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Abstract
The goal of the current paper was a synthesis of Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanoparticles as 
a unique efficient photocatalyst for removing organic dyes from aqueous environments. The magnetic Fe3O4@SiO2 core-
shell was produced by a silica source to avoid aggregation by the co-precipitation method. Next, functionalized by using 
3-Aminopropyltriethoxysilane (APTES) via a post-synthesis link. The chemical structure, magnetic properties, and shape 
of the manufactured photocatalyst (Fe3O4@SiO2-NH2) were described by XRD, VSM, FT-IR, FESEM, EDAX, and DLS/
Zeta potential analyses. The XRD findings approved the successful synthesis of nanoparticles. The photocatalytic activity 
of Fe3O4@SiO2-NH2 nanoparticles was examined for MB degradation and the degradation performance was about 90% in 
the optimum conditions. Also, the cytotoxicity of Fe3O4, Fe3O4@SiO2 core-shell, and Fe3O4@SiO2-NH2 nanoparticles was 
examined on CT-26 cells using an MTT assay, the finding has shown that nanoparticles can be used for inhibiting cancer cells.
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Introduction

Photocatalytic processes have been used for many years 
as one of the environmental solutions in the industrialized 
countries of the world. Meanwhile, new photocatalytic mate-
rials with different properties enter the market every day and 
are used [1]. Nanotechnology promises a very broad future 
for this field by creating a new approach to the photocatalytic 
industry [2]. The importance of nanostructured materials at 

the nanoscale show different chemical and physical prop-
erties of the bulk of the matter [3]. In addition to the dif-
ference in their bulk properties, in this area, the properties 
of the material are related to their size and shape [4]. By 
making changes in the shape and size of nanostructures 
can be obtained materials with new properties [5]. Over-
all the recent decades, magnetic nanoparticles have been 
attended by a range of scientific disciplines as they possess 
high potential in various application fields such as chemistry, 
biology, and medicine [6]. The Fe3O4 nanoparticles display 
high magnetic saturation, stability, and biocompatibility on 
the surface of the nanoparticles that can be applied for an 
extensive range of purposes [7]. The Fe3O4 nanostructured 
photocatalysts with high photocatalytic properties are one 
of the key technologies in controlling environmental pol-
lution because of their very high surface-to-volume ratio. 
This technology can be used in water, wastewater, and 
air treatment systems and provide a healthy environment 
by eliminating chemical pollution [8]. The application of 
nanotechnology and using of inorganic supplies as catalysts 
in eliminating chemical pollution is one of the benefits of 
chemistry green. In recent times, among several catalysts, 
the variation of Fe3O4 nanoparticles with organic and inor-
ganic combinations obtained special attention [9]. The Fe3O4 
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nanoparticles contain particular attributes containing: easy 
separation, low cost, simple synthesis, great stability, and 
high surface area [10]. Researchers have recently concen-
trated on the synthesis of Fe3O4 nanoparticles by imple-
menting a variety of pathways to regulate their size, shape, 
and morphology with adjustable and desirable properties 
[11]. A variety of synthesis routes have been reported for 
the preparation of these magnetic nanoparticles, such as 
co-precipitation, hydrothermal, and micro-emulsion. Fe3O4 
nanoparticles were used in various fields such as biosen-
sors and as a catalyst in the removal of organic dyes from 
wastewater [12, 13]. The Fe3O4 nanoparticles suffer from 
a variety of major problems, such as fast agglomeration 
and extensive surface area, causing magnetism loss [14]. 
Consequently, surface modification of Fe3O4 nanoparticles 
is essential to avoid the problems referred to above [15]. 
The coating is the most common process of surface modi-
fication for connecting organic or inorganic compounds on 
the surface of Fe3O4 nanoparticles. The functionalization 
of magnetic nanoparticles will boost their physicochemical 
attributes, creating suitable candidates for photocatalysis or 
biomedicinal applications [10]. The core-shell compounds 
are one notable structure wherein a SiO2 layer was put on the 
core surface. The SiO2 shell is the most common sample for 
creating core-shell structures with Fe3O4. SiO2 has used due 
to its great thermal stability and its surface properties, and 
it can keep OH groups on the surface. Thus, in this study, 
the Fe3O4 nanoparticles were used as a core covered by a 
SiO2 shell and modified by amino groups for the synthesis of 
the Fe3O4@SiO2-NH2 as an effective nano magnetic photo-
catalyst. Initially, Fe3O4 nanoparticles were manufactured by 
the usage of a co-precipitation process and then covered via 
the SiO2 layer. The covered nanoparticles were functional-
ized thru APTES. Synthesis of surface-modified magnetite 
nanoparticles and subsequent functionalization has been 
confirmed by the usage of FTIR, XRD, FESEM/EDX/PSA, 
DLS/Zeta potential, and VSM analyses. The aim of the cur-
rent study was to evaluate the photocatalytic activity of the 
synthesized Fe3O4@SiO2-NH2 nanoparticles to decompose 
the MB dye under UV-A light for the first time. In continu-
ation, the cytotoxicity effect of Fe3O4, Fe3O4@SiO2 core-
shell, and Fe3O4@SiO2-NH2 nanoparticles were assessed 
on CT-26 cell lines using the MTT test. Functionalization 
and examination these applications show the novelty of our 
work.

