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Abstract
Glucokinase (GK) is an enzyme involved in synthesising glucose into glucose-6 phosphate and serves a crucial function in 
glucose sensing. Therefore, agents that induce GK activation could be used to treat T2DM. The present work has been car-
ried out to investigate the GK activation potential of phytoconstituents of Enicostemma littorale through molecular docking. 
All the phytoconstituents have been screened through the Lipinski rule of 5, Veber’s rule, and ADMET properties. From 
these initial screening, only Apigenin, Ferulic acid, Genkwanin, p-coumaric acid, Protocatechuic acid, Syringic acid, and 
Vanillic acid have been selected to perform molecular docking studies. The binding free energy and binding mode of the 
native ligand in the allosteric site of the enzyme have been considered the reference for the other molecules' validation. The 
native ligand has exhibited − 7.2 kcal/mol binding free energy, whereas; it has formed four hydrogen bonds with THR-228, 
LYS-169, ASP-78, and GLY-81. Based on these findings, the interactions of phytoconstituents have been justified. Apigenin, 
genkwanin, and swertiamarin exhibited − 8.7, − 7.5, and − 8.3 kcal/mol binding free energy, respectively, which indicates 
better enzyme activation than the native ligand. Swertiamarin has formed 08 hydrogen bonds with allosteric amino acid 
residues, which confirms the excellent enzyme activation by these phytoconstituents. We concluded that if we can isolate 
and consume the exact active phytoconstituents (GK activators) from this plant, we can use them effectively to treat T2DM. 
More GK activators can be developed by considering them as a natural lead moiety.
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Abbreviations
E. littorale  Enicostemma littorale
WHO  World Health Organization
T1DM  Type 1 diabetes mellitus
T2DM  Type 2 diabetes mellitus
MD  Molecular docking
UFF  Universal Force Field
PDB  Protein Data Bank
RMSD/UB  Root mean square deviation/upper bound
RMSD/LB  Root mean square deviation/lower bound
Mol. Wt.  Molecular weight
HBA  Hydrogen bond acceptor
HBD  Hydrogen bond donor

Introduction

The Enicostemma littorale Blume (E. littorale) plays a criti-
cal role in human wellbeing. Parts of the plant E. littoral 
were used historically in therapeutic applications against 
malaria, skin disorders, leprosy, diabetes, etc. This plant's 
constituents were beneficial therapeutic compounds because 
they had low toxicity, environmental friendliness, a long 
shelf life, and no side effects (Murali et al. 2002; Upadhyay 
and Goyal, 2004; Vasu et al. 2005). It is a noble source of 
iron, potassium, sodium, calcium, magnesium, silica, chlo-
ride, sulphate, phosphate, and vitamins B and C (Maroo 
et al. 2003, 2002; Sonawane et al. 2010; Thirumalai et al. 
2011).

Numerous phytoconstituents have been isolated from 
the plant, E. littorale. The aerial sections of the plant 
yielded 34% of the dry alcoholic extract and 15.7% of 
the ash (Patel et al. 2009; Sadique et al. 1987; Sanmu-
garajah 2013). It has been stated in the literature that 
this plant produces five alkaloids, two sterols, and vola-
tile oils(Selvaraj et al. 2014; Vishwakarma et al. 2010). 
Another sapogenin, betulin, was also isolated from this 
plant (Indumathi et al. 2014). Monoterpene alkaloids such 
as enicoflavin, gentiocrucine and seven diverse flavonoids 
have been extracted from the alcoholic extract and the 
structures have been categorised as apigenin, genkwanin, 
isovitexin, wertisin, saponarin, 5-o glucosylwertisin and 
5-o glucosylisowertisin have also been isolated by Goshal 
et al. (1974). For the first time in this species, the occur-
rence of catechins, saponins, steroids, sapogenin, triter-
penoids, flavonoids, and xanthones and a new flavonous 
C-glucoside called verticilliside was isolated(Jahan et al. 
2009). The compound swertiamarin was isolated from E. 
littoral by the alcoholic extract(Alam et al. 2011; Leong 
et al. 2016; Patel et al. 2013; Sonawane et al. 2010; Vaidya 
et al. 2009a; Vishwakarma et al. 2004). There have also 
been six phenolic acids identified: vanillic acid, syrin-
gic acid, p-hydroxybenzoic acid, protocatechuic acid, 

