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Abstract
The present research scintillates on the homology modelling of rat mitochondrial protein tyrosine phosphatase 1 (PTPMT1) 
and targeting its activity using flavonoids through a computational docking approach. PTPMT1 is a dual-specificity phos-
phatase responsible for protein phosphorylation and plays a vital role in the metabolism of cardiolipin biosynthesis, insulin 
regulation, etc. The inhibition of PTPMT1 has also shown enhanced insulin levels. The three-dimensional structure of 
the protein is not yet known. The homology modelling was performed using SWISS-MODEL and Geno3D webservers to 
compare the efficiencies. The PROCHECK for protein modelled using SWISS-MODEL showed 91.6% of amino acids in 
the most favoured region, 0.7% residues in the disallowed region that was found to be significant compared to the model 
built using Geno3D. 210 common flavonoids were docked in the modelled protein using the AutoDock 4.2.6 along with a 
control drug alexidine dihydrochloride. Our results show promising candidates that bind protein tyrosine phosphatase 1, 
including, prunin (− 8.66 kcal/mol); oroxindin (− 8.56 kcal/mol); luteolin 7-rutinoside (− 8.47 kcal/mol); 3(2H)-isoflavenes 
(− 8.36 kcal/mol); nicotiflorin (− 8.29 kcal/mol), ranked top in the docking experiments. We predicted the pharmacokinetic 
and Lipinski properties of the top ten compounds with the lowest binding energies. To further validate the stability of the 
modelled protein and docked complexes molecular dynamics simulations were performed using Desmond, Schrodinger for 
150 ns in conjunction with MM-GBSA. Thus, flavonoids could act as potential inhibitors of PTPMT1, and further, in-vitro 
and in-vivo studies are essential to complete the drug development process.

 *	 K. Chithra 
	 kchithra@annauniv.edu

1	 Nanomaterials and Environmental Research Laboratory, 
Department of Chemical Engineering, Alagappa College 
of Technology, Anna University, Chennai 600025, India

2	 Department of Biotechnology, School of Bio Sciences 
and Technology, Vellore Institute of Technology, Vellore 
Campus, Vellore, Tamil Nadu 632014, India

3	 Department of Bioengineering, School of Engineering, Vels 
Institute of Science Technology and Advanced Studies, 
Pallavaram, Chennai 600117, India

http://orcid.org/0000-0003-2487-9972
http://orcid.org/0000-0002-5051-0901
http://orcid.org/0000-0001-8601-5323
http://orcid.org/0000-0002-5445-525X
http://crossmark.crossref.org/dialog/?doi=10.1007/s40203-022-00119-z&domain=pdf


	 In Silico Pharmacology            (2022) 10:3 

1 3

    3   Page 2 of 30

Graphical abstract

Keywords  Mitochondrial protein tyrosine phosphatase 1 (PTPMT1) · Homology modelling · Docking · Flavonoids · 
Molecular dynamics simulations · Inhibitors

Abbreviations
PTPMT1	� Protein mitochondrial tyrosine phos-

phatase 1
MM-GBSA	� Molecular mechanics-generalized born 

and surface area
ATP	� Adenosine Tri Phosphate
MD simulations	� Molecular dynamics simulations
HIV	� Human Immunodeficiency Virus
BLAST	� Basic local alignment search tool
BLASTp	� Basic local alignment search tool 

protein
FASTA	� FAST All
GROMOS_96	� GROningen Molecular Simulation_96
USA	� United States of America
MGL Tools	� Molecular Graphic Laboratory tools
PDB	� Protein data bank
RMSD	� Root Mean Square Deviation
RMSF	� Root Mean Square Fluctuation
UCSF Chimera	� University of California San Francisco 

Chimera
OPLS_2005	� Optimized Potentials for Liquid 

Simulations_2005

TIP3P	� Transferable Intermolecular Potential 
with 3 Points

GMQE	� Global Model Quality Estimation
kcal/mol	� Kilocalories per mol
IC50	� Inhibitory Concentration 50
µM	� Micromolar
Å	� Angstroms
Å2	� Square Angstroms
MTT	� 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphe-

nyl tetrazolium bromide
μg GAE/mL	� Micrograms Gallic Acid Equivalent/

millilitre
mg/mL	� Milligrams per litter
ns	� Nanoseconds
mRNA	� Messenger Ribonucleic Acid
Bcl-2	� B-cell lymphoma-2
BAX	� Bcl-2-associated X protein
ΔG	� Gibbs free energy
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Introduction

The regulation of cell signalling is essential to perform vari-
ous functions is mediated by reversible phosphorylation of 
protein controlled by kinases and phosphatases. Cell sig-
nalling is the root cause of significant diseases (Day et al. 
2016). It is responsible for a structural change that affects 
the enzyme and scaffolding activity (Doughty-Shenton et al. 
2010). This change influences the cell signal propagation, 
ultimately leading to augmentation or suppression of cellular 
events. Protein tyrosine phosphatases are the largest class 
amongst other phosphatases localized in the mitochondria 
‘powerhouse of the cell’ of eukaryotic cells are dual-speci-
ficity phosphatases because of their potential to catalyse the 
dephosphorylation of phosphothreonine and phosphoserine 
apart from phosphotyrosine residue (Guan et al. 1991; Pat-
terson et al. 2009). The gene is responsible for its expres-
sion located on chromosome 11 in humans. Mitochondria 
is a reservoir for several enzymes like phosphatases and 
kinases essential for adenosine triphosphatase (ATP) syn-
thesis. PTPMT1 is localized inside the inner mitochondrial 
membrane so that the phosphatase domain is proximal to 
the mitochondrial matrix (Pagliarini et al. 2005) that is pre-
dominantly involved in energy production and metabolism. 
This protein has a high affinity towards lipid substrates by 
influencing the mitochondrial lipid compartment involved 
in catalysing the cardiolipin synthesis and lipid metabolism 
inside the matrix (Niemi et al. 2013; Zhang et al. 2011a, b) it 
is the first-ever protein tyrosine phosphatase to be discovered 
inside the mitochondria.

Recent studies show that a disturbance in cardiolipin bio-
synthesis causes apoptosis ‘programmed cell death’. This 
protein is primarily responsible for maintaining homeostasis 
in various cancers and lifestyle diseases like type II diabetes 
(Guan and Xiong 2011). Recent studies reported that the 
downregulation of tyrosine phosphatase resulted in the apop-
tosis of cancer cell lines under in-vitro conditions (Niemi 
et al. 2013). Cardiolipin present inside the inner membrane 
of mitochondria is proven to bind with cytochrome c poten-
tially. It has been proven that cardiolipin oxidation causes 
the release of cytochrome c from mitochondria (Kagan et al. 
2005). Downregulating the PTPMT1 gene induces apop-
tosis in cancer cells. Downregulating the PTPMT1 gene 
induces apoptosis in cancer cells. Targeting the PTPMT1 
would induce apoptosis in cancer cells by sensitizing them 
to chemotherapeutics; however, the mechanism is unknown. 
The removal of the PTPMT1 responsible gene from the pan-
creatic beta islet cells had shown to increase ATP and insu-
lin levels under in-vitro conditions (Pagliarini et al. 2005). 
PTPMT1 closely shares its catalytic site with its homolog 
phosphatase and tensin homolog (PTEN) (Steck et al. 1997). 
Targeting this PTPMT1 dual-specificity phosphatase could 

inhibit its activity and functions, promote the apoptosis of 
cancer cells, increase cellular ATP and insulin levels in the 
case of type II diabetes. These could pave the way to the 
developing new lead-like compounds, thus combating both 
cancer and diabetes by interfering with the enzyme’s biology 
and treating the dysregulation (Lai et al. 2009). The three-
dimensional structure of rat PTPMT1 is not yet available in 
the databases; however, it is closely similar to PTPMT1 of 
Mus musculus. The PTPMT1 of Mus musculus and Homo 
sapiens are the least explored. Recent studies and attempts in 
cancer and diabetes keenly focussed on the dysregulation of 
PTPMT1 of Rattus norvegicus, whose structure is the main 
focus of this research.

Flavonoids are polyphenolic secondary metabolites con-
taining benzo-γ-pyrone structure and naturally occurring 
in every part of a plant. Flavonoids help in the survival of 
plants by creating a defence mechanism against browsing 
animals and insects. They are classified into six subclasses 
flavonol, flavone, isoflavone, flavanone, anthocyanin, and 
flavan-3, predominantly found in berries, grapes, turmeric, 
cocoa, apple, tea, onion, broccoli, etc. (Kumar and Pandey 
2013). Besides flavonoids are naturally antibacterial, anti-
fungal, antiviral, anticancer, antiparasitic, antioxidative, 
antidiabetic, and anti-inflammatory agents (Horáková 2011; 
Kamaraj et al. 2009; Li and Xu 2008; Wu et al. 2008; Yadav 
et al. 2020). Advances in scientific research have contrib-
uted to new technologies to isolate, characterize, purify, 
and analyse their bioactive properties. Natural medicines 
date back to at least 60,000 years when people started using 
them as remedies and are used till present (Shi et al. 2010) 
in countries notably like China and India. Natural products 
have evolved for the past several thousand years in their 
properties, biological activities, and distinct mechanisms 
of action that ultimately led to several drug-like molecules 
(Yuan et al. 2016). However, only a few portions have been 
studied widely for bioactivities against the known target out 
of millions of plant species (Ngo et al. 2013). The develop-
ment of modern biotechnology, natural products chemistry, 
and bioinformatics have led to the computational simula-
tions, annotation of mechanisms, and pathways to the rapid 
throughput screening of new drugs from natural sources.

