
RESEARCH ARTICLE

Journal of Environmental Health Science and Engineering (2022) 20:915–930
https://doi.org/10.1007/s40201-022-00831-0

Introduction

The current challenges in the world-wide water situation 
demand novel advanced technologies to guarantee the 
drinking water quality and to minimise global water pol-
lution. Nowadays, the ground/surface water sources are 
mainly contaminated by heavy metals, emerging micro-
contaminants, fertilizers, detergents, pesticides, and so forth 
[1]. Currently, heavy metals are the major concern in envi-
ronmental and industrial research [2]. Heavy metals can be 
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found in trace levels in natural water bodies [3, 4]. The envi-
ronment requires a suitable concentration of these metals 
for its proper metabolism. As rain water permeates through 
the rocks, it dissolves trace amounts of metals and naturally 
enters into water bodies [5]. Iron is one of these metals that 
can be found in rocks and soil. It ranks second in earth’s 
crust and fourth among the foremost rich elements on earth 
[6]. Even though iron plays a major role as a vital mineral 
nutrient, excessive iron in water is a problematic issue in 
making clean drinking water. Iron contamination occurs in 
water resources due to the leaching from rocks, industrial 
dumping, corrosion of iron pipes etc.

Iron in water supplies and drinking water creates aesthetic-
health issues and clogging problems as well as corrosion 
effects in water distribution systems [7, 8]. Overexposure to 
iron, on the other hand, can result in health problems such 
as hyperkeratosis, cardiovascular disease, diabetes, liver, 
kidney, neurological and respiratory disorders[9]. Iron can 
cause retinitis, conjunctivitis and choroiditis, if it comes 
into contact with and persists in the tissues[10]. Iron over-
load can impair hematopoiesis by destroying microenviron-
ment and progenitor cells for the formation of cellular blood 
components. Hemochromatosis is a condition in which the 
body’s iron levels are too high, causing damage to various 
organs [6]. Too much iron can be harmful to the gastrointes-
tinal system. Iron toxicity causes stomach pain, diarrhoea 
and vomiting. Over time, iron can accumulate in the organs, 
causing catastrophic damage to brain or liver [11].

Iron contamination is currently posing a serious threat 
to drinking water sources all over the world. The average 
groundwater iron level was reported as 1.422 mg/L, rang-
ing from 0.134 to 5.2 mg/L among the household wells of 
Cambodia’s rural Prey Veng province [12]. Excessive iron 
content was found in 17% of residential water supplies 
sampled in Pennsylvania, according to a state survey [13]. 
The iron content in groundwater of Tangail municipality, 
Bangladesh, was found to be 1.03–24.50 mg/L[14]. Iron 
was identified as the most common pollutant in a research 
carried out by the Central Water Commission (CWC) dur-
ing 2014–2018, in India with 156 of the 442 sampled sites 
having iron concentration above the admissible limit [15]. 
Studies conducted in most places in Thiruvananthapuram, 
Kerala (a southern state of India), by the Kerala State Pollu-
tion Control Board, on the Kerala Water Authority’s water 
supply quality, found higher iron values (1.02-1.47 mg/L)
[16]. These reports of increasing iron contamination as well 
as the revised stringent standard for drinking water (permis-
sible limit − 0.3 mg/L) demand more researches to develop 
stable and cost-effective methods/materials for the efficient 
removal of iron from water bodies.

Nano zero-valent iron (nZVI) has gained a lot of interest 
as a potential candidate for cleaning up various inorganic 

and organic pollutants [17, 18]. The presence of more reac-
tive sites and large surface area [19, 20] provide high sur-
face energy and reactivity for the nZVI. Thus it exhibits 
outstanding performance in removing priority water pollut-
ants at low environmental and ecnomic costs [4]. nZVI was 
used to remove heavy metals from wastewater in a study by 
Oprackal et al. 2017, and observed a decrease of influent iron 
concentration which indicates the potential of nZVI for iron 
remediation [21]. In our previous work [7, 8], the capacity 
of nZVI has been explored and found that nZVI is capable 
of removing 70% iron with 0.5 g/L dose at pH 10 (optimum) 
from a sample having 0.5 mg/L influent iron. Even though 
nZVI exhibits significant iron removal, the characterization 
study shows high agglomeration due to the forces between 
each nanoparticle. These aggregations produce an adverse 
effect on the surface area; number of reactive sites and in 
turn its performance on the removal capacity.