p-coumaric acid, and ferulic acid (Abirami and Gomathi-
nayagam 2011; Rathod and Dhale, 2013; Srinivasan et al. 
2005). The methanol extract contained numerous amino 
acids such as l-glutamic acid, tryptophan, alanine, ser-
ine, aspartic acid, l-proline, l-tyrosine, threonine, phe-
nylalanine, l-histidine mono-hydrochloride, methionine 
(Nagarathnamma et al. 2010; Sawant et al. 2011). Dia-
betic patients are advised to consume 2g of fresh E. lit-
torale leaves on daily basis (Upadhyay and Goyal 2004). 
Therefore, E. littorale has been selected to investigate the 
antidiabetic potential.

Diabetes mellitus is a metabolic condition that increases 
the body's blood glucose, also known as diabetes (Pal 2009; 
Zelent et al. 2005). The hormone insulin converts blood 
sugar into energy-saving cells. In diabetic conditions, either 
the body cannot produce enough insulin or the insulin it pro-
duces cannot be used efficiently (Grewal et al. 2014; Singh 
et al. 2016). Two significant forms of diabetes are present; 
type 1 diabetes mellitus (T1DM) is an autoimmune disorder 
in the pancreas, where insulin is produced, the immune sys-
tem targets and kills cells. Type 2 diabetes mellitus (T2DM) 
happens as the body becomes insulin resistant and the blood 
accumulates sugar (Grewal et al. 2018; Fyfe and Procter 
2009).

Glucokinase is an enzyme involved in synthesising glu-
cose into glucose-6 phosphate and serves a crucial function 
in glucose sensing (Charaya et al. 2018; Grewal et al. 2019). 
Therefore, agents induce glucokinase activation to be used 
to treat T2DM. The several various groups of compounds 
that have been discovered to cause glucokinase activation, 
such as benzamides (Charaya et al. 2018; Grewal et al. 2019; 
Li et al., 2011; Park et al. 2015), acetamides (Agrawal et al. 
2013; Grewal et al. 2014), carboxamides (Grewal et al. 
2014), acrylamides (Sidduri et al. 2010), benzimidazoles 
(Ishikawa et al. 2009), quinazolines, thiazoles (Agrawal et al. 
2013), pyrimidines (Pfefferkorn et al. 2011), and urea deriv-
atives (Castelhano et al. 2005; Grewal et al. 2020; Houze 
et al. 2013; Kohn et al. 2016; Murray et al. 2005; Polisetti 
et al. 2004; Sarabu et al. 2008).

After knowing the essential value of the activators of 
glucokinase in the control of T2DM (Filipski et al. 2012; 
Grewal et al. 2017, 2019; Grimsby et al. 2003; Matschinsky 
2004; Zhang et al. 2016), we investigated the effectiveness 
of phytoconstituents of E. littorale as glucokinase activa-
tors, as per the literature which reports the hypoglycemic 
activity of this plant(Babu and Prince 2004; Maroo et al. 
2002; Murali et al. 2002; Patel et al. 2009, 2012; Sonawane 
et al. 2010; Thirumalai et al. 2011; Upadhyay and Goyal 
2004; Vaidya et al. 2009b; Vasu et al. 2005; Vijayvargia 
et al. 2000; Vishwakarma et al. 2010). We tried to identify 
the potential natural lead compounds from E. littorale as 
glucokinase activators through their binding mode in the 
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allosteric site of the enzyme. The structures of all the sig-
nificant phytoconstituents of E. littorale are represented in 
Fig. 1.

Material and methods

Calculation of Lipinski's rule of five

In order to further optimize the molecules, all the phyto-
constituents were tested for violating the Lipinski's rule of 
five, Veber’s rule and the pharmacokinetic (ADMET) char-
acteristics. The properties of all the phytoconstituents were 
calculated from SwissADME online tool (http:// www. swiss 
adme. ch/ index. php).

Molecular docking

We conducted molecular docking (MD) on Lenovo Think-
Pad T440p using PyRx-Virtual Screening Tool (Dallakyan 
and Olson, 2015). The structures of all the phytoconstitu-
ents and native ligand (.sdf File format) were downloaded 
from the National Center for Biotechnology Information 
PubChem (https:// pubch em. ncbi. nlm. nih. gov/). The energy 
minimization (optimization) was performed by Universal 
Force Field (UFF) (Rappé et al. 1992).