Experimental

Chemicals

Ferrous chloride (FeCl2.4H2O ≥ 99%), Ferric chloride 
(FeCl3.6H2O ≥ 99%), ethanol (CH3CH2OH ≥ 99.9%), 

ammonia (30%), 3-Aminopropyltriethoxysilane (APTES), 
and Tetraethyl orthosilicate (TEOS ≥ 99.0%) have been pur-
chased of Merck Co.

Synthesis of Fe3O4 nanoparticles

For the synthesis of Fe3O4 nanoparticles with the co-pre-
cipitation method, briefly, FeCl2. 4H2O and FeCl3. 6H2O 
salts with a molar proportion of 1:2 have been dissolved 
in distilled water (50.0 mL) and were stirred with vigorous 
magnetic under a nitrogen atmosphere. Next, ammonium 
hydroxide solution (20.0 mL NH4OH, 2 M) was added drop-
wise with continuous stirring and the temperature of the 
mixture has been reached 45 °C and maintained for 1 h. The 
resulting Fe3O4 black precipitates were washed several times 
with ethanol and water and dried by freeze-drying for 48 h 
at -80 °C [16, 17].

Preparation of Fe3O4@SiO2 core‑shell

For the preparation of Fe3O4@SiO2 Core-shell, Fe3O4 nano-
particles (0.50 g) have been dispersed in a solution, which 
involved water (10.0 mL), ethanol (30.0 mL), and ammonia 
(1.0 mL) under a nitrogen atmosphere. This mixture solution 
was sonicated for 30.0 min at 25 °C, later, 4.0 mL of ethanol 
that was accompanied by 1.0 mL of TEOS was added to the 
solution drop wisely while vigorously stirring for 24 h at 
25 °C to create a dark-brown suspension. The Fe3O4@SiO2 
core shell was washed several times with ethanol and water 
and dried by the use of freeze-drying for 48 h at -80 °C.

Surface modification of Fe3O4@SiO2 core‑shell 
with APTES

Fe3O4@SiO2-NH2 nanoparticles have been synthesized by 
inducing a reaction between Fe3O4@SiO2 core-shell and 
APTES within ethanol. Initially, the synthesized Fe3O4@
SiO2 core-shell (0.15 g) was dispersed in ethanol (20.0 mL) 
and sonicated for 20 min, thereafter, the APTES (500.0 µL) 
was added to the solution drop wisely and stirred with mag-
netic stirring for 24 h at 25 °C. The next achievement of 
the reaction, the Fe3O4@SiO2-NH2 precipitate was washed 
several times with water and dried by freeze-drying for 48 h 
at -80 °C [11, 18]. Schematic synthesis of Fe3O4@SiO2-NH2 
nanoparticles was displayed in Fig. 1.

Photocatalytic test of Fe3O4@SiO2‑NH2 nanoparticles 
for MB degradation

The photocatalytic activity of the synthesized Fe3O4@SiO2-
NH2 nanoparticles was assessed for MB dye degradation. 
First, the 10.0 mg Fe3O4@SiO2-NH2 nanoparticles were 
immersed in a 100.0 mL solution containing 1.0 mg of MB 
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under optimum conditions (pH:11) and were exposed under 
UVA (11 W) light irradiated while stirring the solution. To 
examine, the dye degradation percentage, the absorbance 
was measured at intervals of 25 min by the usage of the 
UV-Vis spectrophotometer and repeated for up to 150 min.