The issues associated with the agglomeration behaviour 
of the nZVI can be addressed by the surface modification/
immobilization of nZVI with agents such as clay miner-
als [22–26], surfactants [27–30] and polymers [31–33]. 
Recently, Calcium carbonate (CaCO3) has piqued the inter-
est of researchers due to its ease of modification and control 
in forming a specific structure [34, 35]. Moreover, it is a eas-
ily available natural resource and completely biodegradable 
as well as environmental friendly material [36]. CaCO3 is 
particularly effective at removing heavy metal ions because 
of its excellent adsorption capacity and unique structural 
characteristics [37–39]. nZVI particles modified by CaCO3 
have been reported to increase their stability and dispers-
ibility [35, 40]. However, there are no studies of encapsu-
lating nZVI in calcium carbonate for iron remediation. The 
potential of calcium carbonate encapsulated zero-valent 
iron nanoparticle (CaCO3-nZVI) for iron remediation was 
investigated in this work, and the removal mechanism was 
elucidated using various spectroscopic and microscopic 
analyses. The results of various operational parameters 
(nanoparticle dose, pH, influent iron content and process 
time) were interpreted using kinetic and isotherm models.

Materials and methods

Chemicals and instruments

Analytical grade reagents such as ferrous sulphate hep-
tahydrate (FeSO4.7H2O), calcium carbonate (CaCO3), 
ethylenediamine tetraacetic acid (EDTA), sodium borohy-
dride (NaBH4), ethanol (CH3CH2OH), ferric ammonium 
sulphate (NH4Fe(SO4)2.12H2O), ferrous ammonium sul-
phate ((NH4)2Fe(SO4)2.6H2O), hydrochloric acid (HCl) 
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and sodium hydroxide (NaOH) were procured from Merck 
Millipore.

Ultrasonic homogeniser sonicator of 20 kHz frequency 
with 12 mm ultrasonic probe was used for dispersing CaCO3 
in ethanol. Remi R-12 M laboratory centrifuge and Pal-
intest PTBH-7500 photometer were used for separation of 
nanoparticles and analysis of contaminant iron, respectively.

Synthesis of calcium carbonate encapsulated nano 
zero-valent iron (CaCO3-nZVI)

The liquid-phase reduction process is used to synthesise 
both bare nZVI and CaCO3-encapsulated nZVI.[24, 41]. 
CaCO3-nZVI was synthesised by adding a certain amount 
of CaCO3 to 150 mL of ethanol according to the desired 
CaCO3/Fe ratio and 10 min of dispersion was given by 
an ultrasonic sonicator. The amount of CaCO3 was varied 
as 0.17, 0.34, 0.51, and 0.68 g to obtain CaCO3 to theo-
retical Fe ratios of 0.2, 0.4, 0.6, and 0.8, respectively. 4.17 g 
FeSO4.7H2O (theoretical Fe content: 0.84 g) was dissolved 
in 150 mL distilled water and gently mixed with 100 mL 
0.05 M EDTA solution. CaCO3 suspension was added to a 
two-neck round bottom flask and blended with FeSO4.7H2O 
and EDTA solution. Nitrogen purging removed the dis-
solved oxygen. Then 2.84 g NaBH4 was dissolved in 100 
mL distilled water and dropped into the flask while con-
stantly shaking it. After introducing the entire reductant, the 
mixture was stirred again for 20 min. Centrifugation was 
used to collect the formed black nanoparticles, which were 
then washed three times with ethanol. The particles were 
oven-dried at 500 C before being stored in a tight container 
under normal conditions. The best composite was selected 
based on the iron removal capacity and employed for future 
studies.

