showed logBB of greater than − 1, an 
indication that these molecules cross the BBB. However, 
all the molecules showed very poor CNS permeability i.e. 
logPS ˂ − 3. Furthermore, Cytochrome P450 enzymes are 
important detoxification enzymes in the body which oxi-
dize xenobiotics to facilitate their excretion. The two major 
isoforms responsible for drug metabolism, CYP-34A and 
CYP-2D6 were reported. Only A3, A4 and A6 are substrates 
of CYP-3A4. No substrates of CYP-2D6 and no inhibitors 
of CYP-34A and CYP-2D6. The degree of drug elimina-
tion from the body is measured by the drug’s total clear-
ance, which is within the accepted range for these newly 
designed compounds. All molecules showed a negative 
AMES toxicity, indicating that they are non-mutagenic and 
cannot act as carcinogen. Additionally, the predicted val-
ues of Maximum Recommended Tolerated Dose (MRTD) 
for all molecules were included in Table 9. MRTD value of 
less than or equal to 0.477 log (mg/kg/day) is considered 
low, and high if greater than 0.477 log (mg/kg/day). The 
overall drug-likeness and ADMET properties showed good 
pharmacokinetic profiles for these molecules. Therefore, 
the newly designed molecules except A6 (with 2 structural 
alerts) could be considered as potential drug candidates for 
the treatment of lymphatic filariasis and onchocerciasis.

Molecular docking study

The 3D structures of the receptor and ligand A1 were pre-
sented in Fig. 7A, B; while results of the docking study con-
ducted between the target receptor (OTU deubiquitinase) 
(Fig. 8), the newly designed compounds, and the reference 
drug doxycycline (Fig. 7) were presented in Table 10 and 
Figs. 9, 10, 11, 12, 13, 14, 15.

All tested molecules bind well into the target site cavity in 
the order; A1 (87.32 kcal/mol) > A3 > A6 > A2 > A4 > doxy-
cycline > A5 (− 78.70 kcal/mol) as reported in Table 10 and 
Figs. 9, 10, 11, 12, 13, 14, 15, indicating that the newly 
designed compounds with the exception of A5 bind more 
strongly to the protein target (OTU deubiquitinase) than 

Fig. 6  A Oral bioavailability 
radar of 16; B Oral bioavailabil-
ity radar of 43
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the reference drug doxycycline. As seen from Table 10 and 
Fig. 9–15, A1 was observed to have interacted well with the 
binding site of the OTU deubiquitinase receptor through five 
(5) conventional hydrogen bonds, one (1) carbon-hydrogen 
bond and one (1) π-donor hydrogen bond. The hydrophobic 
interactions include one (1) π -anion, four (4) π-alkyl, one 
(1) alkyl, two (2) π–π T-shaped, and one (1) halogen inter-
actions. The hydroxyl group on the pyrimidine ring system 
formed 3 conventional hydrogen bonds; two with ASP-177 
at distances of 2.55 Å and 2.77 Å, and one with ASP-175 
at a distance of 3.30 Å. The Nitrogen atom of the pyrazole 
ring system and the linker Nitrogen between the pyrimidine 
and pyridine ring systems formed one conventional Hydro-
gen bond each with VAL-174 at distances of 3.10 Å and 
2.68 Å respectively. Other hydrogen bond interactions are 
carbon hydrogen bond with LYS-173 at a distance of 3.30 Å 
and π-donor hydrogen bond with TYR-176 at a distance of 
2.86 Å. Also observed was a halogen interaction between 
one of the fluoro groups on the pyrrolidine ring system and 
ASN-36 at a distance of 3.69 Å. Others are hydrophobic 
interactions with PRO-39 (alkyl and π-alkyl), LYS-173 
(π-alky), TYR-176 (π–π T-shaped) and ASP-175 (π-anion).