Results and discussion

Characterization

The Fe3O4, Fe3O4@SiO2 core-shell, and Fe3O4@SiO2-NH2 
nanoparticles were analyzed by Fourier transform infrared 
spectrophotometer (8400-SHIMADZU) to determine the 
functional groups. The crystalline structure of the nanopar-
ticles was examined using of XRD pattern (D8-Advance 
Bruker). The morphology and size of nanoparticles were 
determined using FESEM/EDAX/PSA (TESCAN BRNO-
Mira3 LMU) images and Image software. Zeta potential 
measurements were used to examine the stability of the col-
loidal suspension and the size distribution of nanoparticles 
was evaluated by the means of DLS (by Cordovan, France) 
at neutral pH. The optical features of samples were examined 
with the usage of UV-Vis spectroscopy (UV-Vis 2550-SHI-
MADZU). The VSM (MDKB model) analysis was used to 
investigate superparamagnetic behavior.

Photocatalytic activity of Fe3O4@
SiO2‑NH2nanoparticles

The photocatalytic manner demonstrates a vital role in the 
refinement of contaminated water. In this respect, Fe3O4@
SiO2-NH2 nanoparticles have been applied as the catalyst 
for the MB dye degradation below UV-A light. The MB dye 

degradation without catalyst was investigated in the presence 
of UVA (11 W) light, results showed that MB dye without 
catalyst was very hard and was decomposed, as proved in 
Fig. 2a. The percentage of dye degradation was determined 
using Eq. 1 which was 18% after 150 min [19]. Also, pho-
tocatalytic degradation of MB dye was done in the presence 
of Fe3O4@SiO2-NH2 nanoparticles under UVA (11 W) light 
in optimum conditions. The photocatalytic activity curve of 
Fe3O4@SiO2-NH2 nanoparticles in MB dye decomposition 
is displayed in Fig. 2b. The MB absorbance was decreased 
by increasing the time of irradiation, and the performance 
efficiency increased with increasing reaction time [20, 21]. 
The dye degradation percentage was 90% after 150 min.

According to the outcomes of the photocatalytic inves-
tigations, the reaction kinetics was studied. The results 
of kinetic studies showed that the photocatalytic process 
follows the first-order kinetics that is proved in Eq.  2 
with R2 = 0.9947 and the reaction rate constant is kobs = 
0.0134 min− 1. The examinations kinetics of MB degrada-
tion using Fe3O4@SiO2-NH2 nanoparticles were presented 
in Fig. 3.

According to the obtained outcomes, the seen photocata-
lytic activity on the removal of MB dye was wholly satisfying, 
as the synthesized nanoparticles were able to be degraded by 
more than 90% of MB dye in aqueous solutions. Following 
the work of Xuan et al., magnetic nanoparticles can stand as 
a promising photocatalyst [22]. Also, Xinman et al. examined 

(1)Degradation(%) =
A0 − At

A0

× 100

(2)Ln

(

Ct

C0

)

= Kobst

Fig. 1   The preparation sche-
matic of Fe3O4@SiO2-NH2 
nanoparticles
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the photocatalyst activity of the magnetical heterostructures 
under visible light for the reduction of heavy metal ions 
[23]. In other research, Yuan et al. reported the photocata-
lyst activity of the magnetic composite for the degradation 

of Rhodamine B (RhB) dye [24]. Jiang et al. also studied the 
photocatalyst activity of the magnetic composite for the degra-
dation of RhB dye under visible light [25]. By comparing the 
outcomes was observed that synthesized amino-functionalized 
core-shell magnetic nanoparticles have a more photocatalytic 
effect in comparison with other nanoparticles [22]. Magnetic 
nanoparticles are currently the subject of various studies due 
to their potential applications in the treatment of water and 
wastewater. Magnetite nanoparticles widely are applied as cat-
alysts due to their advantages such as small size, low toxicity, 
and unique superparamagnetic. There are significant concerns 
about nanoparticles that may have long-term toxic effects. To 
overcome these problems, NH2-functionalized Fe3O4/SiO2 
nanoparticles can reduce long-term toxic effects. Moreover, 
NH2-functionalized Fe3O4/SiO2 nanoparticles are a promis-
ing substance for the removal of organic dyes from different 
industries.