Characterization studies

Transmission electron microscope (TEM, Jeol/JEM 2100) 
was employed to analyse the particle size, dispersity and 
morphology of both nZVI and CaCO3-nZVI. Scanning 
electron microscopy (SEM) and energy dispersive X-ray 
spectroscopy (EDX) mapping were used to characterise the 
morphological properties and basic composition of fresh 
and used CaCO3-nZVI.The instrument Carlz Zeiss Evo 18 
was used for this analysis at different magnification.

N2 adsorption-desorption isotherms were used to deter-
mine pore size, surface area and pore volume distribution 
using a Brunauer-–Emmett–Teller surface area analyser 
(Belsorp Max, MicrotracBelsorp, Japan). The interactive 
functional groups that participate in both modification and 
iron removal were identified using Fourier infrared (FTIR) 
analysis. Thermo Nicolet Avtar 370 model spectrometer 

was used to record FTIR spectrum in the transmission 
mode at room temperature using KBr pellets in the range 
400–4000 cm− 1. The crystal structure of CaCO3-nZVI 
was divulged by X-ray powder diffraction (XRD) patterns 
recorded on Bruker D8 diffractometer with a CuKα (λ = 1.54 
Å) high-power source which operates at 40 kV/ 40 mA. 
X-ray photoelectron spectrophotometer (PHI 5000 Versa 
Probe II, ULVAC-PHI Inc.) having Al-Kα X-ray source was 
used to identify the elements and their respective valence 
states in fresh and used CaCO3-nZVI.

Point of zero charge (pHpzc) of CaCO3-nZVI

Point of zero charge (pHpzc) of CaCO3-nZVI was deter-
mined in the 0.1 M KCl solution. The pH of KCl solution 
was varied from 2 to 12 using 1 N NaOH and 1 N HCl. The 
CaCO3-nZVI particles were added to these solutions and a 
control was also employed without any nanoparticles. The 
initial pH of control and sample was measured immediately 
after thorough mixing and final pH was checked after 24 h. 
The graph was plotted between initial and final pH for both 
control as well as sample. The meeting point of these curves 
was denoted as the point of zero charge.

Batch experiments

A set of batch tests were conducted to investigate the iron 
remediation potential of CaCO3-nZVI by using 200 mL iron 
solution with desired concentration at room temperature. As 
iron in surface water sources has different ferrous to fer-
ric ratio, a Fe2+/Fe3+ ratio of 2.5:0.5 [42] was selected for 
the simulated surface water in this study. Iron samples of 
desired concentration with Fe2+/Fe3+ ratio of 2.5:0.5 were 
prepared by dilution and mixing of ferrous and ferric stock 
solutions. The modified nanoparticles with CaCO3/Fe ratio 
of 0.6 were employed for all batch experiments as it showed 
highest removal capacity among the different ratios selected.

To study the effect of contact time on the iron uptake, 
0.1 g/L CaCO3-nZVI nanoparticles were added to 200 mL 
iron solution of 0.5 mg/L, at influent pH and agitated in an 
orbital shaker for a period of 24 h. The samples were with-
drawn and analysed at 1 h, 2 h, 3 h, 6 h, 12 and 24 h reaction 
period. Pseudo-first- and pseudo-second-order kinetic mod-
els were used to analyse the results. The Chi-square test (χ2) 
and regression coefficient (R2) were also used to evaluate 
the goodness of fit.

In the next stage of experiment, the pH of the iron solu-
tion was adjusted to the values in the range of 5–12 using 
1 N HCl and/or 1 N NaOH and the influence of pH was 
found by treating the 0.5 mg/L iron samples for 3 h (opti-
mum) with 0.1 g/L of CaCO3-nZVI particles.
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Results and discussion

Characterisation of CaCO3 encapsulated nZVI

The particle size, shape and dispersion of bare and modi-
fied nZVI particles were characterised by TEM and depicted 
in Fig. 1a-d and Fig.S1a-d (shown in supplementary sec-
tion), respectively. The CaCO3-nZVI particles were well 
dispersed with spherical shape, while roughly spherical 
particles with large aggregation could be identified for bare 
nZVI. A clear and distinct outline is recognized for the mod-
ified particle (Fig. 1c) whereas it is hardly seen in the case of 
bare nZVI (Fig.S1c). The size of the CaCO3-nZVI particles 
ranged from 75 to 89 nm, which was smaller than unmodi-
fied nZVI (80-99 nm). The surface modifier forms a layer 
on the nanoparticle surface which prevents the aggregation 
and in turn leads to the smaller size.CaCO3 modification 
could reduce magnetic attraction and van der Waals forces 
between zero-valent iron nanoparticles, improving stability. 
Cheng et al. 2020 also reported similar images [40].