A crystalline human glucokinase structure was 
obtained as input 1V4S from the Protein Data Bank 
(PDB) of RCSB (https:// www. rcsb. org/ struc ture/ 1V4S). 
1V4S also contained the native ligand 5-(1-methyl-1H-
imidazol-2-ylthio)-2-amino-4-fluoro-N-(thiazol-2-yl)ben-
zamide that was used as a reference molecule for MD. In 
PyRx 0.8, Autodock vina 1.1.2 was used to conduct MD 
analyses of both the phytoconstituents and native ligands 
against the crystal structure of glucokinase (Dallakyan 
and Olson, 2015). With the aid of Discovery Studio Visu-
alizer 2019, the composition of the enzyme was refined, 
purified, and prepared for MD (San Diego: Accelrys Soft-
ware Inc. 2012). The specifications of the crystal struc-
ture and input compositions of human glucokinase used 
(PDB ID-1V4S) are provided in Table 1 of the PDB X-ray 
Structure Validation Report released on 10 August 2020. 
There were only 5 specific molecules in this entry, and 
there was one chain (Chain A). The entry comprises 3690 
atoms, including 0 hydrogens and 0 deuteriums, which 
illustrates the need to incorporate hydrogen atoms in pro-
tein preparation processes for MD.

The MD was executed by using Vina Wizard Tool in 
PyRx 0.8. Molecules (PDBQT Files), both ligands and tar-
get (human glucokinase), were selected for MD. For the 
purpose of MD simulation, the three-dimensional grid box 
(size_x = 43.35  A0; Size_y = 59.36  A0; Size_z = 43.92  A0) 
was built using Autodock tool 1.5.6 with exhaustiveness 

Fig. 1  The structures of all the significant phytoconstituents of E. littorale 

http://www.swissadme.ch/index.php
http://www.swissadme.ch/index.php
https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org/structure/1V4S
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value of 8 (Dallakyan and Olson, 2015). The active amino 
acids in the protein were analyzed and illuminated using Vis-
ualizer in BIOVIA Discovery Studio (version-19.1.0.18287) 

(San Diego: Accelrys Software Inc. 2012). The full MD 
process, the identification of cavity and active amino acid 
residues, were performed as defined by S. L. Khan et al. 

Table 1  The information 
of the crystal structure and 
input compositions of human 
glucokinase used (PDB 
ID-1V4S)

Where, C carbon; N nitrogen; O oxygen; S sulphur; Na sodium; F fluorine

The details of crystal structure (1V4S):
Title: Crystal structure of human glucokinase
DOI: 10.2210/pdb1V4S/pdb
Authors: Kamata, K., Mitsuya, M., Nishimura, T., Eiki, J., Nagata, Y
Deposited on: 30-03-2004
Resolution: 2.30 Å(reported)
Classification: Transferase
Organism(s): Homo sapiens
Expression System: Escherichia coli
Method: X-Ray diffraction
Residues Atoms
The entry composition of 1V4S:

Total C N O S Na/F
Molecule 1 was a protein called glucokinase isoform 2
448 3505 2178 609 686 32 0
Molecule 2 was alpha-D-glucopyranose (three-letter code: GLC) (formula:  C6H12O6)
1 12 6 0 6 0 0
Molecule 3 was SODIUM ION (three-letter code: NA) (formula: Na)
1 1 0 0 0 0 1 (Na)
Molecule 4 was native ligand 5-(1-methyl-1H-imidazol-2-ylthio)-2-amino-4-fluoro-N-(thiazol-2-yl)

benzamide (three-letter code: MRK) (formula:  C14H12FN5OS2)
1 23 14 5 1 2 1 (F)
Molecule 5 was water
149 149 0 0 149 0 0

Fig. 2  The cavity of the enzyme is depicted with the co-crystallize ligand molecule (PDB ID: 1V4S)
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(Chaudhari et al. 2020; Khan and Siddiui 2020; Khan et al. 
2020a, b, 2021; Siddiqui et al. 2021). The enzyme cavity is 
depicted in Fig. 2 with the co-crystallized ligand molecule.