Photocatalytic activity mechanism

The photocatalyst mechanism of MB dye degradation is dis-
played in Fig. 4. The MB is a nitrogen-containing aromatic 
compound (C16H18N3SCl). Electron-hole ( h+ − e− ) pairs are 
formed due to UVA-light radiation to iron oxide nanoparticles. 
This electron–hole causes to oxidize/reduces the organic pol-
lutant (MB dye). Electrons ( e− ) react with oxygen molecules 
( O2 ) during a reduction reaction to product anionic super-
oxide radical ( O◦−

2
 ), and the produced holes react with H2O 

molecules during an oxidation reaction to produce hydroxyl 
radicals ( OH◦ ). These two produced radicals are very highly 
reactive species and contain sufficient energy and react with 
organic pigments and various contaminants to cause them to 
decompose [26]. By breaking the dye molecule bonds and 
their decomposition, their toxic and dangerous properties are 
lost and the produced products are non-toxic than raw materi-
als. In 2012, W. Wu et al. investigated the photocatalytic activ-
ity of Fe2O3/ZnO core-shell to degradation of Rhodamin B 
dye. They found that the photocatalytic activity of heterostruc-
tures could be greatly improved by pairing them with other 
semiconductors such as ZnO [27]. The outcomes are similar 
to the other literature results. The mechanism of photocatalytic 
reactions of Fe3O4@SiO2-NH2 nanoparticles is given by the 
following reactions (3 to 8) [22].

(3)hv(UV) + Fe3O4@SiO2 − NH2 → h+ + e−

(4)H2O + h+ → H+ + OH
◦

(5)O2 + e− → O
◦−
2

(6)Dye + h+ → Oxidation products

Fig. 2   Decomposition of MB dye in the absence of Fe3O4@SiO2-
NH2 nanoparticles (a) Decomposition of MB dye using Fe3O4@SiO2-
NH2 nanoparticles under UVA light irradiation (b)

Fig. 3   The examinations kinetics of MB degradation using Fe3O4@
SiO2-NH2 nanoparticles
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Investigation of different parameters on MB 
degradation using Fe3O4@SiO2‑NH2 nanoparticles

To regulate the optimal condition of MB dye degradation 
by Fe3O4@SiO2-NH2 nanoparticles investigates have been 
done at various concentrations of photocatalyst (Fe3O4@

(7)Dye + e− → Reduction products

(8)Dye + OH
◦

∕O
◦−
2

→ Degradation products

SiO2-NH2 nanoparticles: 3, 6, and 10  mg L-1), various 
amounts of dye (MB: 1, 3, and 5 mg L-1), and different pH 
(3, 7, and 11).

pH

As pH is an important parameter affecting photocatalytic 
degradation. The current study has investigated the optimi-
zation of pH parameters. For this goal, the pH range (3, 
7, and 11) in MB (1 mg L-1) and the catalyst concentra-
tions (10 mg L-1) were assessed under UVA light (11 W) 
at the interval of 25 min. The degradation percentage was 
calculated by the usage of Eq. (1). The outcomes of MB 
degradation at various pH were presented in Fig. 5a. As 

Fig. 4   The schematic mecha-
nism of MB dye degradation 
by using Fe3O4@SiO2-NH2 
nanoparticles

Fig. 5   Influence of pH (a), 
photocatalyst concentration 
(b), and dye concentration in 
MB dye degradation with UV/
Fe3O4@SiO2-NH2 nanoparticles 
system (c)
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seen in Fig. 5a, the dye degradation percentage was raised 
in the basic medium and decreased in the acidic medium. 
The MB degradation percentages in the pH of 3, 7, and 11 
were about 19, 60, and 91% respectively. The pH influence 
can be described by the MB dye nature. As MB dye has a 
cationic nature, it can be concluded that increasing the pH 
and negative level of the catalyst is useful in the degradation 
of dye [28]. By increasing the pH, more hydroxyl radicals 
( OH◦ ) or superoxide anion radicals ( O◦−

2
 ) are produced, as a 

result, reactions occur more quickly among created radicals 
and MB molecules and then, the MB dye decomposes into 
different compounds such as CO2, nitrogen, and sulfur [29]. 
The outcomes of the current study correspond to the work 
of Zhihui et al. [30].