Homology modelling, also known as comparative model-
ling, is a valuable tool used to predict the three-dimensional 
protein structure when only information about the protein 
sequence is available (Pitman et al. 2006). Homology model-
ling is essential for biotechnologists to predict and study the 
functions of un-explored proteins whose three-dimensional 
structure is not open (Abagyan et al. 1994). An experimental 
method to perform homology modelling involves the fol-
lowing steps: (i) using the BLAST search engine to identify 
the template sequence for the target sequence of interest, 
(ii) sequence alignment, (iii) backbone generation, (iv) loop 
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modelling, (v) sidechain modelling, (vi) model optimiza-
tion and (viii) model validation (Vyas et al. 2012). Diverse 
software like Modeller, PRIMO, and free online automated 
modelling servers like the SWISS-MODEL is designed for 
homology modelling with high efficiency and reliability 
(Schwede et al. 2003). Modelling the three-dimensional 
structure help researchers elucidate the essential amino acids 
involved in the binding site and their interaction mechanism 
with the ligand responsible for inhibition, thus neutralizing 
its virulence.

Molecular docking is a rapid, cost-effective, computer-
based simulation technique used to analyse the interaction 
between protein and ligand using specialized tools and 
algorithms with the help of high-speed computers. Docking 
provides insights into the interaction between protein and 
ligand by elucidating the binding energy, hydrogen bond 
interactions, Van der Waals interactions, 2-dimensional 
and 3-dimensional interactions, and ranks the best pro-
tein–ligand pose according to the order of binding energy. 
Molecular docking helps us identify how a ligand or lead 
compound inhibits its target using hypotheses (Hendlich 
1998; Pozzan 2006). AutoDock is a software developed by 
the Scripps Research Institute, the USA that works based 
on the Lamarckian Genetic algorithm and is considered an 
efficient tool for molecular docking (Li et al. 2014). Auto-
Dock consists of AutoGrid and AutoDock and is the most 
widely used out of 30 well-known computational docking 
tools. The grid is pre-calculated and set to fit the ligand-
binding site of the protein where the ligand is intended to 
bind (Park et al. 2006), and molecular docking is carried out 
after fixing the grid. Molecular Dynamics (MD) simulations 
are effective in the in-depth atomic study of macromolecules 
like protein, nucleic acids, docked complexes, ribosomes, 
ribosomes, etc. (Brandman et al. 2012; Roccatano et al. 
2007) using force fields. It is simply studying the potential 
energy of every atom in a molecule by subjecting them to 
kinetic energy; this mimics the actual process happening 
in a biological system (Hospital et al. 2015). Modern-day 
computers have the potential of studying up to 5 lakh atoms 
in a molecule under nanoseconds. It is essential to study 
the molecules at the lowest possible time to study their sta-
bility and conformational changes since the properties and 
functions of biomolecules are concerned with the order of 
nano and microseconds (Hollingsworth and Dror 2018). The 
prime molecular mechanics—generalized Born and surface 
area continuum solvation (MM-GBSA) is a versatile tool to 
quantify the free binding energies of ligands and small mol-
ecules bound to a biomacromolecule (Genheden and Ryde 
2015). This technique widely is used to strengthen, enhance, 
validate, and support the methods and results of molecular 
docking of ligand-macromolecule complexes. The lower the 
negative value, the lesser is the energy, thus greater the bind-
ing affinity.

Thus, PTPMT1 plays a significant role in the metabo-
lism and cell signalling and has emerged as a novel drug 
target (He et al. 2014; Zhao et al. 2018) for cancer and 
type II diabetes. Hence, this research works to model the 
rat PTPMT1 and in-silico molecular docking of common 
flavonoids against the modelled protein and inhibit its activ-
ity. Moreover, molecular dynamics simulation studies are 
to be performed to validate the conformations and stability 
of template, apo-modelled protein, and docked complexes. 
Pharmacokinetics and Lipinski’s properties of the flavonoids 
are reported and studied. Rats are model organisms for test-
ing a drug for efficacy and toxicity; hence we attempt mod-
elling and docking. This research would be a road map in 
developing known natural lead compounds against the novel 
PTPMT1 mediated cancer and diabetes. Our future work 
aims to perform in-vitro followed by in-vivo clinical trials 
from the best results obtained. A detailed workflow of the 
research is depicted in Fig. 1.

Materials and methods

The present study involved the use of diverse software, these 
are as follows: (i) ArgusLab 4.0.1; (ii) AutoDock 4.2.6; (iii) 
MGL Tools 1.5.4; (iv) Python 3.8.2; (v) Discovery Studio 
visualizer 3.5; (vi) PyMOL 2.3; (vii) UCSF Chimera 1.14; 
(viii) LigPlot + v.2.2; (ix) Java Platform SE binary version 8; 
(x) Swiss-PDBViewer; (xi) Desmond, Schrodinger.

Several webservers were used in the study viz., (i) 
ChemDraw JS sample page, an online tool was used to 
draw the two-dimensional structure of compounds; (ii) 
SWISS-MODEL for homology modelling of proteins with 
unknown three-dimensional structure (Waterhouse et al. 
2018); (iii) Geno3D for homology modelling of proteins 
with unknown three-dimensional structure (Combet et al. 
2002); (iv) ProtParam to study the properties of modelled 
protein (Gasteiger et al. 2005); (v) PROCHECK and ERRAT 
to generate Ramachandran plot and frequencies of non-cova-
lent structural bonding elucidation between diverse atoms 
in the protein (Colovos and Yeates 1993; Laskowski et al. 
1996); (vi) Clustal Omega for multiple sequence alignment 
(Sievers et al. 2011); (vii) Modloop server for automated 
loop modelling (Fiser and Sali 2003); (viii) MetaPocket 
2.0 was used to predict the ligand-binding site (Zhang et al. 
2011a; b); (ix) Prediction of activity spectra for substances 
(PASS webserver) to predict the pharmacological effects of 
compounds (Filimonov et al. 2018); (x) admetSAR version 
1 and 2 to predict the pharmacokinetic properties of natural 
compounds (Cheng et al. 2019); (xi) SwissADME to pre-
dict the pharmacokinetic properties of ligands (Daina et al. 
2017); (xii) PubChem database to retrieve flavonoid ligands 
and predict their Lipinski’s properties.
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Computational specifications to perform molecular 
docking using AutoDock 4.2.6

The following parameters were required for the smooth and 
error-free functioning of the software. They include: (i) 

Physical memory: 4.00 GB RAM; (ii) Operating System: 
Windows 10 Home Single Language, 64-bit Operating Sys-
tem; (iii) Processor: Intel(R) Core(TM) i3-7100U CPU @ 
2.40 GHz, 2401 MHz, 2 Core(s), 4 Logical Processor(s).

Fig. 1   Workflow of the research work
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Computational specifications to perform molecular 
dynamics simulations using Desmond, Schrodinger

The molecular dynamics were performed in the Ubuntu 18 
Operating System using the HP z238 microtower worksta-
tion with 8.00 GB RAM and Intel(R) Core i7 processor 
Intel(R) Core i7 processor. These were the minimum system 
requirement to perform the simulations as directed.

Ligand preparation

The ligands were prepared using the ArgusLab 4.0.1 soft-
ware. The flavonoids obtained from Panche et al. (Panche 
et al. 2016) were downloaded from the PubChem database 
and utilized. The ligands were optimized using the Quantum 
Mechanics – Molecular Mechanics AM1 semi-empirical 
method according to the Hartree–Fock self-consistent field 
algorithm for 200 iterations (Hafeez et al. 2013; Stewart 
1989).

Homology modelling and protein preparation

The 3-dimensional crystal structure of PTPMT1 is not avail-
able in the protein data bank database. Hence, we decided to 
model the protein based on the homology or the comparative 
modelling using two software viz., (i) SWISS-MODEL and 
(ii) Geno3D by performing the BLASTp search against the 
protein data bank engine (Altschul et al. 1990). The amino 
acid FASTA sequence of the protein (UniProtKB: P0C089) 
from Rattus norvegicus was obtained from the UniProtKB 
database, and the structural homologs were searched using 
the BLASTp against the protein data bank to find the closely 
related protein concerning the query sequence and similarity 
(Pagliarini et al. 2005). Multiple sequence alignment of the 
protein FASTA sequence was done using the Clustal Omega 
webserver to analyse the conserved regions.

SWISS-MODEL is a reliable webserver for homology 
modelling of proteins to predict the 3-dimensional structures 
(Hari and Akilashree 2019) to study their structure, proper-
ties, mutagenesis, and functions. Furthermore, the modelled 
protein will pave the way for the development of lead-like 
drugs against the protein. The FASTA sequence of the tar-
get sequence was fed into the webservers, respectively; the 
templates were searched, aligned and the template with the 
highest similarity to the target sequence and Q-mean value 
was chosen for model building.

The other web tool used in the study was Geno3D, which 
is also similar in operation to SWISS-MODEL was also used 
to compare the efficiency of the built models. Ten models 
were built using Geno3D, and the lowest energy model con-
formation was chosen.

The best model generated by either of the models 
was further subjected to energy minimization using the 

GROMOS_96 force field of Swiss-PDBViewer, loop mod-
elling using Modloop server. The model was validated using 
the PROCHECK webserver to identify the amino acid resi-
dues in the allowed and disallowed regions and model qual-
ity was assessed using the ERRAT server.

