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Abstract
Piperidine and piperazine derivatives exhibit a diverse range of biological applications, including antipsychotic activity. In 
this study, a dataset of molecules containing piperidine, piperazine moieties that possess serotonin 5-HT2A and dopamine 
D2 inhibitory activity have been chosen for Pharmacophore modeling, Quantitative Structure–Activity (3D-QSAR) Rela-
tionship, Molecular docking, and ADME studies. The pharmacophoric hypothesis was found to be AAHPRRR_1 having 
seven features as one H-bond acceptor (A), one hydrophobic (H), one positive ion acceptor (P), and three aromatic rings 
(R), with survival score = 6.465 and AUC = 0.92. Based on the best hypothesis, the ZINC-Data base was virtually screened 
to find out the lead molecules. 3D-QSAR model, including internal and external validation showed comparative molecular 
field analysis (CoMFA) against 5HT2A (q2 = 0.552, R2 = 0.889, and r2 poured. = 0.653 and number of component 5) and 
comparative molecular similarity indices analysis (CoMSIA) (q2 = 0.599, R2 = 0.893, and r2 pred. = 0.617), for D2 (CoMFA, 
q2 = 0.577, R2 = 0.863, and r2 pred. = 0.598) (CoMSIA, q2 = 0.532, R2 = 0.82) all results exhibited better productivity and 
significant statistical reliability of the model. The docking study was carried out on the crystal structure of 5-HT2A having 
PDB ID; 6A93 and D2 receptor having PDB ID; 6CM4. The screened compound ZINC74289318 possess a higher docking 
score − 10.744 and − 11.388 than co-crystallized ligand docking score − 8.840 and − 10.06 against 5-HT2A and D2 receptor 
respectively. Further, ZINC74289318 was screened for all drug-likeness parameters and no showed violation of the Lipinski 
rule of five. Also, it was found to possess good bioavailability of 0.55 with synthetic accessibility of 4.42 which is greater 
than risperidone.

Keywords  Piperidine and piperazine · 5-HT2A and dopamine D2 inhibitors · 3D-QSAR model · CoMFA · CoMSIA

Introduction

Schizophrenia is a chronic and severe neuropsychiatric dis-
order affecting about 1% of the world’s population (Rossler 
et al. 2005). The adolescence or early adulthood persons fac-
ing some brain hormonal imbalance, viral infection, error in 

genetic encoding as well as stressful environmental factors 
are more susceptible to develop symptoms of schizophrenia. 
Uncontrolled behavior, disruption in thinking, hallucination, 
perception, sense of self, isolation, hearing voices delusion 
are the major symptoms of schizophrenia (Liddle 1987; 
McCutcheon et al. 2020).

Antipsychotic drugs are the initial therapeutic interven-
tion for schizophrenia. The pathophysiology of disease and 
medication has yet to be clearly defined. The development 
of antipsychotic drugs in recent decades has been extremely 
influenced by the dopamine hypothesis, regulated by dopa-
mine pathways in a different area of the brain that includes 
mesolimbic and mesocortical pathways (Leucht et al. 2009; 
Cao et al. 2018). Typical antipsychotics (eg. haloperidol, 
clozapine, chlorpromazine) are potent inhibitors of dopa-
mine D2 receptor in the mid striatum region of the brain, 
which block the mesolimbic and nigrostriatal dopamine 
circuit and reduce the positive symptoms of schizophrenia 
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followed by severe side effects including acute Parkinson’s, 
dyskinesia, common side effect includes extrapyramidal 
symptoms (Kapur 2001; Peprah et al. 2012). Typical antip-
sychotics treat positive symptoms, but medical treatment for 
the negative and cognitive disorders is an urgent need and 
still challenging for researchers. The atypical antipsychotic 
having a broad antipsychotic mechanism of action, but due 
to off-target binding, it produces undesirable side effects 
such as hyperglycemia, hyperprolactinemia, QT prolonga-
tion, and weight gain (Huang et al. 2015; Butini et al. 2008). 
Medical research is urgently required to develop new antip-
sychotic drugs that can effectively control positive, nega-
tive, and cognitive symptoms of schizophrenia with reduced 
major and minor harmful side effects (Xiamuxi et al. 2017).

Dopamine D2 and serotonin 5-HT2A both are high-affin-
ity G-protein coupled receptors and crucial targets for the 
treatment of schizophrenia. These receptors, involved in the 
pathophysiology of many neuropsychiatric disorders like 
Parkinson’s, anxiety, and depression (Xu et al. 2018). Sero-
tonin 5-HT2A receptor regulates and manages negative and 
cognitive impairment symptoms. Many studies have been 
reported that in combination antagonist effect on D2 and 
5-HT2A receptor can improve, negative and cognitive symp-
toms and reduces side effects. Furthermore tandospirone, 
aripiprazole is newer atypical antipsychotic causes, partial 
agonism of 5-HT1A receptor, and improve the cognitive 
decline in schizophrenic patients. 5-HT1A receptor activa-
tion also contributes to the antianxiety properties of antip-
sychotic (Modugula and Kumar 2020; Kumar et al. 2018).

Zajdel et al., used novel azinesulfonamides of cyclic 
amine skeleton against D2R partial agonism/antagonism and 
5-HT2A, 5-HT6/7 antagonism action, to reduced positive and 
negative symptoms with minimum side effects. Currently, 
compound 18 g has been tested in male Wistar rats, and 
it showed excellent in vitro and in vivo efficacy in a pre-
clinical model of schizophrenia with the addition of a good 
pharmacokinetic profile (Zajdel et al. 2018). There are no 
comprehensive and theoretical studies that have shown the 
structure–activity relationship. To promote D2 and 5-HT2A 
receptor antagonist activity, we explored molecular mod-
eling studies for the treatment of schizophrenia. In this study, 
we investigated a systematic study of azine sulfonamide 
derivatives as a dual D2 and 5-HT2A receptors antagonist 
and focused on the structure-based drug design methods 
like pharmacophore modeling, 3D-QSAR, molecular dock-
ing. Further, molecules were subjected to ADME studies. A 
molecular library was built based on docking and pharma-
cophore hypothesis for D2 and 5-HT2A receptor inhibitory 
activity. This study provides the rationale to future scien-
tists for the development of novel D2 and 5-HT2A receptors 
antagonist as antipsychotic agents with fewer side effects 
and high tolerability.