The chemical composition of freshly prepared 
CaCO3-nZVI from the EDX analysis (Fig. 2) revealed the 
presence of Ca in addition to Fe, O and Na present in the 

Batch experiments were conducted at optimum pH and 
reaction period by adding different CaCO3-nZVI dose 
(0.05-1 g/L) to samples having influent iron 0.5 mg/L to elu-
cidate the role of amount of nanoparticle on iron removal.

Adsorption isotherms were obtained by treating iron solu-
tions of different initial iron concentration (0.5–10 mg/L) 
for 3 h period at pH 10 using 0.25 g/L CaCO3-nZVI. The 
utilized CaCO3-nZVI nanoparticles were collected from the 
treatment system by centrifugation and their reuse capacity 
in fresh 0.5 mg/L iron solution at optimized conditions with-
out any washing and desorption was investigated.

In all experiments, 10 mL sample was withdrawn at 
desired reaction time and allowed to settle for 20 min. The 
centrifugation as well as magnetic separation was used for 
the collected supernatant to separate CaCO3-nZVI nanopar-
ticles from the treated sample. Parallel experiments were 
conducted in all batches without adding the nanoparticles 
but otherwise under identical conditions (control). The total 
iron concentration in the treated sample and in control was 
analysed by using the Palintest PTBH-7500 photometer.

Fig. 1 (a)-(d) TEM images of 
CaCO3-nZVI
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photoelectron peaks at 724 eV and 710 eV. The overlap of 
shakeup satellites of zero-valent iron (2p1/2) and iron oxide 
(2p3/2) resulted in the 720 eV shoulder [2]. These peaks are 
indicative of the oxide/hydroxide layer present around the 
core of zero-valent iron.

The surface area of both bare and modified nZVI was 
calculated using multi-point BET plots (Fig.S3a and S3b). 
The obtained surface area increases significantly from 20.12 
m2/g (bare-nZVI) to 26.67 m2/g (CaCO3-nZVI). The modi-
fied particles have a total pore volume of 0.115 cm3/g and 
average pore diameter of 16.889 nm, whereas the unmodi-
fied nanoparticles have a total pore volume of 0.107 cm3/g 
and average pore diameter of 17.45 nm. The increased sur-
face area and pore volume imply that CaCO3-nZVI may 
have a higher removal capacity than bare nZVI.

EDX spectrum of bare nZVI (Fig.S2).The XPS analysis of 
CaCO3-nZVI surface (Fig. 3a) shows peaks at around 194, 
284, 347, 531 and 710 eV revealing the presence of boron, 
carbon, calcium, oxygen and iron, respectively. Moreover, 
the diffraction peaks at 2θ angle of 29.380 and 47.50in XRD 
(Fig. 4) are the typical peaks of CaCO3 [40]. The reflection 
peaks for the calcite crystals at 2θ angle of 29.40 and 47.50 
were ascribed to (104) and (018) crystallographic plane 
[35], suggesting the successful encapsulation of nZVI by 
calcium carbonate in calcite phase.

The zero-valent state of iron in encapsulated nanopar-
ticle is indicated by the peak at 2θ = 44.60 in XRD (Fig. 4) 
and the peak observed at 707 eV in the Fe 2p spectrum 
(Fig. 3b). The binding energies of 2p1/2 and 2p3/2 of iron 
oxide present in the nZVI surface can be attributed to the 

Fig. 3 (a) XPS surface spectrum 
of CaCO3-nZVI and (b) Fe 2p 
spectrum of CaCO3-nZVI

 

Fig. 2 EDX spectrum of CaCO3-nZVI
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Effect of influencing parameters on iron removal 
capacity