Predicting the ligand‑binding site using MetaPocket 
2.0

Predicting the active/binding site is the starting step of the 
drug discovery process. MetaPocket 2.0, a high-efficiency 
web server; analyses the sizes of the binding pockets on the 
protein's surface, was used to predict the ligand-binding site 
of the modelled protein (Huang 2009; Jendele et al. 2019), 
and the largest pocket was chosen as the binding site. Iden-
tifying the ligand-binding site plays an essential role in navi-
gating the ligand/small molecules to bind to the amino acids 
at that site.

Molecular Docking using AutoDock 4.2.6

AutoDock 4.2.6 is the most preferred and high-efficiency 
software widely used for protein–ligand docking (Morris 
et al. 2009). Molecular docking was carried out by indi-
vidual docking, that is., ‘docking one ligand to one protein 
at a time’ for 10 Genetic Algorithm runs and initializing 
protein and ligand preparation done according to Shivan-
ika et al. (2020). The grid spacing was set to its default 
value (0.375 Å). The grid parameters were set as follows: 
(i) Number of points in dimensions: 50 × 66 × 48, (ii) Grid 
box value: x center = 29.506 Å; y center = − 8.744 Å; z 
center = 18.708 Å, and (iii) Corresponding offset values: 
x = 0.556; y = 0.806; z = 0.444 respectively. Molecular dock-
ing was executed after setting the grid parameters, and the 
results were tabulated.

Interaction analyses

PyMOL 2.3; UCSF Chimera 1.14; Discovery Studio visual-
izer 3.5; LigPlot + v.2.2 (Wallace et al. 1995) were used to 
elucidate the bonded and non-bonded supramolecular inter-
actions between protein and ligands.

Pharmacokinetics and Lipinski’s rule of 5

Lipinski's rule of five is an essential criterion for assessing a 
compound’s oral drug likeliness. Lipinski rule contains five 
essential rules namely (i) Molecular weight < 500 Daltons, (ii) 
Number of hydrogen acceptors < 10, (iii) Number of hydrogen 
donors < 5, (iv) Partition coefficient Log P < 5, and (v) Molar 
refractivity < 140. After clinical trials, lead compounds obey-
ing these criteria could be considered an oral drug (Lipinski 
2000, 2004). The Lipinski rule was predicted for the top 10 
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ligands that showed low binding energies. The pharmacoki-
netic properties denote the absorption, distribution, metabo-
lism, excretion, and toxic properties of the ligands that are 
essential criteria for a lead compound for further studies. The 
pharmacokinetic properties were predicted using admetSAR 
versions 1 & 2 and SwissADME webservers.

Molecular Dynamics simulations

Molecular Dynamics simulations (MD) were performed for 
150 ns with the Schrodinger’s Desmond package, according 
to Pant et al. (2020). The MD simulations were performed to 
study the RMSD, RMSF, and stability of the modelled apo-
protein and protein–ligand complexes. The simulation uses 
force fields to study the potential energy and force between 
the atoms in a molecule. The simulations were performed for 
the following complexes: (i) template apo-protein; (ii) mod-
elled protein; (iii) top three low binding energy ligand–pro-
tein complexes from docking; (iv) alexidine dihydrochlo-
ride-protein complex, which is the known inhibitor. The 
apo-proteins and docked protein–ligand complexes were first 
solvated indigenously in a single-point charge TIP3P water 
box size of 10 Å along with periodic boundary conditions 
(Shivanika et al. 2020). The simulations were performed 
using the Optimized Potentials for Liquid Simulations_2005 
(OPLS_2005) force field (Harder et al. 2016) throughout the 
study. 0.15 M Na+ and Cl− ions were used to neutralize the 
simulation system. The energy minimization of the com-
plexes was carried out for 2000 steps. After energy minimiza-
tion, the complexes were further subjected to the production 
run for 150 ns using the isothermal-isobaric (NPT) ensemble 
at constant pressure and temperature. The Nose–Hoover ther-
mostatic algorithm and Martina-Tobias-Klein method gradu-
ally heat the entire MD system to 300 Kelvin. Particle-Mesh 
Ewald to enumerate the electrostatic interactions between the 
atoms in the complexes by maintaining a spacing of 0.8 Å.

MM‑GBSA energy calculation

The MM-GBSA of modeled protein in complex with the top 
three low binding energy conformations and the control drug 
alexidine dihydrochloride was calculated using OPLS_2005 
forcefield and VSGB 2.0 solvation model. The prime MM-
GBSA ΔG binding energy was calculated using the equation 
described by Massova and Kollman (2000).

(1)ΔGbind = G(complex) −
(

G(ligand) + G(modelledprotein)

)

,

(2)
G = EVanderWaalsenergy + EElectrostaticenergy

+ GGeneralBornsolvationenergy + GSurfaceareaenergy.

Results and discussion

Homology modelling of PTPMT1 using 
SWISS‑MODEL

Many similar proteins were retrieved from the BLAST 
(Camacho et al. 2009) and HHblits (Remmert et al. 2012) 
structural and sequential similarity results of the SWISS-
MODEL template search library. The three-dimensional 
structure of two PTPMT1 proteins, PDB Id: 3RGQ and PDB 
Id: 3RGO (Xiao et al. 2011) from Mus musculus, showed 
the highest similarity (above 90%). The proteins (PDB Id: 
3RGQ) with resolution 2.0 Å showed 94.23% similarity, 
0.81 query coverage, and (PDB Id: 3RGO) with resolution 
1.9 Å showed 94.90% similarity and 0.81 query coverage to 
the primary amino acid template sequence. From the two 
most similar proteins, the protein (PDB Id: 3RGQ) had a 
high Global Model Quality Estimation (GMQE = 0.79) value 
than PDB Id: 3RGO greater the GMQE, the higher the reli-
ability. The GMQE is determined by combining the aligned 
target-template sequence and template crystal structure and 
is an essential tool to estimate the quality of protein models. 
Moreover, the SWISS-MODEL ranked the protein (PDB Id: 
3RGQ) at the top, followed by (PDB Id: 3RGO). Hence, the 
protein (PDB Id: 3RGQ) was the final template, and we built 
the model. The model building was done using ProMod3 and 
PROMOD-II based on the target-template alignment (Guex 
et al. 2009). The conserved regions between the sequences 
were carried forward, the insertions and deletions were mod-
elled using the fragment library, loop modelling, followed by 
sidechains modelling. The modelled protein was 156 amino 
acids in length. Finally, using a force field, the geometry 
was optimized to build a stable model. The built model has 
had a QMEAN score of 0.10, which is an agreeable value. A 
QMEAN Z-score closer to zero is a good model and denotes 
a higher similarity between the modelled and experimental 
protein (Benkert et al. 2011). The amino acids with a simi-
larity value lower than 0.6 denote that the model is of low 
quality. Fortunately, no residue was found to be lower than 
0.6; thus, the modelled protein was of the highest quality 
(Fig. 2a). Figure 2b shows the comparison of the quality 
scores of the modelled protein with the experimental struc-
tures. The modelled protein is denoted as a red-coloured 
star; the back and grey dots are the experimental proteins of 
|Z-score| in the range 0–2. The modelled protein was then 
subjected to energy minimization to correct any distorted 
amino acids or modified loops or adjusting bond constraints, 
etc., using the Swiss-PDBViewer. The energy minimization 
enhances the stability of modelled protein using the GRO-
MOS_96 force field (Scott et al. 1999; Schmid et al. 2012). 
The SWISS modelled protein was superimposed onto the 
template structure (PDB Id: 3RGQ) using PyMOL 2.3, and 
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an RMSD value of 0.072 (Fig. 3) was obtained (1105 atoms 
aligned).

Homology modelling of PTPMT1 using Geno3D

From the similarity search using the template library search 
of Geno3D, the proteins (PDB Id: 3RGQ and PDB Id: 
3RGO) showed the highest similarity of 94%. Both the tem-
plate proteins are very closely related, but Geno3D ranked 
the protein (PDB Id: 3RGO) template in the first hence, this 
template was then chosen for model building. A total of ten 
models were generated, the model was then chosen based 
on the lowest energy. Out of ten models generated, the best 
lowest energy protein model (− 7132 kcal/mol) was then 

downloaded in PDB format and further processed, followed 
by energy minimization steps using Swiss-PDBViewer as 
mentioned above. Finally, the Geno3D modelled protein was 
superimposed onto the template structure (PDB Id: 3RGO) 
using PyMOL 2.3, and an RMSD value of 0.746 (Fig. S1) 
was obtained ten times higher than the value obtained from 
SWISS-MODEL.