Material and methods

Software used

The three-dimensional (3D) structures of compounds were 
sketched using Chem-Draw ultra 12.0 and saved in (.mol 
extension) files. The pharmacophore modeling, molecular 
docking, and virtual screening studies were performed using 
Schrodinger software, 3D-QSAR (CoMFA, CoMSIA) stud-
ies performed by SYBYL-X-2.1.1 software and for ADME 
the online utilities Swiss ADME prediction tool were used 
to determine pharmacokinetic parameters of compounds 
(Zhang, et al. 2020).

Data set

Dataset of 45 compounds was taken for computational stud-
ies, possessing dual antagonists’ activity for D2 and 5-HT2A 
receptors, and used to develop the In-silico models (Zajdel 
et al. 2018). Pharmacophore modeling and CoMFA, CoM-
SIA studies of the 3D-QSAR were done using the differ-
ent diverse activity of training and test set for dual targets. 
The given activity Ki (nM) values were converted into pKi 
(nM) to build the statistical model (Ghasemi and Shiri 2012; 
Abdizadeh et al. 2020).

Molecular structure and biological activity of test set 
and training set compounds given in Table 1 with their pre-
dicted model’s activity using CoMFA, CoMSIA descriptor. 
3D-QSAR models were generated using training and test set 
compounds of both the targets.

Pharmacophore modeling

The LigPrep module of Schrödinger software was used to 
convert the 2D structure to 3D and minimized the energy 
using OPLS_2005 force field with root mean square devia-
tion (RMSD) cut-off of 0.01 Å. The resulting lowest energy-
bearing stable conformers were used for pharmacophore 
modeling (Dixon et al. 2006). These prepared ligands were 
used in the phase module of software (v5.2) to build a phar-
macophore model. The ligands were then assigned as active 
and inactive with a threshold of pKi ≥ 8.522 nM (actives) and 
pKi ≤ 6.528 nM (inactive), remaining compounds assigned 
as moderate actives. However, 11 molecules were found to 
be active and 7 molecules were found to be inactive. The 
phase has been a proven tool for flexible ligand alignment 
(Rajeswari et al. 2014; Lee et al. 2018). So, the 45 com-
pounds of the data set were aligned using the best finding 
common core method of phase (Fig. 1).

The PHASE were built in six different pharmacophoric 
features such as hydrophobic group (H), hydrogen bond 
acceptor (A), hydrogen bond donor (D), positively ionizable 
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Table 1   Actual and predicted pKi(nM) values for CoMFA and CoMSIA based 3D-QSAR model (PLS analysis)

No.y Name Compound structure Actual pKi Predicted pKi

5-HT2ARa D2Rb CoMFAa CoMSIAa CoMFAb CoMSIAb

1 1 g

 

5.853 8.045 – – – –

2 2 g

 

5.690 8.301 – – 8.3692 8.4439

3 3 g

 

5.705 7.920 – – – –

4 4 g

 

6.958 7.886 6.9512 6.8323 7.8899 7.5448

5 5 g

 

7.040 7.721 7.0601 7.0686 7.6973 7.7359

6 6 g

 

6.528* 7.920 7.259 7.1362 7.9603 7.8885

7 7 g

 

6.408 7.657 6.3359 6.44 – –

8 8 g

 

7.795 9 7.5777 7.5894 9.2965 9.2269

9 9 g

 

7.886* 9.853 7.9126 7.8631 9.4775 9.3797
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Table 1   (continued)

No.y Name Compound structure Actual pKi Predicted pKi

5-HT2ARa D2Rb CoMFAa CoMSIAa CoMFAb CoMSIAb

10 10 g

 

7.744 9.301 7.8749 7.7775 9.3739 9.2745

11 11 g

 

7.677 9.154 7.5285 7.5888 8.3432 8.3389

12 12 g

 

8 9.045 7.9126 7.8631 9.4775 9.3797

13 13 g

 

7.823 9.522 7.8749 7.7775 9.3739 9.2745

14 14 g

 

7.309 8.397^ 7.4447 7.6072 9.322 9.3139

15 15 g

 

7.481 8.522^ 7.4003 7.6328 9.4784 9.4604

16 16 g

 

7.387* 8.522 7.9961 8.0611 9.4578 9.3541

17 17 g

 

7.443 7.795 7.4754 7.6491 7.9256 8.0091

18 18 g

 

8.045* 7.958 7.3872 7.3826 8.0656 8.2388
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Table 1   (continued)

No.y Name Compound structure Actual pKi Predicted pKi

5-HT2ARa D2Rb CoMFAa CoMSIAa CoMFAb CoMSIAb

19 19 g

 

8.045 8.301^ 8.1835 7.9693 8.2251 8.1343

20 20 g

 

7.251 8.397^ 7.5427 7.6695 7.9709 7.9997

21 21 g

 

7.585 8.221 7.6313 7.4526 8.237 8.3663

22 22 g

 

7.721 8.301^ 7.8205 7.8702 9.0928 8.7064

23 23 g

 

6.612 7.376 6.7073 6.5121 – –

24 24 g

 

7.086 7.431 7.0829 6.9737 – –

25 25 g

 

6.345 8.096 6.7073 6.5121 8.0796 7.9788

26 26 g

 

7.119 8.522 7.1672 7.1559 8.2085 8.2203

27 27 g

 

7.522 7.958 7.5285 7.5888 8.3432 8.3389
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Table 1   (continued)

No.y Name Compound structure Actual pKi Predicted pKi

5-HT2ARa D2Rb CoMFAa CoMSIAa CoMFAb CoMSIAb

28 28 g

 

7.619 8 7.473 7.5407 8.0867 8.3262

29 29 g

 

7.537 8.154^ 7.6166 7.4884 8.3636 8.6387

30 30 g

 

7.455 8.301 7.4666 7.554 8.4198 8.5494

31 31 g

 

7.522 8.397 7.5353 7.4365 8.3455 8.2844

32 32 g

 

7.585* 8.522 7.4164 7.1331 8.4966 8.6317

33 33 g

 

8.154 7.619 7.5191 7.6628 – –

34 34 g

 

7.795 7.537 7.7409 7.8029 – –

35 35 g

 

7.455* 7.677 7.3406 7.4202 – –
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Table 1   (continued)

No.y Name Compound structure Actual pKi Predicted pKi

5-HT2ARa D2Rb CoMFAa CoMSIAa CoMFAb CoMSIAb

36 36 g

 

7.193 7.638 7.2043 7.3247 – –

37 37 g

 

7.292* 8 7.9534 7.6951 8.0071 7.8901

38 38 g

 

7.537 8.221^ 7.5452 7.4651 8.0079 7.9523

39 1 h

 

5.853 7.958 – – – –

40 2 h

 