Results

Pharmacokinetic characteristics are an important component 
of drug development because it enable researchers to assess 
the biological aspects of medication candidates. In order 
to establish whether or not the compound optimal for oral 
bioavailability, Lipinski's rule of five and Veber's rules was 
utilized (Table 2). All the phytoconstituents were studied 
for their ADMET characteristics better to grasp their phar-
macokinetics profiles and drug-likeness qualities (Table 3). 
The ligand energies (kcal/mol), binding free energy (kcal/
mol), root mean square deviation/upper bound (rmsd/ub), 
and root mean square deviation/lower bound (rmsd/lb) of 
the conformers generated of all the docked phytoconstituents 
are tabulated in Table 4. The active amino residues, reactive 
atom of ligands, bond length  (A0), and type of interactions 
of phytoconstituents with glucokinase enzyme are depicted 
in Table 5. The 2D- and 3D-docking poses of all the docked 
molecules are represented in Figs. 3, 4, 5, 6.

Where: GI, gastrointestinal; BBB, blood brain barrier; 
P-gp, p-glycoprotein.

Discussion

We tried to identify the potential natural lead compounds 
from E. littorale as glucokinase activators through the bind-
ing mode in the enzyme's allosteric site and binding free 
energies. In accordance with Lipinski's and Veber's rules 
(Table 2), many of the phytoconstituents did not demon-
strated the drug-likeness characteristics and violated both 
the rules. Amongst all the molecules, betulin has a log P 
value of 8.28, which violates the Lipinski rule of 5 and indi-
cates poor lipophilicity. An essential aspect of the compound 
that influences its function in the human body is lipophilic-
ity. The compound’s Log P value shows the permeability 
of the drugs in the body to enter the target tissue (Krzy-
winski and Altman 2013; Lipinski et al. 2012). Isovitexin 
was found to have 7 hydrogen bond donors, which violates 
the Lipinski rule of 5. Saponarin has a molecular weight of 
594.52 Da, 15 hydrogen bond acceptors, and 10 hydrogen 
bond donors, with 3 violations of the Lipinski rule of 5. It 
is preferable to look for substances that exceed the Lipin-
ski limit of 500 Da, since this will only boost absorption. 
Still, there are several reports of relatively more significant 
compounds that are transported effectively through the cells. 
The remaining phytoconstituents, including native ligand, 
had fortunately not violated the Lipinski rule of 5, indicat-
ing better absorption and/or lipophilicity of the molecules. 
Many phytoconstituents violated the Veber's rule with total 
polar surface area (TPSA, should be less than 140) values 
and the number of rotatable bonds (which should be less 
than 10) that do not fall within the acceptable range for oral 

Table 2  The molecular formula, Lipinski rule of five and Vebers’s rule

a Mol. Wt. molecular weight; HBA hydrogen bond acceptor; HBD hydrogen bond donor

Molecule Name Molecular Formula Lipinski rule of 5 Veber’s rule

Mol. Wt.a HBAa HBDa LogP Violation Total polar sur-
face area (Å2)

No. of rotat-
able bonds

Native Ligand C14H12FN5OS2 349 04 02 2.00 0 139.37 5
Apigenin C15H10O5 270.24 05 03 3.02 00 90.90 1
Betulin C30H50O2 442.72 02 02 8.28 01 40.46 2
Ferulic acid C10H10O4 194.18 04 02 1.51 00 66.76 3
Genkwanin C16H12O5 284.26 05 02 3.35 00 79.90 2
Isovitexin C21H20O10 432.38 10 07 0.21 01 181.05 3
p-coumaric acid C9H8O3 164.16 03 02 1.46 00 57.53 2
Protocatechuic acid C7H6O4 154.12 04 03 1.15 00 77.76 1
Saponarin C27H30O15 594.52 15 10 − 1.60 03 260.20 6
Swertiamarin C16H22O10 374.34 10 05 − 2.00 00 155.14 4
Syringic acid C9H10O5 198.17 05 02 1.04 00 75.99 3
Vanillic acid C8H8O4 168.15 04 02 1.43 00 66.76 2
Verticilliside C23H24O13 508.43 13 08 0.00 00 219.74 5
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Table 4  The ligand energies 
(kcal/mol), binding free 
energy (kcal/mol), rmsd/ub, 
and rmsd/lb of the conformers 
generated of all the docked 
phytoconstituents

Compound name Ligand energies 
(kcal/mol)