Model validation

Validating the built model is an essential step that denotes 
the built model’s quality and reliability. Ramachandran plot 
was used to validate the model of whether or not any amino 
acids are present in the disallowed regions due to steric hin-
drance of phi (φ) and psi (ψ) bonds between C-alpha methyl-
ene group sidechain and main-chain atoms in a polypeptide 
(Ramachandran et al. 1963). The PDB file format of models 
built using SWISS-MODEL and Geno3D were submitted 
to the PROCHECK webserver. The model developed by 
SWISS-MODEL showed the best results with 91.6% (131 
amino acids) of amino acids in the most favoured regions 
of the plot; 7.7% (11 amino acids) in additional allowed 
regions; 0% in generously allowed regions; 0.7% (1 amino 
acid PHE-79) in the disallowed region(s) (Fig. 4a). The over-
all G-value for modelled protein was − 0.03, which shows 
modelled protein is acceptable; a G-value lower than − 0.5 
is considered unusual. The model developed by Geno3D 
had 81.2% (117 amino acids) of amino acids in the most 
favoured regions; 16.7% (24 amino acids) in additional 
allowed regions; 1.4% (2 amino acids) generously allowed 
regions; 0.7% (1 amino acid MET-66) in the disallowed 
region(s), the G-value was 0.31 (Fig. 4b). Thus, the model 
developed by SWISS-MODEL was preferred because of sev-
eral amino acids in the most favoured and allowed regions of 

Fig. 2   Local quality estimate and comparison of the modelled PTPMT1 using SWISS-MODEL

Fig. 3   PTPMT1 (green colour) superimposed onto the template PDB 
Id: 3RGQ (red colour)
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the plot compared to Geno3D. The SWISS-MODEL protein 
model was submitted to the ERRAT server, and the model 
quality factor was 94.595 (Fig. S2). The amino acid PHE-
79 was found to be in the disallowed region of the plot with 
distorted conformation, which was then submitted to the 
Modloop server, and the loops were remodelled was saved 
in the PDB file format for further use. The corrected pro-
tein structure had 91.6% amino acids in the most favoured 
region, 8.4% in the additionally allowed region after correct-
ing the PHE-79, 0% in generously allowed and disallowed 
regions, respectively (Fig. S3). Thus, the protein modelled 
using SWISS-MODEL was efficient, high quality, and used 
for the research. The properties of the SWISS modelled pro-
tein were reported in Table 1.

Ligand‑binding site prediction

The modelled protein was submitted to MetaPocket 2.0 
webserver before docking, and the top-ranked site (based 
on z-score) out of 3 predicted binding sites was chosen 
for docking. It was the biggest cleft on the protein with 21 
amino acids, accounting for 13.4% of total amino acids in 
the protein (Table 2; Fig. 5). 

The multiple sequence alignment of conserved 
regions of the three closely related PTPMT1 amino acid 
sequences from rats, mice, and humans was analysed. 
Amino acid sequences of rats and mice were very similar, 
while the human sequence showed mild variations com-
pared to them. The amino acids in the ligand-binding site 

Fig. 4   Ramachandran plot of the modelled proteins: a SWISS-MODEL; b Geno3D

Table 1   Properties of protein predicted using ProtParam

Protein target UniProt Id Length Molecular weight 
(KDa)

Formula pI  + R (ARG + LYS) -R (ASP + GLU) Aliphatic index

Mitochondrial 
protein tyrosine 
phosphatase 1

P0C089 156 17.813 C789H1267N231O
225S7

9.10 20 16 98.14
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of the rats, mice, and humans PTPMT1 sequences were 
the same except for the presence of HIS-170 instead of 
SER-170 in humans alone (Fig. 6). The sequence align-
ment was to depict the similarity between the PTPMT1 
in different species. The predicted ligand-binding site of 
the modelled protein and PDB Id: 3RGQ were overlapped 
and found similar and consensus (Fig. S4), proving that 
the built model is valid.

Molecular docking using AutoDock 4.2.6

The main motive of the work was to develop natural com-
pounds as inhibitors against the modelled cancer and diabe-
tes target. Flavonoids are organic bioactive secondary metab-
olites synthesized by plants, fungi, and bacteria responsible 
for the development, metabolism, maintenance, stress toler-
ance, defence against predators, etc. (Isah 2019). Molecular 
docking of 210 common flavonoid ligands showed effective 
binding with the homology modelled PTPMT1 with binding 
energies in the range of − 8.66 to 0.61 kcal/mol (Table S1). 
The details of the top ten flavonoids with low binding energy 
are listed in Table 3.

From the present work, flavonoids have shown the poten-
tial to inhibit the protein’s activity. The concept of inhibition 
and affinity in molecular docking is as follows, the lower 
the binding energy of docked complexes, the greater their 
binding affinity with the target, hence the augmented inhibi-
tion. The flavonoid prunin had the lowest binding energy of 
− 8.66 kcal/mol and showed the protein’s highest binding 
affinity. Prunin was followed by oroxindin, luteolin 7-rutino-
side, 3(2H)-isoflavenes, nicotiflorin, and chalcone with bind-
ing energies − 8.56, − 8.47, − 8.36, − 8.29, and − 8.15 kcal/
mol, respectively (Table 4). These were some of the top 
ligands interacting with the protein forming supramolecular 
bonded and non-bonded non-covalent interactions.

Prunin is a polyphenolic flavanone abundantly present 
in Prunus davidiana, a Chinese wild peach, and is also pre-
dominantly found in juvenile citrus fruits like lemon, lime, 
and tomatoes. The flavonoid interacted with ARG-136, 
ARG-138, ARG-172, ASP-101, GLN-175, GLU-73, GLU-
76, GLY-104, LYS-133, MET-102, SER-137, THR-99, THR-
103, and TYR-75 amino acids in the binding site forming 

Table 2   Predicted binding site 
of protein using MetaPocket 2.0

S. no Amino acids Residue 
number

1 LEU 50
2 ASN 72
3 GLU 73
4 TYR​ 75
5 GLU 76
6 THR 77
7 SER 98
8 THR 99
9 VAL 100
10 ASP 101
11 MET 102
12 THR 103
13 GLY 104
14 CYS 132
15 LYS 133
16 ALA 134
17 ARG​ 136
18 SER 137
19 ARG​ 138
20 SER 170
21 ARG​ 172

Fig. 5   Sequence of PTPMT1 denoting the secondary structures
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six hydrogen bonds with ARG 136, ARG 172 (3 bonds), 
LYS-133, and SER-137 amino acids respectively within 
2.5 Å bond length. Hydrogen bonds with a donor–acceptor 
distance within 2–2.5 Å are the strongest bonds, an increase 
in the bond length denotes moderate and weak bonding (Jef-
frey 1997). The 2-dimensional and 3-dimensional interaction 
diagrams have been shown in Fig. 7. The greater number 
of hydrogen bonds, the higher the binding efficiency, and a 
very potent inhibitor (Azam and Abbasi 2013). Also, hydro-
gen bonds strongly influence the specificity, metabolization, 
and adsorption of the drug. Several non-covalent interac-
tions like Van der Waals, carbon-hydrogen bonds, π-Cation, 
π-Anion, π-Sigma, π-Alkyl, and π-Sulphur bonds were also 
observed during docking. These supramolecular interactions 
were responsible for inhibition, and were observed within 
the range of 2.0 Å between the ligand and protein. The phar-
macophoric features of prunin responsible for the interac-
tions were aromatic rings and the oxygen atoms (hydrogen 
acceptor). Prunin is a secondary metabolite and widely used 
as anti-microbial (Celiz et al. 2010), anti-cancer, anti-viral 
(Zhang et al. 2008), anti-inflammatory (Na and Ryu 2018), 
anti-oxidant (Céliz et al. 2013), anti-hyperlipidemic (Choi 
et al. 1991), anti-diabetic agents. Prunin is a very effec-
tive protein tyrosine phosphatase 1B inhibitor (Jung et al. 
2017) and has reported stimulating glucose uptake in insu-
lin-resistant HepG2 cell lines. Jung et al. reported that it 
is an effective inhibitor of protein tyrosine phosphatase 1B 
(closely related to PTPMT1 used in the present study) inter-
acted with a binding energy of − 9.0 kcal/mol (Inhibition 
constant = 8.66 µM) which is comparable with the present 
study of − 8.66 kcal/mol for prunin against the protein, thus 
downregulating cancer and diabetes.

Oroxindin, polyphenolic flavone known as wogonin glu-
curonide used in Chinese medicine, is a bioactive chemical 
compound extracted from Holmskioldia sanguinea, Oroxy-
lum indicum, and Bacopa monnieri plants have reported 
being an effective inhibitor of diabetes, tumour, cancer, 
inflammation (Cho et al. 2013), and free radicals (Liu et al. 
2020). Figure 8 denotes the 3D and 2D interactions of the 
oroxindin-protein complex. In the current research, oroxin-
din has inhibited the PTPMT1 forming bonds with ARG-
136, ARG-138, ARG-172, ASP-101, GLU-73, GLU-76, 
GLY-104, LYS-133, MET-102, SER-137, THR-99, TYR-75, 
and VAL-100 amino acid residues along with strong seven 
hydrogen bonds with bond length less than 2.5 Å with ARG-
136, ARG-172 (3 bonds), LYS-133 (2 bonds), and THR-99 
amino acid residues in the ligand-binding site. The binding 
energy of − 8.56 kcal/mol was attained from docking. Van 
der Waals, carbon-hydrogen, π-Cation, π-Anion, π-Alkyl, 
π-Sigma, amide-π Stacked bonds were formed between them 
within 2.0 Å. The pharmacophoric features responsible for 
these interactions were the aromatic rings and hydrogen 
acceptors (oxygen atoms).