In general, the various ligands were observed to make 
very close contacts with great number of amino acid residues 
including Hydrogen bonding and hydrophobic interactions, 

which are two very significant interaction types in drug-
receptor binding as shown in Figs. 9, 10, 11, 12, 13, 14, 15. 
Unlike the newly designed compounds with a fair combina-
tion of both hydrogen bonding and hydrophobic interactions 
with the receptor, the interactions of doxycycline with the 
target protein were predominantly hydrogen bonding, and 
having only one hydrophobic interaction (pi-anion) with 
the aspartic acid group (ASP) at position 116 of the target 
receptor. Imberty et al. (1991) reported that hydrogen bond 
can be classified as strong or weak based on the distance 
between hydrogen donor and hydrogen acceptor  (dis(D-A)) 
as follows; 2.5 Å ˂  dis(D-A) ˂ 3.1 Å (strong hydrogen bond) 
and 3.1 Å ˂  dis(D-A) ˂ 3.55 Å (weak hydrogen bond). Con-
sequently, most of the Hydrogen bond distances of the new 
compounds with the receptor, indicate strong Hydrogen 
bond interactions with the respective amino acid residues, 
while doxycycline showed weak hydrogen bond interactions 
with threonine (THR) at position 109, serine (SER) at posi-
tion 121 and ASP at position 116. This clearly indicates 
how well the newly designed compounds bind with OTU 
deubiquitinase, an essential protein for the survivability of 
bacteria Wolbachia.

Conclusions

In this study, four (4) QSAR models were developed with 
a series of fifty two (52) pyrazolopyrimidine derivatives as 
anti-wolbachia agents, amongst which Model 3 best satis-
fied the requirement for both internal and external validation 
tests. The model was used to excellently predict the anti-
wolbachia activities of the various compounds, including 
the newly designed analogues. Compound 43 was selected 
as lead molecule ahead of compound 16 as a result of its 
relatively better drug-likeness properties. All the newly 
designed compounds showed good pharmacokinetic prop-
erties with no violation of the Lipinski’s RO5, are orally 

Fig. 7  A 3D structure of 
prepared receptor (OTU deu-
biquitinase) B 3D structure of 
prepared ligand (A1)

Fig. 8  Molecular structures of doxycycline
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Table 10  Predicted binding 
interaction profile of designed 
compounds with OTU 
deubiquitinase

Comp. ID Binding 
energy (kcal/
mol)

Amino acid Bond type Interaction Distance (Å)

A1 − 87.32 ASP-177 Hydrogen bond Conventional hydrogen bond 2.55
ASP-177 Hydrogen bond Conventional hydrogen bond 2.77
ASP-175 Hydrogen bond Conventional hydrogen bond 3.30
VAL-174 Hydrogen bond Conventional hydrogen bond 2.68
VAL-174 Hydrogen bond Conventional hydrogen bond 3.10
LYS-173 Hydrogen bond Carbon hydrogen bond 3.30
TYR-176 Hydrogen bond π-donor hydrogen bond 2.86
PRO-39 Hydrophobic alkyl 4.69
PRO-39 Hydrophobic Pi-alkyl 4.33
PRO-39 Hydrophobic Pi-alkyl 5.11
PRO-39 Hydrophobic Pi-alkyl 5.45
LYS-173 Hydrophobic Pi-alkyl 4.76
TYR-176 Hydrophobic Pi-pi T-shaped 4.40
TYR-176 Hydrophobic Pi-pi T-shaped 4.49
ASP-175 Hydrophobic Pi-anion 4.27
ASN-36 Halogen Fluorine 3.69

A2 − 85.04 ASP-125 Hydrogen bond Conventional hydrogen bond 2.60
ASP-127 Hydrogen bond Conventional hydrogen bond 2.90
GLU-145 Hydrogen bond Conventional hydrogen bond 2.75
LEU-190 Hydrophobic Alkyl 4.17
LEU-190 Hydrophobic Pi-alkyl 5.26
LEU-160 Hydrophobic Pi-alkyl 5.44
ASP-127 Hydrophobic Pi-anion 3.27

A3 − 86.01 VAL-174 Hydrogen bond Conventional hydrogen bond 2.82
VAL-174 Hydrogen bond Conventional hydrogen bond 3.02
ASP-177 Hydrogen bond Carbon hydrogen bond 2.83
TYR-176 Hydrogen bond Pi-donor hydrogen bond 3.03
PRO-37 Halogen Fluorine 3.30
HIS-157 Halogen Fluorine 3.31
PRO-39 Hydrophobic Pi-alkyl 4.43
PRO-39 Hydrophobic Pi-alkyl 5.24
ALA-168 Hydrophobic Pi-alkyl 4.63
LYS-173 Hydrophobic Pi-alkyl 4.67
VAL-174 Hydrophobic Pi-alkyl 5.12
TYR-176 Hydrophobic Alkyl 5.44
HIS-157 Hydrophobic Alkyl 4.36
TYR-176 Hydrophobic Pi-pi T-shaped 4.46
TYR-176 Hydrophobic Pi-pi T-shaped 4.50