Concentration of catalyst

To reach the optimum quantity of catalyst, numerous inves-
tigations were finalized in different concentrations. The first 
standard solution was organized at a pH of 11, MB value 
equal to 1.0 mg L− 1, and various concentrations of cata-
lyst (3, 6, and 10 mg L− 1) under UVA light (11 W). The 
adsorption of the solution was read usage of UV-Vis spec-
trophotometry. The degradation performance was estimated 
by the usage of Eq. (1). According to obtained results, it 
was found that with increasing the concentrations of catalyst 
(3, 6, and, 10 mg L− 1), the degradation percentage of MB 
was increased (18, 50, and 90%) respectively. conclusions 
of MB degradation at different concentrations are displayed 
in Fig. 5b. The detected increase in the reaction of rate was 
correlated with the rise in the active sites on the level of the 
catalyst and the rise in photons [28].

Concentration of dye

The findings of various amounts of MB (1, 3, and 5 mg 
L-1) at pH of 11 and catalyst concentration of 10 mg L-1 are 
displayed in Fig. 5c. The outcomes have displayed that via 
raising the MB value (1, 3, and 5 mg L-1) the degradation 
performance was decreased (90, 64, and 42%) respectively. 
The reduction of degradation performance could be caused 
to reduced active positions of the catalyst, which is created 
for the production of OH◦ . Therefore, by increasing concen-
tration, MB molecules connected to the surface of nanopar-
ticles inhibit the production of OH◦ . The results matched the 
study of Jazini Zadeh et al. [31].

FTIR

FTIR technique was used to evaluate the purity and exist-
ence of functional groups and chemical bonds of the syn-
thesized nanoparticles in the range from 4000 to 400 cm–1. 
The FTIR spectrum of Fe3O4, Fe3O4@SiO2 core-shell, and 

Fe3O4@SiO2-NH2 nanoparticles was demonstrated in Fig. 6. 
As presented in Fig. 6. the FTIR spectrum of Fe3O4 nanopar-
ticles exhibit peaks at 588, 1621, and 3446 cm− 1 that were 
linked to the presence of the Fe-O bond, bending vibration, 
and stretching vibration of O-H respectively. The FTIR find-
ing approved that the nanoparticles contained Fe3O4; these 
bands were seen in all synthesized samples, denoting the 
existence of Fe3O4 nanoparticles in all steps. The Fe3O4@
SiO2 core-shell spectrum demonstrations bands at 1074 and 
3350 cm− 1. The detected peak at 1074 cm− 1 is related to Si-
O-Si vibrations, which approve the existence of SiO2 coat-
ings in the core-shell [32]. The achieved results matched 
the work of Ghasemzadeh et al [33]. The observed band at 
3350 cm− 1 relates to -OH groups on the magnetite surface. 
These outcomes demonstrated that the Fe3O4 nanoparticles 
were coated with SiO2 successfully. As shown in Fig. 6, the 
Fe3O4@SiO2 core-shell functionalized via APTES was con-
firmed with the FTIR spectrum. Successful functionaliza-
tion of Fe3O4@SiO2 core-shell recorded at 3400 and 1592 
cm− 1 that linked to the stretching and bending vibrations 
of amino groups. The detected strip at 1039 cm− 1 is related 
to Si-O-Si stretching vibrations. The outcomes approve the 
manufacture of silica shells on the Fe3O4 surface and the 
amino-functionalization of the Fe3O4@SiO2 core-shell [34]. 
The present results were matched via the work of Zhang et 
al. and exhibited different functional groups in synthesized 
nanoparticles [35]. Thus, it was shown by the FT-IR out-
comes that the nanoparticles were synthesized successfully 
via the co-precipitation method.

XRD pattern

The crystalline structures and composition of the prepared 
nanoparticles were primarily recognized using XRD. XRD 