Luteolin 7-rutinoside is an abundant flavonoid isolated 
from Cyclopia subternata, a plant commonly found in 
South Africa and Caucalis platycarpos (Plazonić et al. 
2009). The luteolin 7-rutinoside ranked third out of 210 
flavonoids screened against the protein with a binding 
energy of − 8.47  kcal/mol interacting with ARG-136, 
ARG-138, ARG-172, ASP-101, GLU-73, GLY-104, LYS-
133, MET-102, SER-137, THR-99, TYR-75, and VAL-100 
residues along with six hydrogen bonds with ARG-138, 
ARG-172 (3 bonds), LYS-133, and THR-99 amino acid 
residues in the ligand-binding site region (Fig. 9). The 

Fig. 6   Multiple sequences alignment of rat, mouse, and the human PTPMT1
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other supramolecular bonded and non-bonded contacts 
were all the same as reported for prunin and oroxindin, 
hence inhibiting the protein. The extent of inhibition is 
dependent on binding energy and hydrogen bonds. Lute-
olin and its derivatives have shown inhibition potential 
against diabetes on rat KK-Ay mouse cell lines and inhib-
iting lipid synthesis (Zang et al. 2016). Luteolin and its 

derivatives and other flavonoids like amentoflavone and 
daidzein have shown potential against the alpha-glucosi-
dase by 36% at 0.5 mg/mL concentration and alpha-amyl-
ase compared to acarbose, the two predominant enzymes 
responsible for the breakdown of sugars and inhibiting 
the onset of type 1 diabetes (Kim et al. 2000). Goodarzin 
et al. (2020) isolated derivates of luteolin flavonoid from 

Table 3   Details of top 10 flavonoids with low binding energies

S. No Compound IUPAC name Structure Chemical 
formula 

1 Prunin (2S)-5-hydroxy-2-(4-
hydroxyphenyl)-7-
[(2S,3R,4S,5S,6R)-
3,4,5-trihydroxy-6-

(hydroxymethyl)oxan-
2-yl]oxy-2,3-

dihydrochromen-4-one 

C21H22O10

2 Oroxindin (2S,3S,4S,5R,6S)-3,4,5-
trihydroxy-6-(5-

hydroxy-8-methoxy-4-
oxo-2-phenylchromen-

7-yl)oxyoxane-2-
carboxylic acid 

C22H20O11 

3 Luteolin 7-
rutinoside 

2-(3,4-
dihydroxyphenyl)-5-

hydroxy-7-[(2S,4S,5S)-
3,4,5-trihydroxy-6-
[[(2R,4S,5R)-3,4,5-

trihydroxy-6-
methyloxan-2-

yl]oxymethyl]oxan-2-
yl]oxychromen-4-one 

C27H30O15

4 3(2H)-
isoflavenes 

3-phenyl-2H-chromene C15H12O

5 Nicotiflorin 5,7-dihydroxy-2-(4-
hydroxyphenyl)-3-
[(2S,3R,4S,5S,6R)-
3,4,5-trihydroxy-6-
[[(2R,3R,4R,5R,6S)-
3,4,5-trihydroxy-6-

methyloxan-2-
yl]oxymethyl]oxan-2-
yl]oxychromen-4-one 

C27H30O15
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Cuminum cyminum and tested for the cytotoxic effects 
on breast cancer cell lines (MCF-7 and MDA-MB-231) 
and found it selectively inhibits the cancer cell lines at an 
IC50 = 3.98 µg/ml with a selectivity index of 8.0.

Figure 10 denotes the surface image of the protein along 
with the top ten flavonoids with low binding energies.

3(2H)-isoflavenes, a dichloroflavan, showed binding 
energy of − 8.36 kcal/mol by interacting with ARG-138, 
ARG-172, ASP-101, GLU-73, GLU-76, GLY-104, LYS-
133, MET-102, SER-137, THR-99, THR-103, and TYR-75 
residues within 2.0 Å in the binding site of the protein. No 

significant intermolecular conventional hydrogen bonds 
within 2.5 Å were formed during the interaction. However, 
one bond with TYR-75 was found with a bond length of 
3.5 Å (weak hydrogen bond). The aromatic rings were the 
main pharmacophoric features in the ligand for electronic 
and supramolecular interactions. This flavonoid has widely 
reported anti-viral properties against the type 2 poliovirus 
by inhibiting the RNA and protein synthesis (Salvati et al. 
2004), thereby affecting the viral replication.

Nicotiflorin, a kaempferol O-glycoside, is reported to 
be an active component of Solanum campaniforme (Torres 

Table 3   (continued)

6 Chalcone (E)-1,3-diphenylprop-2-
en-1-one 

C15H12O 

7 Lanceolatin 
A 

8-[(E)-3-hydroxy-3-
methylbut-1-enyl]-7-

methoxy-2-
phenylchromen-4-one 

C21H20O4

8 Flavan 2-phenyl-3,4-dihydro-
2H-chromene 

C15H14O 

9 Yinyanghuo 
A 

5,7-dihydroxy-2-[8-(2-
hydroxy-3-methylbut-3-

enyl)-2,2-
dimethylchromen-6-

yl]chromen-4-one 

C25H24O6

10 Anthocyani
n 

2-phenylchromenylium C15H11O+
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et al. 2011), Clitoria ternatea (Kazuma et al. 2003), Aca-
lypha indica (Nahrstedt et al. 2006), Carthamus tinctorius 
(Huang et al. 2007), Ampelopsis heterophylla (Chen et al. 
2013), Amaranthus tricolor (Kraujalis et al. 2013), etc. 
This ligand has inhibited the tyrosine phosphatase with a 
− 8.29 kcal/mol binding energy by forming interactions 
with ARG-136, ARG-138, ARG-172, GLU-76 LYS-133, 
SER-137, SER-170, and TYR-75 residues in the binding 
site. In addition, six hydrogen bonds were formed between 
the ligand and protein within 2.5 Å. The pharmacophoric 
features of the ligand were the oxygen atoms as the elec-
tron acceptor. Apart from these top five ligands, other fla-
vonoids, namely chalcone (− 8.15 kcal/mol); lanceolatin A 
(− 8.13 kcal/mol); flavan (− 8.12 kcal/mol); yinyanghuo A 
(− 8.06 kcal/mol), and anthocyanin (− 7.99 kcal/mol) were 
ranked successively.

The present research also focussed on docking the drug 
alexidine dihydrochloride, the known standard control drug 
for PTPMT1, using the same procedure described. This drug 
was earlier used as an inhibitor of the bacterial membrane 
(Gilbert and Moore 2005) and fungal lipases (Ganendren 
et al. 2004). Alexidine dihydrochloride is an uncompetitive 
and selective inhibitor of this protein isolated from rat pan-
creatic islet and beta cells with an IC50 = 1.08 µM under in-
vitro conditions, thus phosphorylating it (Doughty-Shenton 
et al. 2010). They also reported that metformin and phen-
formin did not inhibit the protein.

Docking alexidine dihydrochloride obtained binding 
energy of − 2.60 kcal/mol with an inhibition constant (Ki) 
value of 12.35 mM interacting with three hydrogen bonds 
with GLU-73, THR-99, and VAL-100 within 3.0 Å bond 
length. Generally, binding energies lower than − 5.45 kcal/

Table 4   Binding energies and interactions of top 10 flavonoids

S. no Compound Binding 
energy (kcal/
mol)

Interacting amino acid residues No. of 
hydrogen 
bonds

Hydrogen bond interactions within 2.5 Å

1 Prunin − 8.66 ARG-136, ARG-138, ARG-172, ASP-
101, GLN-175, GLU-73, GLU-76, 
GLY-104, LYS-133, MET-102, SER-
137, THR-99, THR-103, TYR-75

6 ARG-136, ARG-172 (3), LYS-133, 
SER-137

2 Oroxindin − 8.56 ARG-136, ARG-138, ARG-172, ASP-
101, GLU-73, GLU-76, GLY-104, 
LYS-133, MET-102, SER-137, THR-
99, TYR-75, VAL-100

7 ARG-136, ARG-172 (3), LYS-133 (2), 
THR-99

3 Luteolin 7-rutinoside − 8.47 ARG-136, ARG-138, ARG-172, ASP-
101, GLU-73, GLY-104, LYS-133, 
MET-102, SER-137, THR-99, TYR-75, 
VAL-100

6 ARG-138, ARG-172 (3), LYS-133, 
THR-99

4 3(2H)-isoflavenes − 8.36 ARG-138, ARG-172, ASP-101, GLU-73, 
GLU-76, GLY-104, LYS-133, MET-
102, SER-137, THR-99, THR-103, 
TYR-75

0 –

5 Nicotiflorin − 8.29 ARG-136, ARG-138, ARG-172, GLU-
76, LYS-133, SER-137, SER-170, 
TYR-75

6 ARG-136 (2), ARG-138, ARG-172, LYS-
133, TYR-75

6 Chalcone − 8.15 ARG-138, ARG-172, ASP-101, GLU-73, 
GLU-76, GLY-104, MET-102, SER-
137, THR-99, TYR-75

0 –

7 Lanceolatin A − 8.13 ARG-136, ARG-138, ARG-172, ASP-
101, GLU-76, GLY-104, LYS-133, 
MET-102, SER-137, THR-99, TYR-75

2 ARG-172, LYS-133

8 Flavan − 8.12 ARG-138, ARG-172, ASP- 101, GLN-
175, GLU-73, GLU-76, GLY-104, 
LYS-133, MET-102, SER-137, THR-
99, THR-103, TYR-75

1 ARG-172

9 Yinyanghuo A − 8.06 ALA-134, ARG-138, ASP-101, GLU-73, 
GLU-76, GLY-104, LYS-133, MET-
102, THR-99, TYR-75, VAL-100

3 ASP-101, THR-99 TYR-75

10 Anthocyanin − 7.99 ARG-138, ASP-101, GLN-175, GLU-73, 
GLU-76, GLY-76, GLY-104, LYS-133, 
MET-102, SER-137, THR-99, THR-
103, TYR-75

1 ARG-172
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mol are considered to be the best conformations to produce 
inhibitory response since their predicted inhibition constant 
values remain below 100 µM and are potent. Inhibitors with 
predicted inhibition constants higher than 100 µM are non-
potent (Zheng and Polli 2010). The hydrogen donor (-NH) 
in alexidine dihydrochloride were the responsible phar-
macophoric features for these hydrogen bonds. The other 
interacting amino acids were ALA-134, ARG-96, ARG-136, 

ARG-138, ARG-172, ASP-101, CYS-132, GLU-73, GLU-
74, GLU-76, GLY-104, LYS-133, MET-102, SER-98, SER-
137, THR-99, TYR-75, and VAL-100 (Fig. 11). From this, 
the control drug had poor binding energy of − 2.60 kcal/mol, 
denoting that our test compounds (193 out of 210 flavonoids 
docked) outperformed with higher binding energy, owing to 
the possibility that natural compounds could be used also be 
tested for their potency for in-vitro and then in-vivo clinical 

Fig. 7   3D and 2D interactions of the prunin-protein complex

Fig. 8   3D and 2D interactions of the oroxindin-protein complex
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trials. Thus, natural compounds have shown better results 
compared to the control. The hydrogen bonds were predomi-
nantly formed with ARG-136, ARG-138, ARG-172, LYS-
133, THR-99, and TYR-75, effectively constituting the bind-
ing site with strong bonds. The ligand-binding site might not 

be the active catalytic site. Even if the ligands had bound to 
the allosteric site, this would distort the active site, thereby 
preventing the release of the substrate from the enzyme–sub-
strate (Doughty-Shenton et al. 2010).