6.623 7.886 6.4871 6.6411 7.9108 7.9601

41 3 h

 

5.939 7.823^ – – 8.3619 8.6086

42 4 h

 

5.720 7.920 – – 7.9108 7.9601

43 5 h

 

7.920* 8.7695 8.2763 8.2379 8.8371 8.8623
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(P), negatively ionizable (N), and ring aromaticity (R). The 
maximum pharmacophore feature or sites was set up to 7 and 
minimum up to 4 which generate different pharmacophore 
hypothesis (Wood, et al. 2012). The generated hypotheses 
were ranked automatically based on Phase Hypo Scores, sur-
vival scores, vector scores, site score, volume score, inac-
tive score, selectivity scores, and values of area under the 
curve (AUC) of receiver operating curve (ROC) (Table 2). 
Among all developed pharmacophore hypotheses the best 
hypothesis showed 7 common features with similarity in 
spatial arrangements of active ligands. The hypothesis has 
seven features: two hydrogen bond acceptors, one hydro-
gen bond donor, one positive ion acceptor, and three-ring 

features (AAHPRRR-1) selected as the best hypothesis 
model (Fig. 2). The distance and angle between pharmaco-
phore features of the best pharmacophore model were given 
in Tables 3 and 4 respectively.

A tree-based separating approach has been used for the 
generation of pharmacophore. The groups that are similar to 
their inter-site distance i.e., site-to-site distances in the com-
mon pharmacophore aligned with all 45 compounds. The 
active pharmacophore model generated essential features for 
receptor affinity.

Identification of antipsychotics drugs through virtual 
screening

The best pharmacophore hypothesis (AAHPRRR_1) was 
used as a template for the virtual screening of molecules 
from the ZINC database. The virtual screening, selected 
only those compounds having similar chemical features to 
that template. Among the selected compounds, some are 
similar to the active compound of the data set and some are 
novel. The total 40,000 compounds were filtered through 
fitness scores and matched to hypothesis; among them, 4000 
compounds were passed. Further, these compounds were 
screened through drug-likeness criteria followed by the 
Lipinski rule of five. Finally, the filtered compounds were 
used for docking studies using HTVS, SP, and XP methods 
of docking, and based on their docking results lead mol-
ecules were chosen (Jaiteh, et al. 2020).

Table 1   (continued)

No.y Name Compound structure Actual pKi Predicted pKi

5-HT2ARa D2Rb CoMFAa CoMSIAa CoMFAb CoMSIAb

44 6 h

 

8.221 10 8.2691 8.2563 9.7896 9.7933

45 7 h

 

8.301 8.698 8.2763 8.2379 8.8371 8.8623

*Test set in case of 5-HT2AR
a Model constructed with pKivalue of 5-HT2AR antagonists
b Model constructed with pKivalue of D2R antagonists; ^Test set in case of D2R
–Model specific, unpredicted biological activity

Fig. 1   Alignment of the molecule to detect common pharmacophore
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3D‑QSAR model generation

The 3D models were generated using diverse range activity 
of D2 and 5-HT2A receptor inhibitors. In this present study, 
the energies of electrostatic and steric fields were calculated 
based on CoMFA and CoMSIA models, by using Sp3 car-
bon atom with a Van der Waals force radius of 1.5 Å charge 
of + 1.0 and attenuation factor 0.1 to 0.3 Å, including five 
fields hydrophobic, hydrogen bond donor and hydrogen bond 
acceptor, steric and electrostatic, with probe atom charge + 1 
each lattice, radius of 1 Å (Klebe et al. 1994; Murthy and 
Kulkarni 2002). The 3D-QSAR model was developed to 
investigate the structural features and biological activity of 
molecules. In the case of 5-HT2AR and D2R, a total of 45 Ta
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Fig. 2   a The pharmacophore model (AAHPRRR_1) generated by 
PHASE. The model illustrates acceptor feature (AA; pinkish red-
coloured arrows), hydrophobic (H: green coloured) and aromatic ring 
(R: brown coloured features), positively ionizable (P: sky blue col-
oured); b Pharmacophore model of most active compound 6 h
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compounds were taken for model development of which 78% 
of compounds were taken as training sets and 22% com-
pounds as the test set. The best 3D-QSAR model with its 
statistical values is reported in Table 5. The actual and pre-
dicted biological activities (pKi) of molecules, calculated by 

using CoMFA and CoMSIA models of 3D-QSAR study, for 
both the (5-HT2A and D2) target were reported in Table 1.

Energy minimization and alignment

Best stable conformers of compounds were generated by 
minimizing the energy which is a very crucial step for the 
model development. All the compounds were imported in 
the SYBYL window (molecular area) and operated through 
the Powell method at 0.05 kcal/(mol*A) termination gra-
dient, maximum iteration count 10,000, Gasteiger-Huckel 
as force field tripos charges, dielectric constant 1.00, RMS 
displacement 0.001 with initial optimization simplex. The 
molecular alignment of compounds was done with distil 
rigid alignment method which automatically finds the com-
mon core for alignment of the molecule (Ghaleb, et al. 2017; 
Oprea et al. 2001). The most potent compound 6 h was used 
as a core molecule for alignment (Fig. 3).

PLS analysis and QSAR model validation

PLS analysis is a technique derived to analyze complex 
structural data and perform linear regression between the 
molecular descriptors (independent variables) and biological 
activity (dependent variable). The validation of QSAR mod-
els was done using internal or external validation parameters 

Table 3   The distance measured 
between two sites

Site1 Site2 Distance

H5 R8 4.92
A3 3.72
A4 3.24
R9 6.56
R7 10.19

R7 H5 10.19
A3 9.01
A4 10.58
R9 12.99
R8 12.80

P6 R7 5.43
H5 4.84
A3 4.91
A4 5.98
R8 8.37
R9 9.20

R8 R9 2.45
A4 3.89
A3 3.89

R9 A4 4.30
A3 4.30

A3 A4 2.56

Table 4   Angles between 
different sites of the 
pharmacophore model

Site1 Site2 Site3 Angle

R7 P6 A3 121.3
R7 A3 P6 31.1
P6 H5 A3 68.6
P6 H5 A4 93.3
R8 R9 A3 63.5
R8 A3 R9 34.4
A4 R8 R9 82.1
H5 A3 P6 66.6
R8 H5 R7 111
R7 R9 H5 50.7
R7 R8 R9 88.9
R9 A4 R8 34.4
H5 A3 R8 80.5
P6 H5 R9 106.7
P6 R8 R7 17.4
R8 P6 A4 25.0
A3 R8 R9 82.1