Fig. 6   FTIR spectrum of synthesized nanoparticles
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patterns of nanoparticles were presented in Fig. 7. The 
detected peaks in the Fe3O4 spectrum follow the XRD pat-
tern of standard Fe3O4 with the greatly crystalline and cubic 
spinel structure of Fe3O4 nanoparticles [10]. The detected 
peaks at 2θ = 30.2°, 35.6°, 43.1°, 53.7°, 57.2°, and 62.9° 
were apportioned to (220), (311), (400), (422), (511), and 
(440) reflectance, respectively that are well-matched with 
JCPDS # 65–3107 [36]. The same set of mentioned peaks 
was seen in the XRD figures of Fe3O4@SiO2 core-shell and 
Fe3O4@SiO2-NH2 nanoparticles. No apparent change was 
detected in the XRD pattern after silica coating, indicat-
ing that the formed silica shell on the face of the magnetite 
was amorphous [18, 37]. This suggests that the Fe3O4@
SiO2 core-shell was manufactured well with no harm to the 
crystal structure of the Fe3O4 core. Also, as demonstrated 
during the coating and modification process, the crystallin-
ity or crystal structure of the nanoparticles was not changed, 
representing the surface modification of the Fe3O4 nanopar-
ticles didn’t influence the physical attributes of the magnetite 
materials [8]. Similar to the attained results of Mohammad 
et al., nanoparticles were synthesized successfully by the 
usage of the co-precipitation method. In another work, Chao 
et al. reported Fe3O4@SiO2 core-shell to size 20 nm that the 
nanoparticles were made of crystalline [38]. The crystallite 
size of nanoparticles was estimated via the Debye-Scherrer 

equation (Eq. 9) [39]. Fabrication of the crystalline structure 
of nanoparticles was approved via the XRD pattern and was 
comparable to the work of Zhang et al., [35].

where D is size, K is equal to 0.9, λ is equal to 0.154 nm, β 
is the width of the peak in half-maximum, and θ is the angle. 
The crystallite size of nanoparticles was presented in Table 1 
which is in agreement with the FESEM/PSA results. Also, 
the results of the current study are in agreement with the 
research of Ghasemzadeh et al. [18].

DLS and Zeta potential

The hydrodynamic diameter changes of Fe3O4, Fe3O4@
SiO2 core-shell, and Fe3O4@SiO2-NH2 nanoparticles were 
assessed by the usage of DLS analysis. DLS curves of nano-
particles were displayed in Fig. 8. The gained Z-averages 
and polydispersity index (PDI) were 45 (0.164), 126 (0.328), 
and 64 (0.233) nm respectively. Although FESEM/PSA 
images and XRD patterns of nanoparticles were shown of 
low aggregation. On the other, the hydrodynamic size of the 
Fe3O4@SiO2 core-shell was larger than its crystallite size. 

(9)D =
kλ

β cosθ

Table 1   Comparison of particle size of the samples

NPs Fe3O4 Fe3O4@SiO2 Fe3O4@
SiO2-
NH2

FWHM (Rad.) 0.236 0.708 0.344
2Theta (Deg.) 35.60 35.62 35.62
Crystallite size (nm) 35 20 24

Fig. 7   The XRD patterns of synthesized nanoparticles

Table 2   The Zeta potential and DLS results of Fe3O4, Fe3O4@SiO2 
core-shell, and Fe3O4@SiO2-NH2 nanoparticles

NPs Fe3O4 Fe3O4@SiO2 Fe3O4@SiO2-NH2

Zeta potential (mV) -13.03 -15.01 -13.26
Z-Average (nm) 45 64 126
Polydispersity Index 

(PDI)
0.164 0.328 0.233

Fig. 8   DLS analyses of synthesized nanoparticles
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The core-shell manufacture and presence of amine groups in 
the composition of Fe3O4@SiO2-NH2 nanoparticles caused 
a notable increase in the hydrodynamic sizes [8]. The hydro-
dynamic size of nanoparticles was influenced by the created 
Hydrogen bonds with water, which cause to increase in the 
size of particles [11]. The clustering more than of how many 
particles can be another probable explanation for this view. 
The zeta potentials were reported at pH: 7. The negative 
zeta potentials were presented for all the nanoparticles in the 
aqueous medium, which is a sign of particle stability. The 
Z-averages and polydispersity index (PDI) and zeta potential 
of nanoparticles were presented in Table 2. Similar to the 
attained results of Xueling et al., the narrow peaks of our 
work show that the Fe3O4@SiO2-NH2 nanoparticles were 
monodispersed [40].