Binding free energies of 
conformers (kcal/mol)

rmsd/ub rmsd/lb

Native Ligand 689.51 – 7.2 0 0
– 7.1 11.569 9.551
– 7 3.954 3.154
– 6.9 14.845 11.338
– 6.8 10.337 7.01
– 6.7 1.683 1.445
– 6.6 7.21 2.806
– 6.5 17.14 14.594
– 6.4 6.309 2.65

Apigenin 192.64 – 8.7 0 0
– 7.4 10.327 4.068
– 7.3 10.821 4.626
– 7.2 21.133 19.956
– 6.9 35.515 34.274
– 6.9 35.782 34.596
– 6.8 33.332 31.774
– 6.8 10.029 4.368
– 6.7 9.059 6.294

Ferulic Acid 470.67 – 6.8 0 0
– 6.4 6.204 1.962
– 5.9 19.764 19.019
– 5.9 20.297 19.456
– 5.6 39.562 37.223
– 5.5 35.688 35.127
– 5.4 36.304 35.659
– 5.1 22.572 21.564
– 5.1 20.025 18.771

Genkwanin 206.69 – 7.5 0 0
– 7.1 24.283 22.091
– 7 37.334 34.875
– 6.5 25.831 23.254
– 6.5 25.252 22.573
– 6.5 24.856 21.891
– 6.5 25.269 23.189
– 6.4 24.678 23.526
– 6.2 25.372 23.061

p-Coumaric acid 86.43 – 6.4 0 0
– 6.2 5.781 1.352
– 5.8 36.105 35.604
– 5.6 19.899 19.203
– 5.5 5.985 4.033
– 5.3 20.45 19.509
– 5.1 19.394 18.094
– 5 46.168 46.046
– 5 5.274 3.587
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availability. Isovitexin, Saponarin, Swertiamarin, and Ver-
ticilliside violated the Veber’s rule.

For further optimization, all the molecules have been sub-
jected to calculations of pharmacokinetics and drug-likeness 
properties. All the molecules did not show BBB penetration 
potential which is not favorable property for the drugs to 
be targeted for central nervous system. Unfortunately, many 
molecules did exhibited optimum log Kp (skin permeation, 
cm/s) and bioavailability scores. Many molecules violated 
the Ghose, Egan, and Muegge filters (Table 3). The mol-
ecules which displayed low GI absorption and violations 
of Lipinski and Veber’s rules have been eliminated from 
further optimization. Also, native ligand displayed low GI 
absorption. Therefore, only Apigenin, Ferulic acid, Genk-
wanin, p-coumaric acid, Protocatechuic acid, Syringic acid, 

and Vanillic acid have been selected to perform molecular 
docking studies on the GK enzyme.

A total 9 conformers were generated through MD for each 
molecule (Table 4). The conformer with zero rmsd/ub and 
rsmd/lb values has been treated as the best fit model for the 
glucokinase enzyme activation. The binding free energy and 
binding mode of the native ligand in the allosteric site of the 
enzyme have been considered a reference for validating the 
other molecules (Table 5 and Figs. 3, 4, 5, 6). Native ligand 
has binding free energy of − 7.2 kcal/mol and has formed 
4 hydrogen bonds (3 conventional and 1 carbon-hydrogen 
bond) with ASP78 (2.04258  A0), LYS169 (2.60065  A0), and 
THR228 (2.20855  A0, 3.75081  A0). The hydrogen of a free 
primary amino group from the native ligand has formed a 
hydrogen bond ASP78, and the fluorine atom has formed 
a hydrogen bond with LYS169. THR228 has reacted with 

Table 4  (continued) Compound name Ligand energies 
(kcal/mol)

Binding free energies of 
conformers (kcal/mol)

rmsd/ub rmsd/lb

Protocatechuic acid 69.09 – 5.9 0 0

– 5.8 3.823 2.267

– 5.7 20.234 19.688

– 5.7 37.453 36.16

– 5.3 37.892 36.5

– 5.3 20.033 19.486

– 5.1 34.46 34.289

– 5 34.43 34.254

– 5 45.895 45.58
Syringic acid 837.9 – 5.7 0 0

– 5.4 3.552 0.385
– 5.3 5.175 2.812
– 5.2 4.587 2.804
– 5.2 15.57 13.004
– 5.1 22.174 19.227
– 5.1 15.49 13.102
– 5.1 22.457 19.465
– 5 3.615 3.153