Table 5   Statistical parameter of the developed 3D-QSAR models

a Model constructed with pKivalue of 5-HT2AR antagonists: bModel 
constructed with pKivalue of D2R antagonists. NOC is the optimum 
number of component, q2 is leave-one-out (LOO) correlation coef-
ficient, r2 non-cross validation coefficient, r2

cv is re-cross validation 
coefficient, standard error of estimate (SEE), F is the F-train value, 
r2

bs is mean r2 of bootstrapping analysis, SEEbs standard error of esti-
mation of bootstrapping analysis, SDbs is mean standard deviation by 
bootstrapping analysis

Parameters COMFAa COMSIAa COMFAb COMSIAb

Q2 (LOO) 0.552 0.599 0.577 0.532
R2 0.889 0.893 0.863 0.820
R2

CV 0.565 0.605 0.582 0.549
SEE 0.1836 0.1843 0.253 0.296
NOC 5 6 2 3
F Value 207.423 192.325 210.584 186.246
SEEBS 0.163 0.133 0.193 0.263
R2

BS 0.894 0.942 0.916 0.843
SDBS 0.075 0.023 0.063 0.076
Field contribution
 Steric – 0.03 – 0.25
 Electrostatic – 5.54 – 0.63
 Hydrophobic – 1.49 – 2.09
 Donor – 0.00 – 1.15
 Acceptor – 1.07 – 1.24
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to estimate the predictive ability of models. To evaluate 
the model's predictive ability and robustness the following 
criteria must be followed, the cross-validation coefficient 
(q2 > 0.5), correlation of coefficient (r2 > 0.5), Standard error 
of estimate (SEE < 0.3), number of components (N > 20). 
Further, cross-validation of models was also checked by cal-
culating r2

cv (re-cross validation coefficient), r2
bs (mean r2 of 

bootstrapping analysis), SEEbs (standard error of estimation 
of bootstrapping analysis), and SDbs (mean standard devia-
tion of bootstrapping analysis) (Verma et al. 2010).

Molecular docking

Docking studies were performed by Glide module V5.2 of 
Schrödinger software. The crystal structures of 5-HT2A and 
D2 receptors were fetched from the RCSB protein data bank 
(http://​www.​rcsb.​org/), having PDB ID: D2 (6CM4); 5-HT2A 
(6A93) (Kimura, et al. 2019; Wang et al. 2018). Both the tar-
get proteins were pre-processed by adding hydrogen atoms, 
removing water molecules except essential ones, removing 
side chains break, removing unnecessary ligands other than 
reference ligands, and finally, the energy of the protein mol-
ecules was minimized. Before operating the docking proce-
dure, the grid was generated by mapping the active site, pos-
sessing a co-crystallized ligand (risperidone), and exploring 
the binding interactions. The final ligands were screened 
based on their docking scores, energies, and molecular inter-
actions with amino acid residues.

Molecular ADMET prediction and Lipinski’s rule 
for drug likeliness

The in-silico tools predicting ADMET parameters and drug-
likeness profile for the preliminary estimation of the phys-
icochemical, pharmacokinetic, and drug-like parameters 
in drug discovery. This study provides direction to access 
pharmacokinetic parameters (Adsorption, Distribution, 
Metabolism, Excretion, and Toxicity; ADMET). The rule 
access to filter compounds and drug-likeness character is 
based on Lipinski rule of five and the synthetic accessibility 
problematic scale was 1–10.

The Swiss ADMET web tool is used for the presented 
study, is freely accessible at http://​www.​swiss​adme.​ch and 
run as user friendly and results, analysis is easy to under-
stand and estimate the pharmacokinetic parameters of 
ADMET (Daina et al. 2017).

In the present study, ADMET studies of all compounds 
were performed by online SwissADME software. The 
model’s results were explained in terms of different phar-
macokinetic parameters such as drug-likeness, Lipinski’s 
rule of five, GI absorption, blood–brain permeability, solu-
bility, enzyme inhibition, octanol/water partition coefficient. 
The SwissADME is a tool to predict numerous biological 
system conditions hypothetically. The cytochrome profiling 
of these compounds was also predicted by in silico Swis-
sADME tool.

Results and discussion

Pharmacophore model analysis

The common pharmacophore model was evaluated with a 
survival score of 6.46, site score of 0.739, selectivity score 
of 3.87, and survival inactive score of 1.361. The model was 
further validated through the accuracy of the test measured 
by the AUC and ROC curve. The value of AUC signified the 
accuracy of the model (AUC > 0.9 indicated high accuracy 
of the model, while values in between 0.5 to 0.7 showed 
moderate model and for poor model AUC = 0.5). The AUC 
of the developed model is 0.92 (Table 2) showed that the 
predicted pharmacophore model is very significant and 
accurate. The features of developed hypotheses are essential 
for receptor-ligand interactions. The distances and angles 
between these features are crucial to measuring the active 
sites of the pharmacophore mapping model. (Tables 3, 4).

The specificity and sensitivity of the model are deter-
mined by the ROC plot having specificity at the X-axis and 
sensitivity at the Y-axis. This plot also distinguishes active 
and inactive compounds present in the data set (Fig. 4).

Fig. 3   Compound 6 h a Com-
mon core skeleton is shown in 
red. b Structure-based align-
ment of data set molecules

http://www.rcsb.org/
http://www.swissadme.ch
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3D‑QSAR models analysis

In this study, CoMFA and CoMSIA models were built and 
evaluated successfully. The statistical parameter of models is 
presented in Table 5. The PLS analysis of CoMSIAa showed 
the optimal number of component (ONC) of 6 and Q2 value 
of 0.599, while a non-cross-validated R2 value is 0.893, F 
value of 192.325, and standard error of estimate 0.1843. The 
cross-validation coefficient (Q2) was checked by a cross-
validated correlation coefficient (R2

cv) value of 0.565. The 

model accuracy and robustness were further determined 
by bootstrapping analysis of the ` CoMSIAa model, which 
showed R2

bs 0.894, SDbs 0.075, and SEEbs 0.163. The per-
centage contribution of a steric, electrostatic, hydrophobic, 
donor, and acceptor of the CoMSIAa model were 0.03%, 
5.54%, 1.49, 0.00, and 1.07% respectively.