Effect of CaCO3/Fe ratio in the CaCO3-nZVI and contact time

The CaCO3/Fe ratio in the modified nanoparticle as well as 
the contact time play a significant role in the contaminant 
iron removal efficiency, as shown in Fig. 6a. The adsorp-
tion performance of CaCO3-nZVI improved when the 
CaCO3/Fe ratio increased from 0.2 to 0.6, and CaCO3-nZVI 
with a ratio of 0.6 showed the maximum removal efficiency 
of 78.6% at pH 6.85 with a 0.1 g/L dose. The modification 
of nanoparticles by CaCO3 results in increased dispersion 
of sorbents. However, when the ratio was increased to 0.8, 
the removal efficiency decreased to 70%. This might be due 
to the fact that CaCO3 content beyond optimum, occupies 
the reactive sites on the modified particle, hindering the 
adsorption of iron. The results also indicated that adsorption 
was rapid in the first few hours, with the highest removal 
efficiency at the end of three hours. There was no further 
increment in removal efficiency observed beyond 3 h and 
reaction rate reached the equilibrium condition. This fast 
adsorption rate indicates that large numbers of vacant sites 
are readily accessible for contaminant iron at the initial 
stage. The adsorption of contaminant iron to the vacant sites 
of CaCO3-nZVI becomes difficult after a certain time due to 

Figure 5 shows the FTIR spectrum for nZVI and 
CaCO3 encapsulated nZVI. The broad absorption band at 
3410 − 3128 cm− 1 is associated with O-H stretching vibra-
tion. The C-H bending vibrations are responsible for the 
band at 1383 cm− 1. The absorbance peak at 1107 cm− 1 
is correlated to C-O or C-O-C stretching vibrations [43]. 
These common peaks in the spectrum of both nZVI and 
CaCO3-nZVI correspond to EDTA. The C = O stretching 
vibration present in EDTA as well as in CaCO3 is illustrated 
by the absorbance peak at 1630 cm− 1. The comparison of 
the FTIR spectra of bare nZVI (Fig. 5a) and modified nZVI 
(Fig. 5b), reveals new peaks at 708, 873 and 1419 cm− 1 for 
modified nZVI that correspond to in-plane bending, out-of-
plane bending and asymmetrical stretching vibration peaks 
of O-C-O bonds present in CaCO3 respectively [44]. Fur-
thermore, the emergence of Ca-O bond stretching frequency 
at 534 cm− 1 indicates the interaction between the carboxyl-
ate group of EDTA and calcium ions of CaCO3 [45, 46]. The 
above results confirm that the modifier CaCO3 was success-
fully loaded onto the nZVI surface.

Fig. 4 XRD pattern of CaCO3 
encapsulated nZVI
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CaCO3-nZVI were used for treating the iron samples at 
optimum pH of 10. The involvement of influent iron con-
centration was investigated by varying the concentration 
for each CaCO3- nZVI dose from 0.5 mg/L to 10 mg/L. 
Figure 6c depicts the results. The maximum iron removal 
was 96.2% at 0.25 g/L for 0.5 mg/L influent iron concentra-
tion, resulting in a final concentration of 0.018 mg/L, well 
below the acceptable limit for potable water. The optimum 
CaCO3-nZVI dose for 10 mg/L influent iron sample was 
found to be 1 g/L and an iron removal efficiency of 92.1% 
was obtained at pH 10 and contact time 3 h.

The high removal efficiency at lower initial concentration 
for a given nanoparticle dose can be attributed to the high 
ratio of available active sites on the CaCO3-nZVI surface 
to the influent iron concentration. As influent concentra-
tion rises, the availability of sorption active sites decreases, 
resulting in lower removal efficiency.

For a given influent iron concentration, an increase in 
CaCO3-nZVI amount resulted in enhanced iron adsorption 
due to the availability of additional sites. The addition of 
CaCO3-nZVI over the optimal dose for a given concentra-
tion, on the other hand, did not appreciably boost adsorption. 
As adsorbent dosage increases, the probability of collision 
between nanoparticles increases, causing particle aggrega-
tion, thereby the diffusion path length gets increased. This 
reduce the total surface area and iron adsorption rate [47].

the repulsive forces between iron ions on the sorbent surface 
and in the solution.