A4 − 84.87 LEU-190 Hydrogen bond Conventional hydrogen bond 2.82
SER-121 Hydrogen bond Conventional hydrogen bond 2.93
TRP-123 Hydrogen bond Pi-donor 2.86
TRP-123 Hydrophobic Pi-pi stacked 4.10
TRP-123 Hydrophobic Pi-pi stacked 5.13
TRP-123 Hydrophobic Pi-pi stacked 5.40
TRP-123 Hydrophobic Pi-alkyl 4.25
TRP-123 Hydrophobic Pi-alkyl 4.93
ASP-116 Halogen Fluorine 3.46
LEU-190 Hydrophobic Alkyl 4.63
ARG-122 Hydrophobic Pi-alkyl 4.78



 In Silico Pharmacology            (2022) 10:8 

1 3

    8  Page 18 of 23

Table 10  (continued) Comp. ID Binding 
energy (kcal/
mol)

Amino acid Bond type Interaction Distance (Å)

A5 − 78.70 GLN-60 Hydrogen bond Conventional hydrogen bond 2.60
GLN-60 Hydrogen bond Conventional hydrogen bond 3.10
GLU-208 Hydrophobic Pi-anion 4.44
ARG-59 Hydrophobic Pi-cation 4.31
LEU-196 Hydrophobic Pi-alkyl 4.87

A6 − 85.73 PHE-192 Hydrogen bond Conventional hydrogen bond 2.74
GLY-49 Hydrogen bond Conventional hydrogen bond 2.95
HIS-191 Hydrogen bond Carbon hydrogen bond 2.28
ILE-48 Halogen Fluorine 3.61
PHE-192 Halogen Fluorine 2.67
HIS-191 Hydrophobic Pi-alkyl 5.00
CYS-53 Hydrophobic Pi-alkyl 4.42
GLY-49 Hydrophobic Amide-pi stacked 4.22
ASN-50 Hydrophobic Van der Waals –

Doxycycline − 83.70 THR-109 Hydrogen bond Conventional hydrogen bond 3.23
SER-121 Hydrogen bond Conventional hydrogen bond 3.27
ASP-116 Hydrogen bond Conventional hydrogen bond 3.38
ARG-122 Hydrogen bond Conventional hydrogen bond 2.78
ARG-122 Hydrogen bond Conventional hydrogen bond 1.96
TYR-113 Hydrogen bond Carbon hydrogen bond 2.83
ARG-122 Hydrogen bond Carbon hydrogen bond 2.75
ARG-122 Hydrogen bond Carbon hydrogen bond 2.13
ARG-122 Hydrogen bond Carbon hydrogen bond 2.98
ASP-116 Hydrophobic Pi-anion 3.77

ALA alanine, ARG  arginine, ASN asparagine, ASP aspartic acid, GLN glutamine, GLU glutamic acid, GLY 
glycine, HIS histidine, ILE isoleucine, LEU leucine, LYS lysine, PHE phenylalanine, PRO proline, SER ser-
ine, THR threonine, TRP tryptophan, TYR  tyrosine, VAL valine

Fig. 9  2-D and 3-D view of the interaction between OTU deubiquitinase and A1 
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bio-available, and as well as skin permeable. The molecular 
docking results showed stronger binding affinities between 
OTU deubiquitinase receptor and all newly designed mol-
ecules than the chosen reference drug (doxycycline) with 
the exception of A5, an indicative of good protein–ligand 
binding interactions. Hence, these new molecules have dem-
onstrated the potential to arrest Wolbachia OTU deubiquit-
inase, thereby cutting down chances of the bacteria survival, 

and which in turn affects the growth and viability of the 
filarial worms (causative agents for lymphatic filariasis and 
onchocerciasis). These new compounds could therefore be 
developed as potential drug candidates for the treatment of 
lymphatic filariasis and onchocerciasis. More so, laboratory 
tests (in vitro and in vivo) could be conducted to validate the 
computational results.

Fig. 10  2-D and 3-D view of the interaction between OTU deubiquitinase and A2 

Fig. 11  2-D and 3-D view of the interaction between OTU deubiquitinase and A3 
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Fig. 12  2-Dand 3-D view of the interaction between OTU deubiquitinase and A4 

Fig. 13  2-D and 3-D view of the interaction between OTU deubiquitinase and A5 
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