In the case of the CoMSIAb model, the PLS analysis of 
the model showed the cross-validation coefficient of 0.532 
with three components. The non-cross-validated PLS analy-
sis results in conventional R2 0.820, standard error of esti-
mate 0.296. Further, validation of the model is carried out by 
estimating R2

cv is 0.582, F value is 186.24, R2
bs 0.843, and 

SDbs is 0.076. The steric field contribution of the CoMSIAb 
model found to be lower than electrostatic, hydrophobic, 
H-bond donor, and acceptor was given in Table 5.

The experimental and predicted activity values are shown 
in Table 1, based on these values a scatter plot is deduced 
and represented in Fig. 5A for (CoMSIAa) and Fig. 5B for 
(CoMSIAb).

3D‑QSAR contour map analysis

The best contour map of the CoMFA and CoMSIA model 
was graphically interpreted. The contour map was shown 
with the most active compound 6 h of the dataset to find out 
the structure–activity relationship among all compounds.

The results from steric and electrostatic contour maps of 
the CoMFA model were found to be similar to the steric, 

Fig. 4   Receiver operating curve of (AAHPRRR_1) developed model

Fig. 5   Plots of correlation of predicted versus actual pKi values based on (a). CoMSIAa, b CoMSIAb models
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and electrostatic contour maps of the CoMSIA model. The 
steric, electrostatic, hydrophobic, H-bond donor and accep-
tor contour maps resulted from the CoMSIAa and CoMSIAb 
model of 5-HT2A and D2 receptor activities, are shown in 
Figs. 6 and 7 respectively. In Fig. 6a, as the presence of 
steric field (green regions) are found to be favorable for 
bulky groups which can enhance the antagonist activity, 
while the yellow color contour map has shown sterically 
unfavorable region which means bulky substitutions on this 
position lead to decrease the receptor activity. Benzo-ring 
of benzo-(d) isoxazole moiety suggested that the presence 
of steric bulk around benzene ring may enhance the activ-
ity, but a little yellow polyhedral contour near the five-
membered ring of benz-isoxazole moiety suggested that the 
absence of steric bulk is desired for receptor activity. In the 
case of the electrostatic field CoMSIAa model, the blue con-
tour (b) regions of the respective molecule showed that the 
presence of positively charged groups would improve the 

activity of compounds. While red contours present near the 
6th position of isoquinoline and covered with isoxazole five-
membered ring of benzo[d]isoxazole moiety, suggested that 
the addition of electronegative groups in these regions are 
favorable for biological activity. The hydrophobic contour 
(c) near the 6th and 7th positions of isoquinoline moiety sug-
gested that the presence of hydrophobic groups in this region 
may decrease the receptor activity. The hydrophobic contour 
designated with white color suggested that substitution of 
hydrophobic groups at the 6th and 7th position of isoqui-
noline may decrease the receptor activity shown in Fig. 6c. 
While yellow indicated that the presence of hydrophobic 
groups in this region enhanced the activity of the compound. 
The magenta contour of Fig. 6d showed that the presence 
of H-bond acceptor groups in these regions increases the 
activity of the compound, while the red color indicated that 
the presence of H-bond acceptor groups is unfavorable for 
the bioactivity of compounds.

Fig. 6   Contour map analysis of 3D-QSAR model CoMSIAa; Steric fields contribution (a); Electrostatic fields contribution (b); Hydrophobic 
fields contribution (c); H-bond acceptor groups (d)
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In the case of the CoMSIAb model, the contour map of 
the most active ligand 6 h was structurally investigated for 
enhancing the biological activity against the D2 receptor, by 
correlating their structure activity relationship. The steric, 
electrostatic, hydrophobic, H-bond donor and acceptor fields 

have shown in Fig. 7. The steric contour (a) represented by 
the green contour map, suggested that steric bulkier groups 
are desired while the yellow color is unfavorable for steric 
substitution. The electrostatic contour (b) map, designated 
by blue color region around-benzo-(d)isoxazole moiety, 

Fig. 7   Contour map analysis of 3D-QSAR model CoMSIAb; Steric fields contribution (a); Electrostatic fields contribution (b); H-bond donor 
contribution (c); H-bond acceptor contribution (d); Hydrophobic fields contribution (e)
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suggested that substitution of electropositive groups is 
favorable for activity. While red contour present near sul-
fonyl and pyrrolidine moiety suggested that substitution of 
electronegative groups may enhance the biological activity 
of the compound. The hydrogen bond donor contour (c) rep-
resented by cyan color indicated that substitution of H-bond 
donor over this region is favorable whereas the purple color 
region is unfavorable for H-bond donor substitution. The 
contour of H-bond acceptor (d) indicated by magenta color 
near nitrogen atom of pyrrolidine ring and isoxazole ring, 
suggested that substitution of H-bond acceptor in this 
region may enhance the receptor activity while red contour 
region is unfavorable for substitution. The yellow contour 
(e) is favorable for hydrophobic group substitution such as 
methyl group substitution can lead the biological activity, 
while the white color contour is an unfavorable region. The 
impact of the H-bond donor and acceptor contour map is 
a little bit lower for receptor antagonistic activity against 

both the receptors. The major concern is steric and electro-
static group's contributions are the important substitution for 
improving the receptors' biological activity.

Optimization for new compounds

The CoMFA and CoMSIA based 3D-QSAR, virtual screen-
ing studies may be used for the design of new compounds 
towards schizophrenia. The structural activity relationship 
(SARs) of Azine sulfonamides of cyclic amine derivatives 
with different possible substituents is shown in Fig. 8 based 
on results obtained by the 3D-QSAR study. Here we can 
see the impact of the different substitution of groups may 
increase or decrease the activity of the receptor. Groups 
involved in substitution are electropositive, electronegative, 
H- bond acceptor, H-bond donor, hydrophobic, and steric 
bulky groups.

Fig. 8   Ligand scaffold with 
different features design by 
3D-QSAR study for the devel-
opment of novel compounds

Fig. 9   a Superimposition of re-
docked (sky-blue color) and co-
crystallized (green color) ligand 
risperidone with 5-HT2AR 
(PDB ID: 6A93) at 0.26 RMSD. 
b Superimposition re-docked 
(magenta color) and co-crystal-
lized ligand risperidone (green 
color) with D2R (PDB ID: 
6CM4) at 0.24 RMSD
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Fig. 10   Docking poses and 2D interaction diagram of template and compound 1 h against the receptors, a Template, PDB ID: 6A93; b Tem-
plate, PDB ID: 6CM4; c Compound 1 h, PDB ID: 6A93; d Compound 1 h, PDB ID: 6CM4
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Molecular docking

Molecular docking is performed using the maestro 5.2 
Schrödinger module. The method is most common for find-
ing and identifying the binding interaction between the 
ligands and receptors. The method is validated by superim-
posing of both re-docked and co-crystallized ligand risperi-
done (Fig. 9) with the help of Pymol (Vs 2.3.3) and corre-
sponding RMSD was calculated. The RMSD values between 
both docked conformations were 0.26 for 5-HT2A and 0.24 
for the D2 receptor. The low value of RMSD validates the 
robustness and reliability of the docking procedure.