Effect of pH

The pH of the solution affects both the metal chemistry 
and the surface charge of the CaCO3-nZVI, making it an 
important factor in heavy metal removal. The adsorption 
performance of CaCO3-nZVI (0.1 g/L) in 0.5 mg/L iron 
solution was monitored at different pH (5–12) for 3 h period 
(optimum) and is shown in Fig. 6b. At pH 10, the maxi-
mum removal efficiency of 88.4% was obtained. The lower 
removal efficiency in the acidic range is due to competition 
for vacant sites by H+ ions and contaminant iron ions. The 
obtained point of zero charge for CaCO3-nZVI was 9.21 
(Fig.S4), implying that at pH > pHpzc, the sorbent surface 
will become negatively charged and enhance contaminant 
iron adsorption.

Effect of CaCO3-nZVI dosage and influent iron 
concentration

The dosage of CaCO3-nZVI is an important parameter in 
determining its uptake capacity for a given initial contami-
nant iron concentration. So, to elucidate the role of modified 
nanoparticle dose on the iron removal efficiency, 0.05-1 g/L 

Fig. 5 FTIR spectrum of (a) 
nZVI and (b) CaCO3 -nZVI
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accomplished primarily through two distinct mechanisms. 
This includes (i) electron donation by the active core of 
nZVI to the heavy metal ions (redox process) and (ii) metal 
ion adsorption on the outer shell of nanoparticles (surface 
complexation). The first mechanism is used by nZVI to 
remove heavy metal ions whose standard reduction poten-
tial is less negative than the Fe potential. During this pro-
cess, electrons are transferred from the outer oxide layer of 
nZVI to the metal ions in the solution, causing the inner 
core of nZVI to oxidise. The chance for the first mecha-
nism to remove iron ions can be completely ruled out due 
to the same redox behaviour of the nanoparticles and the 
metal ions present in the aqueous medium. After treatment 
of CaCO3-nZVI with the iron solution, the inner core of the 
nanoparticles remain intact as evident from the Fe0 peaks 
(2θ = 44.60) in XRD (Fig. 9) as well as in XPS (Fig. 10). 
These analyses clearly establish the mechanism of iron 
remediation by CaCO3-nZVI as adsorption.

As represented in Figs. 10 and 11, increased atomic per-
centage of iron in XPS (1.9–14%) and the escalated weight% 
of iron in EDX (21.11–57.7%) confirmed the uptake of 
iron. The sorption of iron can be again validated by the 
emergence of small peaks corresponding to Fe3s and Fe3p 
around 90 eV in XPS as well as new 2θ peaks at 25.910, 
35.990 and 57.420 which correspond to oxides of iron viz. 
Fe2O3 and Fe3O4. The iron adsorption on CaCO3-nZVI is 

For an influent iron concentration of 0.5 mg/L, the iron 
removal efficiency of CaCO3-nZVI was 96.4%, while that 
for bare nZVI (contact time- 3 h, pH- 10, dosage-0.5 g/L) 
and CaCO3 (contact time-3 h, pH- 10, dosage-0.5 g/L) were 
70% and 23.8% respectively. The synergistic effect of modi-
fied particles in iron remediation is illustrated in Fig. 7.

Reusability of CaCO3-nZVI

The easy recovery of the adsorbent from the treatment 
system and its reusing capacity make the technique more 
environment-friendly and economical. The CaCO3-nZVI 
was recovered from the system by using centrifugation and 
reused without washing and desorption. The reusability per-
formance of CaCO3-nZVI in treatment of fresh iron sample 
of 0.5 mg/L concentration is illustrated in Fig. 8. The adsor-
bent possessed iron removal efficacy of 62.2% even after 
the 3rd cycle treatment. Depletion of active sites and effec-
tive surface led to the reduction of removal efficiency with 
each reuse.