Park et al. studied the virtual screening of inhibitors 
against the human PTPMT1 using AutoDock software (Park 
et al. 2012). They reported the chemical leads inhibited the 
protein between IC50 = 0.7–17.3 µM concentrations. Interest-
ingly, they reported the identical amino acid residues with 
concerning the present research work, ALA-134, ARG-
138, ARG-172, ASP-101, MET-102, LYS-133, SER-137, 
and VAL-100 were the interacting amino acids. Thus, the 
PTPMT1 of humans and rats (present research) share similar 
ligand-binding sites. Hence, the binding site and interacting 
residues were similar to the previously reported work sup-
porting the present research.

It can be elucidated from the present study that inhibiting 
the PTPMT1 leads to conformational changes in the pro-
tein’s structure, leading to its dysregulation, thereby increas-
ing the insulin levels in cells. Doughty-Shenton et al. (2010) 
attenuated the protein’s expression and reported a signifi-
cant augmentation in the insulin levels in-vitro pancreatic 
beta-cell lines. Interestingly, targeting and inhibiting the 
PTPMT1 of the liver and pancreatic beta-cells could help 
increase insulin levels and possibly treat the onset of type 
II diabetes (Arthur et al. 2020). Niemi et al. studied the role 
of PTPMT1 isolated from the rat in the apoptotic cancer 
cells. They reported that downregulating and knocking out 
the gene responsible for the PTPMT1 using RNAi. They 
resulted in downregulation of the protein thereby, promoting 
mitochondrial-dependent apoptosis cellular fate of cancer 
cells (Niemi et al. 2013) due to the release of cytochrome. 
This also caused the metabolic changes resulting in down-
regulating cardiolipin levels with increased insulin and 

Fig. 9   3D and 2D interactions of the luteolin 7-rutinoside-protein complex

Fig. 10   Surface image of the top 10 flavonoids in the binding site of 
PTPMT1
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adenosine triphosphate levels when cultured in glucose-con-
taining media, thus combating cancer and type II diabetes. 
The flavonoids from the present research posed well with 
low binding energies enabling them to be taken to the fol-
lowing levels for in-vitro and in-vivo studies after assessing 
the in-silico pharmacokinetic and toxicity characteristics.

Biological and pharmaceutical properties of top 10 
flavonoids

Table S2 denotes flavonoids’ biological, pharmacological, 
biochemical mechanism, and toxicity properties using the 
PASS webserver. It can be noted that these compounds are 
inhibitors of cancer, neoplastic, diabetic, and dual-specificity 
phosphatase 1. Hence, these compounds can be further stud-
ied using in-vitro studies as potent inhibitors of PTPMT1.

Pharmacokinetic properties and Lipinski’s rule of 5

The absorption, distribution, metabolism, and excretion 
properties of lead compounds must be studied before enter-
ing clinical trials (Sirikantaramas et al. 2008). From the 
predicted pharmacokinetic properties (Table S3), all the ten 
flavonoids possessed very high gastro-intestinal absorption 
penetrating the epithelial cell membrane into the circulatory 
system that predominantly occurs through passive diffusion 
(Barthe et al. 1999). Compounds prunin, oroxindin, luteolin 
7-rutinoside, nicotiflorin, and yinyanghuo A were not found 
to cross the blood–brain barrier and Caco-2 due to their 
high total polar surface area (greater than 90 Å2) and high 
molecular weight. In comparison, the rest of the compounds 
crossed the blood–brain barrier and Caco-2 due to their low 
total polar surface area (less than 90 Å2) (Hitchcock and 

Pennington 2006). Luteolin 7-rutinoside, nicotiflorin, and 
yinyanghuo A inhibited the P-glycoprotein substrate, and the 
rest of the compounds did not. Lanceolatin A and yinyang-
huo A were effective inhibitors of P-glycoprotein inhibitors. 
A drug must inhibit P-glycoprotein to be an effective lead 
compound (Amin 2013). Prunin, oroxindin, luteolin 7-ruti-
noside, and nicotiflorin did not inhibit the cytochromes, 
whereas other flavonoids were at least an inhibitor of any 
of the cytochromes. The drug likeliness properties of the 
compounds were also studied, namely Lipinski, Ghose, 
Veber, Egan, and Meugge filters were applied as these filters 
help chemists design compounds for the next phase of trials 
(Loureiro et al. 2019). Only 3(2H)-isoflavenes, lanceolatin 
A, and yinyanghuo A satisfied all the drug likeliness prop-
erties (Table S4 Chalcone, flavan, and anthocyanin violated 
the Muegge filter, respectively, Prunin and oroxindin sat-
isfied only Lipinski and Ghose filters. Flavonoids luteolin 
7-rutinoside and nicotiflorin violated all the filters. The tox-
icity profiles of compounds (Table S5) reported that luteolin 
7-rutinoside 3(2H)-isoflavenes, and nicotiflorin were found 
to be AMES toxic. None of the compounds reported carci-
nogenic properties. All the compounds except flavan were 
found to be hepatotoxic.

Lipinski’s drug likeliness is an essential criterion for a 
compound to be an oral drug. Out of the top 10 compounds, 
luteolin 7-rutinoside and nicotiflorin violated three prop-
erties (molecular weight; H-bond donor; H-bond accep-
tor) respectively (Table S6). Prunin and oroxindin vio-
lated the number of H-bond donors and H-bond acceptors, 
respectively.

Na and Ryu studied the toxicity of prunin on HaCaT 
cell lines using the tetrazolium salt assay-1 at different con-
centrations, viz., 1 µM, 5 µM, 10 µM, 20 µM, and 40 µM 

Fig. 11   3D and 2D interactions of the alexidine dihydrochloride-protein complex
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concentrations. The cell viability was 100% a 1, 5, and 
10 µM concentrations; however, the viability was 93% at 
20 µM and further decreased to 75% above 40 µM. They 
also studied the cytoprotective effects against UVB irradi-
ated HaCaT cells at 40 mJ/cm2 intensity. The survival rate of 
the cells increased to 71% at 5 µM and up to 96% at 10 µM 
concentrations, respectively, when compared to the con-
trol (53% cells viable after irradiation) (Na and Ryu 2018). 
Nishina et al. studied the cytotoxic effects of nicotiflorin 
extracted from Eleutherococcus sieboldianus on 3T3-L1 
mouse fibroblast cell lines at 1 µM, 3 µM, 10 µM, 30 µM, 
and 100 µM. They reported that the compound was not toxic 
even at 100 µM concentration, and the cells were 100% 
viable (Nishina et al. 2017). Shyaula et al. reported that 
nicotiflorin was not toxic even above 100 µM concentration 
when tested on 3T3 fibroblast cell lines using MTT assay 
(Shyaula et al. 2012). Pirvu et al. reported that nicotiflorin, a 
kaempferol derivative enhanced the viability of L-929 fibro-
blast cell lines under in-vitro conditions. They also reported 
that the cell viability was not significant at lower concentra-
tions (5 μg GAE/mL sample), while at higher concentra-
tions (10–100 μg GAE/mL), the cell viability increased in 
a dose-dependent manner (Pirvu et al. 2018). de Vascon-
celos et al. reported that chalcone and its derivatives pose 
cytotoxic properties on human adenocarcinoma cell lines by 
inhibiting the pro-apoptotic Bax and anti-apoptotic Bcl-2 
gene expression. The pro-apoptotic BAX mRNA expres-
sions in cells were found to be high (at 40 µM) compared 
to the control, there was no effect of the incubation period, 
and the anti-apoptotic Bcl-2 expression was decreased in a 
time-dependent manner (de Vasconcelos et al. 2013). The 
expression of survivin was also inhibited at 40 μM concen-
trations. Sinha et al. reported that chalcone and its deriva-
tives were non-toxic and were not haemolytic when test on 
erythrocytes (Sinha et al. 2019). There has been no evidence 
of anthocyanin toxicity in human and animal models (Cladis 
et al. 2020). Anthocyanins from various fruits like elderber-
ries, blueberries, etc. were subjected to rat and rabbit models 
at 9 g/kg of body weight per day at various time intervals 
and studied for three successive generations (Pourrat et al. 
1967). There was no trace of toxicity in these models that 
depict the anthocyanins are non-toxic. Polyphenol anthocya-
nins from apples (Shoji et al. 2004), grapes (Bentivegna and 
Whitney 2002), purple corn (Nabae et al. 2008), and green 
tea (Morita et al. 2009) were also found to be non-toxic to 
higher mammals.