FESEM/PSA/EDAX analysis

The shape and size of synthesized nanoparticles were 
described using FESEM/PSA/ EDAX analysis. The FESEM 
images of the synthesized Fe3O4, Fe3O4@SiO2 core-shell, 
and Fe3O4@SiO2-NH2 nanoparticles in different scales 
(200 and 500 nm, and 1 μm) were shown in Fig.  9a-c, 
e-g, i-k respectively. The synthesized Fe3O4 nanoparticles 
exhibited spherical shapes with uniform distribution. The 
FESEM image of the synthesized Fe3O4@SiO2 core-shell 
was observed spherical with the SiO2 layer and this layer 
was considered to consist of SiO2 [41]. Also, the FESEM 
images of Fe3O4@SiO2-NH2 nanoparticles showed a spheri-
cal shape after surface modification and these match with 
the FT-IR and XRD outcomes. The core (Fe3O4) and shell 
(SiO4) structure of the nanoparticles was clear in FESEM 
images. The rise in particle size next to coating via SiO2 and 
surface modification with NH2 groups was further confirmed 
by FESEM micrographs using ImageJ®. The PSA curves 
displayed that the particle size of Fe3O4@SiO2 core-shell 
(Fig. 9h, 45.4 nm) was bigger than those functionalized 
Fe3O4@SiO2 by NH2 groups (Fig. 9l, 39.3 nm), and Fe3O4 
(Fig. 9d, 39.1 nm). The EDX analysis demonstrated that 
the atomic composition of the Fe and O elements in Fe3O4 
nanoparticles was 41.11 and 58.89%, respectively (Fig. 9m). 
Additionally, the atomic percentage of O, Si, and Fe in the 
Fe3O4 nanoparticles coated with SiO2 were 62.21, 9.51, and 
28.28% respectively (Fig. 9n). Also, the atomic percentage 
of O, Si, N, and Fe in the Fe3O4@SiO2-NH2 nanoparticles 
was 69.28, 7.82, 6.9, and 16% respectively (Fig. 9o). The 
atomic and weight percentages of elements are presented 
in Table 3. The synthesized nanoparticles were wholly 
dispersed in the solution without aggregation, while Nas-
rollahzadeh et al. described similar outcomes [42]. Elham-
bakhsh et al. presented the size of magnetic nanoparticles 
in the range of 10–33 nm [43]. Also, similar morphologies 
were obtained by Ayed et al. [44].

VSM

The Magnetic behavior of synthesized nanoparticles was 
examined by the application of VSM analysis at room tem-
perature (Fig. 10). The suitable conditions for reaching a 
superparamagnetic behavior were related to the size of the 
nanoparticles, which needed to be between 30 and 50 nm 
and be lower than the superparamagnetic critical size [45]. 
The saturation magnetization (Ms) values of Fe3O4, Fe3O4@
SiO2 core-shell, and Fe3O4@SiO2-NH2 nanoparticles were 
64, 55, and 37 emu. g− 1 respectively. There were no val-
ues of remanence magnetization (Mr) and coercivity (Hc) 
detected thru the nanoparticles. The Ms values of Fe3O4@
SiO2 core-shell and Fe3O4@SiO2-NH2 nanoparticles were 
slightly decreased after the manufacture of core-shell and 
surface modification of nanoparticles, which could be 
approved to the magnetic nature of the compounds [46]. 
The results of our work were in agreement with the work of 
Pei et al. which exhibited superparamagnetic behavior [47]. 
Also, The outcomes are similar to Zhang et al. [48].

Evaluation of neurotoxicity effect

In the current study, 3-(4, 5-dimethylthiazol-2-yl)-2, 
5-diphenyltetrazolium bromide (MTT) test was applied to 
examine the cytotoxicity influence of Fe3O4, Fe3O4@SiO2 
core-shell, and Fe3O4@SiO2-NH2 nanoparticles on CT-26 
cell lines [49, 50]. For this aim, 100 uL of culture medium 
were treated in each well of a 96-well plate via different 
concentrations of nanoparticles (1, 10, 25, 50, 100, 200, and 
400 µg mL-1) to be incubated for 48 h [51]. Then, 40 µL 
of MTT solution (5 mg mL-1) was added to assess the cell 
viability and was incubated for 4 h at 37 °C. To continue, 
100 µL of DMSO was blended into each well to dissolve 
the formazan crystals. Afterward incubation, the absorbance 
was evaluated by the usage of a microplate reader at�max = 

Table 3   Results of EDX analysis of synthesized nanoparticles

Element W (%) A (%)

Fe3O4

 O 29.10 58.89
 Fe 70.90 41.11

Fe3O4@SiO2

 O 35.02 62.21
 Fe 55.58 28.28
 Si 9.40 9.51

Fe3O4@SiO2-NH2

 O 47.81 69.28
 Fe 38.55 16.00
 Si 9.47 7.82
 N 4.17 6.90
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570 nm. In end, the viability (%) was calculated by the usage 
of the following Eq. 10 [52].