The 5-HT2A receptor is a G-protein coupled receptor 
having seven transmembrane helices (TM1-7) and an intra-
cellular amphipathic helix H8 in the domains of TM-4, an 
extended cavity that is connected to the orthosteric site. The 

fragment pocket (PIF) consists of amino acids as IIe163 and 
Phe332 and the interaction with the toggle switch residue 
Trp336 is a must for the receptor activation and pharmaco-
logical action.

Risperidone was used as a co-crystallized ligand to ana-
lyze the binding orientations of different ligands to 5-HT2AR 
and D2R. Figure 10a, b represent the binding interaction of 
co-crystallized ligand having Van der Waals and hydropho-
bic interaction with the key residues like Trp336, Asp155, 
and Phe340, other important residues are Leu229, Asn343, 
and Phe339 for 5-HT2AR. In the case of D2R, the key struc-
tural amino acid residues are Asp114, Trp386, Phe390, and 
one water molecule. Here, Trp386 amino acid residue is 
playing a key role in the partial activation of this receptor.

Among all the compounds in the data set, compound 1 h 
showed a good docking score. All the compounds possess 

Fig. 10   (continued)
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piperidine or piperazine rings which contain a protonizable 
nitrogen atom, play an important role in hydrogen bonding 
with the binding cavity residue Asp115 of 5-HT2A and resi-
due Asp114 of D2R. Compound 1 h showed Pi-Pi stacking 
with amino acid residues like Trp336, Phe340, Phe243, and 
Phe339 against 5-HT2AR while Trp386 and Phe390 against 

D2R. The Pi-Pi stacking interaction depends on the hetero-
cyclic ring attached to the piperidine and piperazine motif 
Ex. 1 h having (5-chloro-1H indole-3yl) and 6 h having 
benzo-(d)isoxazole, an important moiety forming hydropho-
bic interactions. The binding cavity of potent ligands with 
their interactive amino acid residues are represented with 
the help of the 2D interactions diagram shown in Fig. 10c, 
d. The docking interactions and scoring results of the best 
compounds were shown in Table 6.

Virtual screening and docking

The docking-based virtual screening was carried out using 
selected pharmacophore hypotheses AAHPRRR_1. Based 
on the selected pharmacophore hypotheses features, the 
ZINC database was screened by applying filters criteria like 
Lipinski rule of five, Rotatable bond, and maximum RMSD 
selected 2 for hits screening. The HTVS, SP, and XP dock-
ing methods were carried out to find out the lead molecule 
from the database. The ligand ZINC74289318 obtained as a 

Table 6   Summary of docking study (by using XP Methodologies) results with their crucial binding cavity, interaction residues

Name of ligand Amino acid residue H-bond Pi-Pi stacking Pi-cation Salt bridge Docking Score 
(xp) kcal/mol

Receptor ID

 1 h ASP155 Yes No No Yes − 8.734 6A93
PHE243 No Yes No No
PHE340 No Yes No No
TRP336 No Yes No No

 ZINC74289318 ASP155 Yes No No Yes − 10.744 6A93
LEU229 Yes No No No
ASN343 Yes No No No
PHE340 No Yes No No
PHE339 No Yes No No
TRP336 No Yes No No

 Risperidone ASP155 Yes No No Yes − 8.40 6A93
PHE340 No Yes No No
TRP336 No Yes No No

D2 Receptor
 1 h ASP114 Yes No No Yes − 8.268 6CM4

THR119 Yes No No No
TRP386 No Yes No No
PHE390 No Yes No No
HID393-H2O Yes No No No

 ZINC74289318 ASP114 Yes No No Yes − 11.388 6CM4
TRP386 No Yes No No
PHE390 No Yes No No
HID393-H2O Yes No No No

 Risperidone ASP114 Yes No No Yes − 10.086 6CM4
TRP386 No Yes No No
PHE390 No Yes No No
H2O Yes No No No

Fig. 11   Flow chart of virtual screening methods
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lead molecule showed a very promising binding interaction 
and docking score shown in Table 6. The methods of virtual 
screening are represented diagrammatically in Fig. 11.

Compound ZINC74289318 was considered as a lead mol-
ecule for the recent study, based on results. The compound 

showed higher docking score and better binding interactions 
into the binding cavity than co-crystallized ligand for both 
the receptors, which enhanced the selectivity of the ligand 
toward its receptors. Compound ZINC7428938 having two 
additional hydrogen bonds and one additional Pi-Pi stacking 

Fig. 12   3D-Docking results with 2D interaction diagrams of higher scoring compound ZINC74289318; D2R (a); 5-HT2AR (b); Binding cavity 
of both the receptors (c); Chemical structure (d)
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with amino acid residues LEU229, ASN343, and PHE339 
respectively, which are responsible for the antagonistic effect 
of 5-HT2AR crystal ID: 6A93. In the case of D2R, the com-
pound showed one additional hydrogen bond between the 
hydroxy group (attached to benzyloxy and N-methylpro-
pane) and amino acid residue ASP114. The ZINC ligand has 
a unique quaternary amine (aminium ion), which is respon-
sible for receptors inhibitory activity, rather than piperazine 
and piperidine ring bearing nitrogen atoms. The 3D poses 
of docking results and 2D interaction diagram of compound 
ZINC74289318 for both the targets are shown in Fig. 12.

Absorption, distribution, metabolism, excretion, 
and toxicity predictions

Based on active pharmacophoric features, binding mecha-
nism, and docking scores, molecules were selected for their 
ADME properties prediction. ADME properties of the lead 
compound were calculated by using online SwissADME 
software (Fig. 13). The parameter for drug-likeness or as 
drug candidate was found to be within the acceptable limit 
for the topmost selected one as ZINC hits (Table 7). The 
ZINC compound ZINC74289318 showed that it passes the 
drug-likeness parameter without violating any rules. Also, 
the bioavailability score is 0.55 which is a significant value 

Fig. 12   (continued)
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Fig. 13   ADMET results of ZINC74289318 

Table 7   ADME prediction of ZINC hit and standard drug by using SwissADME online tool

S. no Compound name Mol. Wt. (g/mol) Molar refractivity GI absorption BBB per-
meability

Log Po/w Solubility Synthetic 
Accessibil-
ity

1 1 h 523.09 153.65 High Yes 5.28 Poorly 4.38
2 ZINC74289318 366.47 108.93 High Yes 3.31 Soluble 4.42
3 Risperidone 410.48 117.71 High Yes 2.78 Moderately 4.27

Table 8   Toxicity prediction of 
ZINC74289318 and ligand 1 h 
and reference drug by using 
SwissADME online tool

S. no Compound name CYP1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4 Pgp substrate

1 1 h No Yes Yes Yes Yes Yes
2 ZINC74289318 No No No No No No
3 Risperidone No Yes Yes Yes Yes Yes
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for a drug candidate. The synthetic accessibility of the com-
pound was dominant than the co-crystallize.