Iron removal mechanism of CaCO3-nZVI

Iron nanoparticles have a core-shell structure, with the core 
being Fe0 and the shell being iron oxides/hydroxides [2]. 
Heavy metal removal from an aqueous system by nZVI is 

Fig. 6 Iron removal efficiency 
of CaCO3-nZVI with vary-
ing (a) CaCO3/Fe ratio in the 
CaCO3-nZVI and contact time 
[pH = 6.85, dosage = 0.1 g/L, 
influent iron = 0.5 mg/L] (b) pH 
[CaCO3/Fe ratio = 0.6, contact 
time = 3 h, dosage = 0.1 g/L, influ-
ent iron = 0.5 mg/L] (c) Influent 
iron concentration and adsorbent 
dosage [CaCO3/Fe ratio = 0.6, 
contact time = 3 h, pH10]
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1) The broad absorption band at 3410 − 3128 cm-1 cor-
responding to O-H stretching vibration is shifted to 

proposed to occur in the following ways in light of FTIR 
spectrum of nanoparticle (Fig. 12) after treatment:

Fig. 8 Reusability of 
CaCO3- nZVI
 

Fig. 7 Comparison of iron 
removal efficiency of CaCO3, 
nZVI with CaCO3-nZVI
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exhibited synergy which contributed to the high removal 
efficiency of iron.

Adsorption isotherm modelling

The Langmuir, Freundlich and adsorption isotherms of sur-
face modified nZVI were investigated by the adsorption 
data for varying initial concentration. The linearized equa-
tions of these models are given in Eqs. (1)-(3), respectively.

 
1
qe

=
1
qm

+
1

qmkL
X

1
Ce

Eq. (1)

 
logqe = logkf +

1
n
logCeEq. (2)

 lnqe = lnqd − 2Eq. (3)

Where Ce and qe denotes iron concentration (mg/L) and 
sorption capacity (mg/g) at equilibrium, respectively. Lang-
muir constant, kL, represents the adsorption free energy, and 
qm defines maximum adsorption capacity (mg/g). kf and n 
in Freundlich isotherm model represent the sorption capac-
ity and adsorption intensity, respectively. The D-R isotherm 
constant qd relates to maximum coverage (mg/g), and it is 
associated with mean free energy (E). Equations (4) and (5) 
are used to compute the parameter ε in the D-R isotherm and 
the mean free energy, respectively [10, 48].

 
e = RTln

[
1 +

1
Ce

]
Eq. (4)

 
E =

1√
2

Eq. (5)

The isotherm plots are shown in Fig. 13, and the variables 
are provided in Table 1. As illustrated, the Freundlich model 
with a regression coefficient of 0.962 best describes iron 
removal by CaCO3-nZVI. It demonstrates the possibilities 

3360 cm-1 showing the possibility of contaminant iron 
adsorption on iron oxide/hydroxide shell.

2) The absorption band at 1630 cm-1 before treatment is 
shifted to 1618 cm-1 after treatment. This peak is attrib-
uted to the C = O stretching vibration present in the 
EDTA as well as in CaCO3 and confirms the contami-
nant iron adsorption on these groups.

3) The peak at 1383 cm-1 (C-H stretching vibration) has 
disappeared and the peak at 1107 cm-1 (C-O or C-O-C) 
shifted to 1114 cm-1 after treatment. The above changes 
in the peaks of functional groups present in EDTA also 
reveal iron adsorption.

The characterisation studies thus divulge the involvement 
of iron oxide/hydroxide shell, EDTA and CaCO3 in the iron 
sorption process. The large specific surface area and strong 
unbalanced surface energy of nZVI make them highly tun-
able for various surface modifications leading to develop-
ment of promising adsorbents. CaC03-nZVI formed by 
effective encapsulation possessed increased stability and 

Fig. 10 (a) XPS surface spectrum 
and (b) Fe 2p spectrum of 
CaCO3-nZVI after treatment

 

Fig. 9 XRD pattern of CaCO3-nZVI after treatment
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The adsorption process on heterogeneous surfaces with 
Gaussian energy distribution are usually represented by 
the Dubinin-Radushkevich adsorption isotherm model. It’s 
a pore-filling mechanism-based semi-empirical equation. 
The lower regression coefficient and calculated mean free 
energy, E (Table 1) (E < 8 kJ/mol), suggests that physical 
processes are in control of this adsorption [49].