Vanillic acid 85.01 – 5.5 0 0
– 5.5 28.978 28.041
– 5.5 4.174 1.335
– 5.3 28.558 27.034
– 5.2 28.09 26.65
– 5 21.792 20.446
– 5 29.168 28.414
– 5 22.059 20.823
– 4.9 29.605 27.718
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Table 5  The active amino residues, reactive atom of ligands, bond length  (A0), and type of interactions of phytoconstituents with glucokinase 
enzyme (1V4S)

Active amino residue Atom from ligand Bond length  (A0) Bond category Bond types

Native ligand
 ASP78 H 2.04258 Hydrogen bond Conventional hydrogen bond
 LYS169 F 2.60065 Hydrogen bond; halogen Conventional hydrogen 

bond; halogen (Fluorine)
 THR228 S 2.20855 Hydrogen bond Conventional hydrogen bond
 THR228 F 3.75081 Carbon hydrogen bond
 ARG85 Pi-Orbitals 3.56863 Electrostatic Pi-Cation
 ASP205 3.9455 Pi-Anion
 ASP409 3.70544

Apigenin
 TYR215 O 2.06298 Hydrogen bond Conventional hydrogen bond
 TYR215 O 2.15918
 TYR214 H 3.00628 Pi-Donor hydrogen bond
 VAL455 Pi-Orbitals 3.86479 Hydrophobic Pi-Sigma
 TYR214 5.11899 Pi-Pi T-shaped
 PRO66 4.99697 Pi-Alkyl
 ILE211 5.46378
 VAL455 4.74718
 ILE211 4.92959
 VAL62 4.80355
 PRO66 5.06
 VAL452 5.03778
 ALA456 4.9239

Ferulic acid
 TYR61 H 2.0266 Hydrogen bond Conventional hydrogen bond
 ILE211 Pi-Orbitals 4.61546 Hydrophobic Pi-Alkyl
 VAL452 4.8904
 VAL455 4.64867

Genkwanin
 ILE159 C-H 3.78006 Hydrophobic Pi-Sigma
 ILE159 C-H 3.77297
 VAL455 C-H 3.87537
 ALA456 Pi-orbitals 4.63516 Pi-Alkyl
 ALA456 4.89221
 LYS459 5.06083
 VAL62 5.08219
 PRO66 5.00443
 ILE159 5.34614
 VAL452 5.4002
 ALA456 4.7483

p-Coumaric acid
 TYR61 H 1.86828 Hydrogen bond Conventional hydrogen bond
 TYR215 O 2.07668
 ILE211 Pi-Orbitals 4.58608 Hydrophobic Pi-Alkyl
 VAL452 4.8732
 VAL455 4.66716
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sulfur and fluorine simultaneously with forming one con-
ventional hydrogen bond and one carbon-hydrogen bond. 
Native ligand showed electrostatic interactions with ARG85 
(3.56863  A0), ASP205 (3.9455  A0), and ASP409 (3.70544 
 A0) through Pi-orbitals of the aromatic ring system (Fig. 3).

Apigenin (4′,5-trihydroxyflavone), a flavonoid, falls 
under the flavone class that is the aglycone of many nat-
urally-occurring glycosides [(Ali et  al. 2017; Baumann 
2008; Salehi et al. 2019; Shukla and Gupta 2010)]. It has 
shown − 8.7 kcal/mol of binding free energy and formed 

Table 5  (continued)

Active amino residue Atom from ligand Bond length  (A0) Bond category Bond types

Protocatechuic acid
 THR65 O 2.3016 Hydrogen bond Conventional hydrogen bond
 TYR215 O 2.70823
 VAL452 O 3.71031 Carbon hydrogen bond
 ILE211 Pi-Orbitals 3.47995 Hydrophobic Pi-Sigma
 TYR214 5.12043 Pi-Pi T-shaped

Syringic acid
 ASP205 H 2.69294 Hydrogen bond Conventional hydrogen bond
 ARG85 O 2.33855
 ARG85 O 2.66692
 LYS169 O 2.52862
 ASP409 Methyl C 3.28918 Carbon Hydrogen Bond
 ASN83 3.59997
 ASP78 Pi-Orbitals 3.71563 Electrostatic Pi-Anion