The molecule also showed good GI absorption and 
blood–brain barrier permeability, the solubility parameter 
suggested that its solubility is better than co-crystallized 
ligand. Also, it does not act as a substrate of P-gp. Simi-
larly, it has no inhibitory and toxic effect on the enzyme of 
cytochrome P450 (CYP1A2, CYP2C19, CYP2C9, CYP2D6, 
and CYP3A4) Table 8. The LogPo/w is 3.31 which is good 
value for considering the lipophilicity of ligand.

The predicted ADME properties of the ligand 1 h showed 
good results with some drawbacks having poor solubility, 
high molar refractivity. It also showed a higher molecular 
weight that more than 500 g/mol, which causes a violation 
of the Lipinski rule of five. The compound has inhibited 
the enzyme of cytochrome P450 (CYP1A2, CYP2C19, 
CYP2C9, CYP2D6, and CYP3A4), which may lead to 
adverse effects.

The SwissADME study profile of compounds suggested 
that the major concern is to reduce the molecular weight, 
improve compound lipophilicity and molar refractivity of 
compounds.

Conclusion

The present study reveals the computational design of com-
pounds bearing antipsychotic activity against 5-HT2A and D2 
receptors. A series of azinesulphonamide derivatives as dual 
receptor antagonists was used for in silico studies includ-
ing QSAR, molecular docking, pharmacophore model, and 
ADME prediction. The pharmacophore hypothesis study 
was performed by using the PHASE module. The devel-
oped hypothesis was ranked based on their different scoring 
function. The best hypothesis was AAHPRRR_1 selected 
from the study.

The best 3D-QSAR models showed high regression 
coefficient for the training (R2 > 0.893; 0.820) and test 
(Q2 > 0.552; 0.577) sets for both 5-HT2A and D2 recep-
tors respectively. The developed models were validated by 
internal and external validation parameters which showed 
significance. Contour maps concerning compounds suggest 
different structural insights determined by the electrostatic, 
hydrophobic, H-bond donor, H-bond acceptor, and steric 
fields. The compound 1 h showed docking scores − 8.734, 
− 8.268 kcal/mol with XP docking modes, consecutively, 
against 5-HT2A (PDB ID: 6A93) and (PDB ID: 6CM4) 
receptor. The pharmacophore model was further used to 
screened molecules from the ZINC molecules database. 
These molecules were processed through a virtual screen-
ing study from Schrodinger virtual screening module. The 
HTVS, SP, and XP methodologies were used for screen-
ing the top best-docked hit compound ZINC74289318 
complex of both the receptors showed promising docking 

score (− 10.74 kcal/mol for 5-HT2A; − 11.388 kcal/mol for 
D2R) and binding interaction. Molecular docking revealed 
that quaternary or protonizable nitrogen atoms on piperi-
dine and piperazine rings showed a hydrogen bond that 
directly affected the receptor activity. The important hydro-
phobic amino acid residues, TRP336, PHE340, PHE339 
of 5-HT2AR, and TRP386, PHE390 of D2R, were vital ele-
ments in the stability of the antagonist binding site. The 
pharmacokinetic properties were also calculated for the data-
set, reference molecule, and ZINC hits using SwissADME 
tools. Only ZINC hits and the co-crystallized ligand pass all 
the parameters without any violation. The overall ADMET 
parameters like blood–brain barrier permeability, GI absorp-
tion, solubility, toxicity, and bioavailability showed that 
compound ZINC74289318 has high GI absorption, high 
blood–brain barrier permeability, good lipophilicity having 
Log Po/w 3.31, synthetic accessibility value 4.42 (greater 
than risperidone), and follow Lipinski rule of five with zero 
violation of drug-like criteria. The overall computational 
studies concluded that Docking, 3D QSAR, Pharmacoph-
ore modeling, and ADMET prediction are very helpful to 
suggest and design a novel hit compound for antipsychotic 
activity. Furthermore, this study will provide direction to 
researchers to design novel piperazine and piperidine deriva-
tives as antipsychotic agents.

Acknowledgements  Akash Rathore is thankful to the All India Council 
for Technical Education (AICTE), New Delhi for awarding fellowship. 
Authors acknowledge the Department of Pharmaceutical Sciences, Dr. 
Harisingh Gour University (A Central University), India for providing 
research facilities.

Funding  The work was done under the All India Council for Tech-
nical Education (AICTE) fellowship for GPAT with reference no 
AICTE-2018–00000472.

Declarations 

Conflict of interest  Authors declare no conflict of interest.

References

Abdizadeh R, Hadizadeh F, Abdizadeh T (2020) QSAR analysis of 
coumarin-based benzamides as histone deacetylase inhibitors 
using CoMFA, CoMSIA and HQSAR methods. J Mol Struct 
1199:126961

Butini S, Gemma S, Campiani G, Franceschini S, Trotta F, Borriello 
M, Ceres N, Ros S, Coccone SS, Bernetti M, De Angelis M (2008) 
Discovery of a new class of potential multifunctional atypical 
antipsychotic agents targeting dopamine D3 and serotonin 5-HT1A 
and 5-HT2A receptors design, synthesis, and effects on behavior. J 
Med Chem 52(1):151–169

Cao X, Zhang Y, Chen Y, Qiu Y, Yu M, Xu X, Liu X, Liu BF, Zhang L, 
Zhang G (2018) Synthesis and biological evaluation of fused tri-
cyclic heterocycle piperazine (Piperidine) derivatives as potential 
multireceptor atypical antipsychotics. J Med Chem 61(22):10017



In Silico Pharmacology            (2022) 10:7 	

1 3

Page 23 of 23      7 

Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to 
evaluate pharmacokinetics, drug-likeness and medicinal chemistry 
friendliness of small molecules. Sci Rep 7:42717