Molecular Dynamics simulations

From the results of MD simulations, it can be seen that the 
apo-protein and the protein–ligand complexes were stable 
throughout the simulations. In contrast, the control drug 
alexidine dihydrochloride-protein complex was found to 

fluctuate highly. The molecular dynamics simulations were 
performed for 6 complexes viz., (i) template apo-protein 
(PDB Id: 3RGQ); (ii) modelled protein; (iii) prunin-protein 
complex; (iv) oroxindin-protein complex; (v) luteolin 7-ruti-
noside; (vi) alexidine dihydrochloride-protein complex.

The RMSD is the average displacement or deviations of a 
set of atoms for a particular frame, the α-Carbon of protein, 
concerning the original reference frame. It is the measure of 
the stability of the conformation and quality of the docked 
complexes. The RMSD of the template apoprotein (PDB 
Id: 3RGQ) was within 2–2.25 Å throughout the simulation 
(Fig. 12a). The RMSD of apo-protein was found to be stable 
and did not fluctuate, and was found to rise linearly at the 
beginning and converged to 1.70 Å at 150 ns. The maxi-
mum threshold RMSD value can be within 1–3 Å for small 
and globular proteins. Thus, the lower the RMSD of pro-
tein, the greater the stability and lower the deviations. This 
denotes the local fluctuations of specific atoms or amino 
acids with respect to the reference structure. The RMSF of 
template apo-protein is shown in Fig. 12b. The α-helices 
and β-strands are denoted in red and blue colours, respec-
tively, and the loop regions are denoted in white colours. 
The secondary structures are rigid thus fluctuates less when 
compared to loop regions of the protein. The RMSF of the 
protein was found to be stable throughout the simulation. 
The highest RMSF value of 2.25 Å was found in the loop 
regions between the amino acid residues 61–70 of the pro-
tein. The template apo-protein was stable throughout the 
150 ns simulation. The contribution of template protein 
secondary structure by residue and their assignment was 
monitored throughout the 150 ns trajectory (Fig. 12c, d).

The RMSD of the modelled protein was found to be sta-
ble throughout the simulation. There were minor fluctuations 
in the RMSD values and were found to increase initially and 
stabilized during the end of the simulation within 1.80 Å at 
150 ns. The maximum RMSD value of 2.45 Å at 48 ns was 
obtained (Fig. 13a). The RMSF value of modelled protein 
was less than 1.7 Å (residues 48–52) during the simula-
tion (Fig. 13b); hence no high fluctuations were found. This 
proves the modelled protein was stable, and thus the built 
model was a valid one. The contribution of modelled pro-
tein secondary structure by residue and their assignment was 
monitored throughout the 150 ns trajectory (Fig. 13c, d).

The protein–ligand RMSD of prunin-protein docked 
conformation was studied (Fig. 14a–f). The RMSD of the 
docked protein fluctuated during the simulation and laid 
within 2.2 Å (Fig. 14a). The ligand RMSD is the measure 
of stability concerning its bound site on the protein. The pro-
tein–ligand complex was first aligned on the protein back-
bone of reference, then the deviations of heavy atoms on the 
ligand were measured. The ligand RMSD was found to fluc-
tuate during the simulation initially, then reduced to 7.5 Å, 
peaked to ~ 11 Å at 80 ns, and further, the complex stabilized 
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Fig. 12   MD simulation of the template apo-protein (PDB Id: 3RGQ)
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to 3.5 Å at 150 ns. The RMSF of the protein in the prunin-
protein complex was very low, i.e., within 1.4 Å, and did not 
fluctuate during the simulation, proving the stability of the 

complex (Fig. 14b). The ligand RMSF provides insights on 
its interaction and fluctuations with the protein to elucidate 
the docked complex (Fig. 14c). The ligand–protein complex 

Fig. 13   MD simulation of the modelled apo-protein
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Fig. 14   MD simulation of the prunin-protein complex



	 In Silico Pharmacology            (2022) 10:3 

1 3

    3   Page 22 of 30

was first aligned onto the protein backbone, and the RMSF 
of heavy atoms on the ligand was measured concerning the 
protein. The RMSF value of heavy atoms of the ligand was 
within 4.1 Å. The heavy atoms 13 and 24 were tail atoms 
that fluctuated the most as these atoms were exposed to sol-
vent, while the atoms 8–12, 25, 26, and 27 did not fluctu-
ate as these were bound deep inside the binding site with 
minimal spatial movements (Fig. S5). The protein–ligand 
contact plot is a timeline that annotates the bonded interac-
tions between them. Predominantly four different bonds can 
be found viz., hydrogen bonds, hydrophobic bonds, ionic 
bonds, and water bridges (Fig. 14d). From the ligand–pro-
tein contact plot, most interactions were found to be water 
bridges followed by conventional hydrogen bonds. Water 
bridges are the hydrogen bonds between the ligand and pro-
tein-mediated by a water molecule at a distance of 2.8 Å, 
while the distance of conventional hydrogen bonds is 2.5 Å. 
The amino acids MET-102, SER-137, ASP-101, THR-99, 
and ARG-172 were the order of most interacting with a 
ligand at higher fractions. Conventional hydrogen bonds 
were formed between the ARG-136, ARG-138, ARG-172, 
GLY-104, LYS-133, MET-102, THR-99, and TYR-75 and 
prunin. Hydrophobic bonds were formed with MET-102 and 
TYR-75 since their amino acids possess hydrophobic side-
chains and interacted with an aromatic and aliphatic group 
on the ligand. The number of contacts made between the 
protein and the ligand and in each trajectory over the course 
of the 150 ns simulation is shown (Fig. 14e). Most contacts 
between the amino acid residues and the ligand were made 
during 60–90 ns. The darker the colour shade, the more than 
one specific bonded interaction formed. Most contacts were 
made between the ligand prunin and the amino acid residues 
THR-99, followed by GLU-73, MET-102, LYS-133, ARG-
172, SER-137, and so on. Ligand properties chart depicts the 
properties like ligand RMSD, the radius of gyration, molecu-
lar surface, intramolecular hydrogen bonds, the polar surface 
area, and the solvent-accessible surface area of prunin dur-
ing the entire trajectory of 150 ns shown in Fig. S6.

For the protein–ligand RMSD of the oroxindin-protein 
complex, the RMSD of protein was found to increase even 
after 100 ns finally converged and stabilized at the end 
of 150 ns (Fig. 15a), the maximum RMSD of 2.7 Å was 
observed at 68 ns. The RMSD of oroxindin at the binding 
site of protein increased initially, then converged, again 
increased, and got stabilized at the end of the simulation 
at 9 Å. Probably this could be due to the deviation of the 
ligand from its initial binding site. The RMSF of protein 
was stable throughout the simulation; a maximum of 2.25 Å 
was observed between 60 and 70 amino acid residues at 
the ligand contact site with protein (Fig. 15b). The ligand 
RMSF with concerning protein was also found to be within 
6.0 Å (Fig. 15c). The RMSF was highest due to fluctua-
tion of tail end atoms (7, 10–17) exposed to solvent and 

were able to rotate, while the movement of atoms 19–31 
was restrained as they were deep inside the binding pocket; 
thus, the lower fluctuations (Fig. S7). The protein–ligand 
contact plot showed most contacts with ARG-138, LYS-133, 
MET-102, TYR-75, ARG-136, ASP-101, THR-99, and so on 
(Fig. 15d). Water bridges and were the most bonded contact 
in all the interacted amino acids. The conventional hydrogen 
bonds were formed between the ARG-136, ARG-138, GLN-
175, LYS-133, SER-137, THR-99, TYR-75 residues, and the 
ligand within 2.5 Å. Hydrophobic contacts were formed with 
ALA-134, ARG-138, LYS-133, MET-102, TYR-75, forming 
π-Cation interactions with the aromatic group on the ligand 
(Fig. 15d). Polar ionic bonds were formed between the NH3

+ 
located in the sidechain of LYS-133 and two oxygen atoms 
in the ligand at a distance of 2 Å. Amino acid residues ARG-
136 and ARG-172 were also found to form ionic bonds with 
the ligand. Amino acids ARG-138 and LYS-133 contacted 
the most with the ligand, followed by MET-102 and TYR-
75. The dark-coloured shades denote more than one contact 
established between the complex (Fig. 15e). The ligand–pro-
tein contact plot showed ARG-138 formed two π-Cationic 
contacts 30% and 46% of the time with two aromatic groups 
of the ligand and also donated its donor sidechain 33% of 
the time with oxygen acceptor of the ligand (Fig. 15f). The 
various ligand properties like ligand RMSD, the radius of 
gyration, molecular surface, intramolecular hydrogen bonds, 
the polar surface area, and the solvent-accessible surface 
area of oroxindin during the 150 ns trajectory were shown 
(Fig. S8). Thus, these two amino acids ARG-138 and LYS-
133 played a vital role in inhibiting the protein’s virulence.