Vanillic acid
 LEU25 O 2.5621 Hydrogen bond Conventional hydrogen bond
 SER373 O 1.95412
 THR376 Pi-Orbitals 3.61887 Hydrophobic Pi-Sigma

Fig. 3  The 2D- and 3D-molecular interaction poses of native ligand and apigenin with the glucokinase enzyme
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3 hydrogen bonds (2 conventional and 1 Pi-donor hydro-
gen bond) with TYR215 (2.06298  A0, 2.15918  A0), and 
TYR214 (3.00628  A0) (Fig. 3). It has formed two hydrogen 
bonds with TYR215 through hydroxyl and carbonyl oxygen 
atoms. One free hydroxyl group in apigenin has formed one 
Pi-donor hydrogen bond with TYR214 through hydrogen 
atom. It has shown many hydrophobic interactions due to 
Pi-orbitals of aromatic ring systems with VAL455 (3.86479 
 A0), TYR214 (5.11899  A0), PRO66 (4.99697  A0), ILE211 
(5.46378  A0), VAL455 (4.74718  A0), ILE211 (4.92959  A0), 
VAL62 (4.80355  A0), PRO66 (5.06  A0), VAL452 (5.03778 
 A0), and ALA456 (4.9239  A0).

Ferulic acid is an organic compound; chemically, it is 
3-methoxy-4-hydroxycinnamic acid. In plant cell walls a 
rich phenolic phytochemical is present covalently attached 
to arabinoxyls as side chains (Mathew and Abraham 2006; 
Wu et al. 2018). It exhibited -6.8 kcal/mol of binding free 
energy, which is less than native ligand, and therefore, this 
molecule does not possess potential to activate glucokinase 
enzyme. It has also formed an unfavorable donor-donor bond 
with ARG63 (1.56  A0) through hydroxyl hydrogen atom 
(Fig. 4).

Genkwanin is a monomethoxyflavone, which is a deriva-
tive of apigenin. It has been biosynthesized by apigenin in 
plants by methylation of the hydroxyl group at 7th position 

(Lee et al. 2015; Nasr Bouzaiene et al. 2016). Genkwa-
nin has shown − 7.5 kcal/mol of binding free energy with 
glucokinase enzyme and possesses stable ligand energy 
of 206.69 kcal/mol. It exhibited hydrophobic interactions 
(Pi-sigma and Pi-alkyl) with ILE159 (3.78006  A0, 3.77297 
 A0, 5.34614  A0), VAL455 (3.87537  A0), ALA456 (4.63516 
 A0, 4.89221  A0, 4.7483  A0), LYS459 (5.06083  A0), VAL62 
(5.08219  A0), PRO66 (5.00443  A0), and VAL452 (5.4002 
 A0) (Fig. 4). As it has not formed any hydrogen bond, which 
may result in poor activation of the enzyme.

p-Coumaric acid is a hydroxyl derivative of cinnamic 
acid and widely distributed in many plant species(Pei et al. 
2016). It has shown − 6.4 kcal/mol of binding free energy 
and formed 2 conventional hydrogen bonds with TYR61 
(1.86828  A0), TYR215 (2.07668  A0), whereas hydrophobic 
interactions (Pi-alkyl) with ILE211(4.58608  A0), VAL452 
(4.8732  A0), VAL455 (4.66716  A0) (Fig. 5).

Protocatechuic acid is a type of phenolic acid that is 
naturally present and over 500 plants have it or its deriva-
tives (active constituents), and these substances have dif-
ferent therapeutic potential. It has structural similarities 
with gallic acid, caffeic acid, vanillic acid, and syringic 
acid, which are well-known antioxidants found in foods and 
other items (Kakkar and Bais 2014). Protocatechuic acid has 
shown − 5.9 kcal/mol of binding free energy and formed 

Fig. 4  The 2D- and 3D-molecular interaction poses of ferulic acid and genkwanin with the glucokinase enzyme
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3 hydrogen bonds (2 conventional and 1 carbon-hydrogen 
bond) with THR65 (2.3016  A0), TYR215 (2.70823  A0), and 
VAL452 (3.71031  A0). It has demonstrated 2 hydrophobic 
bonds (Pi-sigma and Pi-Pi T-shaped) with ILE211 (3.47995 
 A0) and TYR214 (5.12043  A0) (Fig. 5). From these results, 
it can be concluded that protocatechuic acid does not have 
much potential to activate the glucokinase enzyme.