The outcomes have shown that the viability decreased 
at concentrations above 50 µg mL-1, and the half-maximal 
inhibitory concentration (IC50) values of Fe3O4, Fe3O4@
SiO2 core-shell, and Fe3O4@SiO2-NH2 nanoparticles were 

(10)Viability(%) =
Abstest

Abscontrol
× 100

reported at about 50, 100, and 100 µg mL-1 respectively. 
The results of MTT assay nanoparticles on the CT-26 cell 
line were presented in Fig. 11. In the cytotoxicity studies, 
viability decreasing was observed for bare Fe3O4 compared 
to Fe3O4@SiO2 and Fe3O4@SiO2-NH2 nanoparticles. Here, 
coating and functionalization improve the biocompatibil-
ity nature of nanoparticles, which makes them a suitable 
contender. Overall, Fe3O4@SiO2 and Fe3O4@SiO2-NH2 
nanoparticles can act as a radiosensitizer in radiotherapy 
which may promote new opportunities for progress in cancer 

Fig. 9   The FESEM images 
(a-k) and PSA (d-l), and EDAX 
(m-o) of synthesized nanopar-
ticles
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radiotherapy to improve clinical efficacy in various cancer. 
According to obtained results, synthesized nanoparticles sig-
nificantly prevented the growth of cancer cells in low con-
centrations. Zhang et al. 2017, reported the anticancer effect 
of magnetic microspheres against the Hela cells and showed 
that when cells are exposed to nanoparticles, was decreases 
cell viability [53, 54]. The use of magnetic nanoparticles was 
increased as anticancer drugs for treatment, which leads to 
the study of nanoparticles and their widespread uses. There-
fore, the use of nanoparticles can be a novel method in the 
cure of cancer patients [55]. The importance of the present 
study became more apparent in vitro studies by considering 
the undeniable inhibitory effect of these nanoparticles [56, 

57]. In addition, no side effects have been reported after 
the use of these nanoparticles during previous research. The 
study of Zhang et al. has not shown any complications or 
negative results on human health [58].

Conclusion

In this work, Fe3O4, Fe3O4@SiO2 core-shell, and Fe3O4@
SiO2-NH2 nanoparticles were prepared successfully by the 
co-precipitation method, followed by surface modification. 
XRD, FESEM, and EDX were utilized to distinguish the 
microstructure and shape of the nanoparticles. The exist-
ence of functional groups was approved by FT-IR analysis. 
FESEM images showed that the morphology of nanoparti-
cles was shaped spherically. As a result, surface-modified 
nanoparticles may be applied for biomedical applications 
or as photocatalysts for pollutant degradation and other 
applications. The photocatalytic outcomes have shown that 
Fe3O4@SiO2-NH2 nanoparticles were suitable as a pho-
tocatalyst in MB dye degradation below UVA light. The 
degradation percentage of MB dye by the usage of Fe3O4@
SiO2-NH2 nanoparticles in optimum conditions was about 
90% (pH:11, catalyst concentration:10.0  mg L− 1, and 
the concentration of MB:1.0 mg L− 1 after 150 min. The 
obtained outcomes propose that Fe3O4@SiO2-NH2 nano-
particles are a new photocatalyst with high efficiency for 
the removal of organic wastewater. Also, the cytotoxicity 
of Fe3O4, Fe3O4@SiO2 core-shell, and Fe3O4@SiO2-NH2 
nanoparticles was investigated on the CT-26 cell line by 

Fig. 10   Hysteresis loops of synthesized nanoparticles

Fig. 11   Cell cytotoxicity of 
Fe3O4, Fe3O4@SiO2 core-shell, 
and Fe3O4@SiO2-NH2 nanopar-
ticles after 48 h of incubation on 
CT-26 cell lines



103Journal of Environmental Health Science and Engineering (2023) 21:93–105	

1 3

an MTT test and the IC50 values were reported at about 50, 
100, and100 µg mL− 1 respectively.
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