From the MD analysis of luteolin 7-rutinoside with protein, 
the protein RMSD in the protein–ligand plot lay within 2.25 Å 
during the simulation, then converged to less than 2.00 Å dur-
ing the simulation rest of the simulation (Fig. 16a). The ligand 
RMSD, luteolin 7-rutinoside, was quite unstable and showed 
random fluctuations between 50 and 80 ns of the simulation, 
reaching upto 17 Å at the end of the trajectory. The fluctuations 
could be due to the deviation of the ligand from the binding 
site of the protein. The RMSF of α-carbon in protein was, how-
ever stable, most fluctuations were found in the ligand contact 
regions of the protein within 2.00 Å. The unstructured part, 
that is, the loop and turns (40–45 residue indices), (64–70 
residue indices), (97–103 residue indices), and (133–138 resi-
due indices) in the protein fluctuated more compared to the 
other secondary structures (Fig. 16b). The highest fluctuation 
(RMSF = 1.9 Å) was observed between the 64 and 70 regions. 
The ligand RMSF of luteolin 7-rutinoside fragments was 
slightly higher than 10 Å compared to the protein (Fig. 16c). 
The atoms 23–34 were found to fluctuate the most above 8 Å 
that could be due to the solvent exposure tail end with high 
rotatability. In contrast, the RMSF of the rest of the atoms 
was comparatively low as their free spatial movements were 
restricted as they were deeper inside the binding cleft (Fig. S9). 
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Fig. 15   MD simulation of the oroxindin-protein complex
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Fig. 16   MD simulation of the luteolin-7rutinoside-protein complex
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Conventional hydrogen bonds and water bridges contributed 
to the interactions between the protein and ligand (Fig. 16d). 
ALA-134, ARG-78, ARG-136, ARG-138, ARG-172, CYS-
132, ILE-171, LYS-133, MET-102, SER-137, SER-170, SER-
174, and THR-103 formed conventional hydrogen bonds at 
a distance of 2–2.5 Å. Water bridges were formed by ARG- 
78, ARG-136, ARG-138, ARG-172, ASP-101, LYS-133, 
GLN-175, GLU-73, GLU-76, ILE-171, MET-102, SER-137, 
SER-170, SER-174, THR-103, and TYR-75 typically within 
2.8–3 Å. Hydrophobic bonds were formed between the ali-
phatic or aromatic groups of the ligand and ALA-134, ARG-
136, ARG-138, ARG-172, LYS-133, MET-102, PRO-173, and 
TYR-75 amino acid residues. Polar ionic bonds were formed 
by ARG-138, LYS-133, ARG-172, and ARG-136 residues 
within 3 Å. Total contacts were found to be highest during the 
beginning of the simulation. ARG-172 formed most contacts 
with the ligand, followed by LYS-133, ARG-138, CYS-132, 
ARG-136, SER-137, and so on. ARG-136, ARG-138, ARG-
172, CYS-132, LYS-133, SER-137, etc., interacted with the 
ligand with more than one specific contact and is shown in 
dark-coloured shades (Fig. 16e). From the ligand–protein con-
tact plot (Fig. 16f), the two donors OH− groups on the ligand 
luteolin 7-rutinoside interacted with CYS-132 for 40% and 
72% of the time, and LYS-133 donated its positive charged 
sidechain NH3

+ to the aromatic group on the ligand forming 
π-Cation interaction 32% of the time and 31% to a water mol-
ecule. Apart from these, water molecules donate 31% of the 
time to the oxygen acceptor atom on the ligand. There is an 
intramolecular donor and acceptor within the ligand 96% of 
the time. The various ligand properties like ligand RMSD, the 
radius of gyration, molecular surface, intramolecular hydrogen 
bonds, the polar surface area, and the solvent-accessible sur-
face area of luteolin 7-rutinoside during the 150 ns trajectory 
were shown (Fig. S10).

The MD analysis of alexidine dihydrochloride-protein 
docked complex was studied (Fig. 17a–f). The protein RMSD 
of the alexidine dihydrochloride-protein remained within 2.5 Å 
throughout the simulation, and the RMSD of ligand alexidine 
dihydrochloride fluctuated highly and was not stable (Fig. 17a). 
The ligand RMSD peaked upto 64 Å during the simulation; 
however, it got reduced to 30 Å at the end. The protein local 
fluctuations were low (RMSF = 1.90 Å) in the loop (64–70 resi-
dues) and turn regions of the protein during its interaction with 
ligand (Fig. 17b). The fluctuations in the N and C terminals of 
the protein are often the highest and thus ignored. The ligand 
only RMSF (Fig. 17c) of alexidine dihydrochloride was found 
to fluctuate above 30 Å that the control drug docked with mod-
elled protein was not stable. Despite the light and heavy atoms 
(Fig. S11), the entire molecule alexidine dihydrochloride was 
not stable and showed high fluctuations. The ligand–protein 
contact plot elucidates the different bonds involved during the 
simulation. The amino acids GLN-122, GLU-185, SER-123, 
LEU-119, ALA-188, ARG-189, VAL-150, etc., interact with 

the ligand through conventional hydrogen, hydrophobic, water 
bridges, and ionic bonds (Fig. 17d). Hydrogen bonds were con-
tributed ALA-187, ALA-188, ALA-190, ALA-191, ARG-189, 
ASN-152, GLN-116, GLN-122, GLN-149, GLU-73, GLU-76, 
GLU-185, HIS-43, LEU-119, LYS-184, SER-123, TYR-75, 
and VAL-150. Water formed bridges with residues ALA-187, 
ALA-188, ALA-190, ALA-191, ARG-189, ASN-152, ASP-42, 
GLN-116, GLN-122, GLN-149, GLU-73, GLU-74, GLU-76, 
GLU-185, HIS-43, HIS-183, LEU-119, LEU-124, LYS-184, 
SER-123, THR-44, THR-99, TYR-75, VAL-100, and VAL-
150. Hydrophobic bonds were formed between the hydrophobic 
amino acid residues ALA-187, ALA-188, ALA-190, ALA-191, 
LEU-119, LEU-124, PHE-79, TYR-75, VAL-115, and VAL-
150 and the aliphatic or aromatic group of the ligand. Ionic 
bonds were formed with the residues ALA-187, ALA-190, 
ARG-78, ARG-189, ASP-42, GLU-73, GLU-177, GLU-185, 
and LYS-184. GLN-122 formed most contacts with the ligand, 
followed by GLU-185, SER-123, LEU-119, ALA-188, ARG-
189, VAL-150, and so on residues interacted with the ligand 
with more than one specific contact and are shown in dark-
coloured shades (Fig. 17e).

The various ligand properties like ligand RMSD, the radius 
of gyration, molecular surface, intramolecular hydrogen bonds, 
the polar surface area, and the solvent-accessible surface area 
of alexidine dihydrochloride during the 150 ns trajectory were 
shown (Fig. S12). From the MD simulations, the template, 
modelled apo-protein, and the docked conformations were 
stable throughout the simulation, thus validating the docking 
procedure. The protein RMSD and RMSF of the top three best 
binding conformations docked complexes were found to be 
stable during the trajectory; however, some fluctuations and 
deviations were observed in the ligand RMSD and RMSF. The 
control drug alexidine dihydrochloride-protein docked com-
plex was found to be unstable during the trajectory.

MM‑GBSA free binding energy calculations

The prime MM-GBSA energies were calculated for the 
following complexes, modelled protein-prunin; modelled 
protein-oroxindin; modelled protein-luteolin 7-rutinoside; 
modelled protein-alexidine dihydrochloride. The average 
MM-GBSA ΔG binding energy of prunin was found to 
be − 36.16 kcal/mol, oroxindin − 40.71 kcal/mol, luteolin 
7-rutinoside − 48.05 kcal/mol, and alexidine dihydrochlo-
ride − 28.47 kcal/mol respectively. The lower the ΔG bind-
ing energy, the greater is the binding affinity. The ΔG of 
the top three complexes was found to be lower compared 
to the energy of the control drug alexidine dihydrochloride 
which proves that the flavonoids possessed greater affinity 
and inhibition potential and emerge as a possible rem-
edy against the PTPMT1. Table S7 depicts the calculated 
MM-GBSA ΔG binding energy and ΔG of bonds formed 
between the ligands and the modelled protein.
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Fig. 17   MD simulation of the alexidine dihydrochloride-protein complex
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Conclusion

PTPMT1, a dual-specificity phosphatase in the mito-
chondria, is responsible for cardiolipin synthesis, homeo-
stasis, and protein phosphorylation, whose dysregulation 
has led to the onset of cancer and type II diabetes. We 
performed the homology modelling of this protein using 
SWISS-MODEL and Geno3D servers using appropriate 
templates to study its properties, functions, and inhibi-
tion. The protein model developed using SWISS-MODEL 
was efficient compared to Geno3D. Molecular docking 
of flavonoids and alexidine dihydrochloride against the 
modelled PTPMT1 was done using AutoDock 4.2.6, 
and the results were promising. Prunin (− 8.66  kcal/
mol), oroxindin (− 8.56 kcal/mol), luteolin 7-rutinoside 
(− 8.47 kcal/mol), 3(2H)-isoflavenes (− 8.36 kcal/mol), 
and nicotiflorin (− 8.29 kcal/mol) possessed the lowest 
free binding energy out of 210 flavonoids docked. Phar-
macokinetics, toxicity profiles, and Lipinski properties 
of flavonoids were also studied and tabulated. Molecular 
dynamics simulations for 150 ns performed using Des-
mond, Schrodinger revealed that the docked complexes 
were stable. The MM-GBSA ΔG binding energy studies 
showed that the flavonoids possessed low energies than 
the control drug alexidine dihydrochloride; hence they 
could emerge as a promising regimen towards PTPMT1 
inhibition. From the study, it can be interpreted that 
plant-based natural compounds could inhibit the dysregu-
lations of novel drug target PTPMT1. Our future works 
aim to involve other classes of bioactive compounds for 
in-vitro and in-vivo studies.
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