Syringic acid is a phenolic substance that is mostly pre-
sent in fruits and vegetables. This compound is made by 
the shikimic acid process and is found in plants. It shows 
a wide variety of clinical applications in preventing diabe-
tes, coronary disorders, cancer, ischemic stroke, etc. It can 
shield brain tissue from free radical injury, delay the devel-
opment of diabetes, and is hepatoprotective medicine (Srini-
vasulu et al. 2018). It has shown -5.7 kcal/mol of binding 
free energy and formed 6 hydrogen bonds (4 conventional 
and 2 carbon-hydrogen bonds) with ASP205 (2.69294  A0), 
ARG85 (2.66692  A0, 2.33855  A0), LYS169 (2.52862  A0), 
ASP409 (3.28918  A0), ASN83 (3.59997  A0). It has formed 
1 electrostatic (Pi-anion) bond with ASP78 (3.71563  A0) 
(Fig. 6). It demonstrated less binding free energy but exhib-
ited a good number of hydrogen bonds, which may effec-
tively activate the glucokinase enzyme. Vanillic acid has 
exhibited − 5.5 kcal/mol of binding free energy and formed 

2 conventional hydrogen bonds with LEU25 (2.5621  A0), 
and SER373 (1.95412  A0) (Fig. 6).

Conclusion

Glucokinase is an enzyme involved in synthesising glucose 
into glucose-6 phosphate and serves a crucial function in 
glucose sensing. Therefore, agents that induce glucokinase 
activation could be used to treat T2DM. The Enicostemma 
littorale Blume (E. littorale) plays a critical role in human 
wellbeing. Parts of the plant E. littoral, were used histori-
cally in therapeutic applications against malaria, skin disor-
ders, leprosy, and mostly antidiabetic activity of this plant 
have been reported in many literatures as well as it has been 
recommended in diabetic patients in Ayurveda system of 
medicine. The present work has been carried out to investi-
gate the glucokinase activation potential of phytoconstitu-
ents of E. littorale through MD. All the phytoconstituents 
have been screened through the Lipinski rule of 5, Veber’s 
rule, and ADMET properties. From  this initial screening, 
only Apigenin, Ferulic acid, Genkwanin, p-coumaric acid, 
Protocatechuic acid, Syringic acid, and Vanillic acid have 
been selected to perform molecular docking studies on 
the GK enzyme.

Fig. 5  The 2D- and 3D-molecular interaction poses of p-coumaric acid and protocatechuic acid with the glucokinase enzyme
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MD is a computational research-based technique for 
exploring possible binding interfaces through the dock-
ing of proteins and drugs. A total of 9 conformers were 
generated through MD for each molecule. The conformer 
with zero rmsd/ub and rsmd/lb values has been treated as 
the best fit model for activating the glucokinase enzyme. 
The binding free energy and binding mode of the native 
ligand in the allosteric site of the enzyme have been con-
sidered the reference for the other molecules' validation. 
The native ligand has exhibited -7.2 kcal/mol binding free 
energy with useful binding mode into the enzyme's allos-
teric site, whereas; it has formed four hydrogen bonds with 
THR-228, LYS-169, ASP-78, and GLY-81. Based on these 
findings, the interactions of phytoconstituents have been 
justified. Apigenin, genkwanin, and swertiamarin exhib-
ited − 8.7, − 7.5, and − 8.3 kcal/mol binding free energy, 
respectively, which indicates better enzyme activation than 
the native ligand. Swertiamarin has formed 08, whereas 
syringic acid exhibited − 5.7 kcal/mol binding affinity but 
has formed 06 hydrogen bonds with allosteric amino acid 
residues, which confirms the excellent enzyme activation 
by these phytoconstituents. Many antidiabetic Ayurvedic 
formulations contain E. littorale extract, which is already 
known to have therapeutic effects in diabetic patients. 
We identified and reported the lead phytoconstituent 

responsible for the antidiabetic potential. We have con-
cluded that if we can isolate and consume the exact active 
phytoconstituents (glucokinase activators) from this plant, 
we can use them effectively to treat T2DM and by consid-
ering them as a natural lead compound, we can develop 
and validate more glucokinase activators.
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