Dixon L, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner 
RA (2006) PHASE: a new engine for pharmacophore percep-
tion, 3D QSAR model development, and 3D database screening: 
1. Methodology and preliminary results. J Comp Aid Mol Des 
20(10–11):647–671

Ghaleb A et al (2017) 3D-QSAR modeling and molecular docking 
studies on a series of 2, 5 disubstituted 1, 3, 4-oxadiazoles. J Mol 
Struct 1145:278–284

Ghasemi JB, Shiri F (2012) Molecular docking and 3D-QSAR 
studies of falcipain inhibitors using CoMFA, CoMSIA, and 
Open3DQSAR. Med Chem Res 21(10):2788–2806

Huang L, Zhang W, Zhang X, Yin L, Chen B, Song J (2015) Synthe-
sis and pharmacological evaluation of piperidine (piperazine)-
substituted benzoxazole derivatives as multi-target antipsychotics. 
Bioorg Med Chem Lett 25(22):5299–5305

Jaiteh M et al (2020) Performance of virtual screening against GPCR 
homology models: impact of template selection and treatment of 
binding site plasticity. PLoS Comput Biol 16.3:e1007680

Kapur SR (2001) Gary Atypical antipsychotics new directions and 
new challenges in the treatment of schizophrenia. Annu Rev Med 
52(1):503–517

Kimura KT et al (2019) Structures of the 5-HT 2A receptor in complex 
with the antipsychotics risperidone and zotepine. Nat Struct Mol 
Biol 26.2(2019):121–128

Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indi-
ces in a comparative analysis (CoMSIA) of drug molecules to 
correlate and predict their biological activity. J Med Chem 
37(24):4130–4146

Kumar A, Singh H, Mishra A, Mishra AK (2018) Aripiprazole: an 
FDA approved bioactive compound to treat schizophrenia—a mini 
review. Curr Drug Discov Technol 17(1):23–29

Lee JH, Sung JC, Mi-hyun K (2018) Discovery of CNS-like D3R-
selective antagonists using 3D pharmacophore guided virtual 
screening. Molecules 23.10(2018):2452

Leucht S, Kissling W, Davis JM (2009) Second-generation antipsychot-
ics for schizophrenia can we resolve the conflict. Psychol Med 
39(10):1591–1602

Liddle PF (1987) Schizophrenic syndromes, cognitive performance, 
and neurological dysfunction. Psychol Med 171:49–57

McCutcheon RA, Marques TR, Howes OD (2020) Schizophrenia—an 
overview. JAMA Psychiat 2:201–210

Modugula H, Kumar A (2020) Risk analysis of lurasidone in patients 
with schizophrenia and bipolar depression, CNS and neurologi-
cal disorders-drug targets (formerly current drug targets-CNS and 
neurological disorders).

Murthy VS, Vithal MK (2002) 3D-QSAR CoMFA and CoMSIA on 
protein tyrosine phosphatase 1B inhibitors. Bioorg Med Chem 
107:2267–2282

Oprea TI et al (2001) MTD-PLS: A PLS-based variant of the MTD 
method. A 3D-QSAR analysis of receptor affinities for a series 
of halogenated dibenzoxin and biphenyl derivatives. SAR QSAR 
Environ Res 12.1–2:75–92

Peprah K, Zhu XY, Eyunni SV, Setola V, Roth BL, Ablordeppey SY 
(2012) Multi-receptor drug design Haloperidol as a scaffold for 
the design and synthesis of atypical antipsychotic agents. Bioorg 
Med Chem 20(3):1291–1297

Rajeswari M, Santhi N, Bhuvaneswari V (2014) Pharmacophore and 
virtual screening of JAK3 inhibitors. Bioinfo 10(3):157–163

Rossler W, Salize HJ, van Os J, Riecher-Rossler A (2005) Size of bur-
den of schizophrenia and psychotic disorders. Eur Neuropsychop-
harmacol 15:399–409

Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug 
design—a review. Curr Top Med Chem 10(1):95–115

Wang S, Che T, Levit A, Shoichet BK, Wacker D, Roth BL (2018) 
Structure of the D2 dopamine receptor bound to the atypical antip-
sychotic drug risperidone. Nature 555(7695):269–273

Wood DJ et al (2012) Pharmacophore fingerprint-based approach to 
binding site subpocket similarity and its application to bioisostere 
replacement. J Chem Inform Model 52.8:2031–2043

Xiamuxi H, Wang Z, Li J, Wang Y, Wu C, Yang F, Jiang X, Liu Y, 
Zhao Q, Chen W, Zhang J (2017) Synthesis and biological inves-
tigation of tetrahydropyridopyrimidinone derivatives as poten-
tial multireceptor atypical antipsychotics. Bioorg Med Chem 
19(10):4904–4916

Xu M, Wang Y, Yang F, Wu C, Wang Z, Ye B, Jiang X, Zhao Q, Li J, 
Liu Y, Zhang J (2018) Synthesis and biological evaluation of a 
series of novel pyridinecarboxamides as potential multi-receptor 
antipsychotic drugs. Bioorg Med Chem Lett 76(5):606–611

Zajdel P, Kos T, Marciniec K, Satała G, Canale V, Kamiński K, Hołuj 
M, Lenda T, Koralewski R, Bednarski M, Nowiński L (2018) 
Novel multi-target azinesulfonamides of cyclic amine derivatives 
as potential antipsychotics with pro-social and pro-cognitive 
effects. Eur J Med Chem 145:790–804

Zhang C et al (2020) Design of novel dopamine D2 and serotonin 
5-HT2A receptors dual antagonists toward schizophrenia: An 
integrated study with QSAR, molecular docking, virtual screen-
ing, and molecular dynamics simulations. J Biomol Struct Dyn 
383:860–885

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Computational approaches for the design of novel dopamine D2 and serotonin 5-HT2A receptor dual antagonist towards schizophrenia
	Abstract
	Introduction
	Material and methods
	Software used
	Data set
	Pharmacophore modeling
	Identification of antipsychotics drugs through virtual screening

	3D-QSAR model generation
	Energy minimization and alignment
	PLS analysis and QSAR model validation

	Molecular docking
	Molecular ADMET prediction and Lipinski’s rule for drug likeliness

	Results and discussion
	Pharmacophore model analysis
	3D-QSAR models analysis
	3D-QSAR contour map analysis
	Optimization for new compounds

	Molecular docking
	Virtual screening and docking

	Absorption, distribution, metabolism, excretion, and toxicity predictions
	Conclusion

	Acknowledgements 
	References