Adsorption kinetics

To gain a better understanding of the kinetics of the process, 
the iron adsorption on CaCO3- nZVI was investigated at 
various contact times. The iron solution, which had an ini-
tial concentration of 0.5 mg/L, was agitated with modified 
nZVI for 1 to 24 h. Pseudo-first order and pseudo-second 
order models were used to describe the kinetics. These mod-
els are described by the equations below:

.ln (qe − qt) = lnqe − k1tEq. (7)

 
t
qt

=
1

k2qe2
+

1
qe
tEq. (8)

Where adsorbed iron amount at equilibrium and at time t 
are represented by qe and qt, respectively. k1 and k2 are the 

of a heterogeneous surface, and that the available adsorption 
sites are distributed exponentially. According to this model 
theory, the sorption sites with high binding energy will be 
occupied first, and the active site energy would then decline 
exponentially as the sorption process progresses. The param-
eters of Freundlich isotherm, kf and 1/n, represent sorption 
capacity factor and sorption intensity, respectively. The 
adsorption is irreversible when 1/n = 1, while the adsorp-
tion is favourable when 1/n is greater than zero (0 < 1/n < 1), 
and it is unfavourable when 1/n > 1. The obtained 1/n value 
for this study is 0.393 which indicates that the adsorption is 
favourable[48].

The regression coefficient for the Langmuir isotherm 
model is 0.952 and it indicates that this isotherm model may 
also be well adopted. The applicability of the Langmuir 
model can be evaluated by a dimensionless constant called 
separation factor, RL and is expressed as:

 
RL =

1
1 + kLC0

Eq. (6)

Where, C0 is the influent iron content and kL is the Lang-
muir constant. The separation factor for iron adsorption on 
CaCO3-nZVI was in between 0 and 1, which further indi-
cates favourable adsorption of iron [48].

Fig. 11 EDX spectrum of CaCO3-nZVI after treatment
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is very low. These findings suggest that the rate of adsorp-
tion is decided by adsorption capacity rather than influent 
iron concentration [51].

Comparison of different sorbents for iron removal

An adsorbent can be considered to be highly suitable when 
the following requirements are met, such as, (a) adsorption 
capacity (b) raw material abundance and (c) low cost. In 
this context, CaCO3-nZVI can be considered to be a better 
adsorbent for iron removal in comparison to those reported 
in previous studies (Table 3) CaCO3-nZVI outperformed 
both traditional sorbents and nano materials in iron removal. 
Moreover, the cost of the adsorbent is ₹150/kg which is less 
than conventional sorbents (activated carbon =₹200/kg). In 
comparison to study conducted in wastewater using a nano 
composite of carbon nanotubes (CNT) and nano iron oxide, 
the iron removal efficacy obtained in the present study is 
found to be low. However, as Fe3O4/CNT nano composite is 
toxic and expensive, its application is limited.

notations used to represent pseudo fist order and pseudo sec-
ond order constants, respectively.

The Chi-square (χ2) test and the regression coefficient 
(R2) are used to assess the quality of kinetic model fit. The 
deviation between the model and experimental data can 
be calculated by Chi-square and its mathematical form is 
expressed as [50]:

 
χ2 =

∑ [qe,exp − qe,cal]
2

qe,cal
Eq. (9)

Where sorption capacity of nanoparticle at equilibrium from 
experimental andmodel data are represented by qe,exp and 
qe,cal, respectively.

The kinetic models in Fig. 14, as well as the values men-
tioned in Table 2, indicate that the iron sorption process of 
CaCO3-nZVI was regulated by a pseudo-second-order reac-
tion mechanism. The maximum adsorption capacity cal-
culated using a pseudo-second-order kinetics is extremely 
close to the experimental value and χ2 value for this model 

Table 1 Iron adsorption isotherm parameters for CaCO3- nZVI
Langmuir isotherm Freundlich isotherm D-R isotherm
qm (mg/g) kL (L/mg) R2 kf (mg/g)(L/mg)1/n n R2 qd (mg/g) β E (kJ/mol) R2

7.64 18.44 0.952 9.91 2.545 0.961 8.26 2 × 10− 8 5 0.912

Fig. 12 FTIR spectrum of 
CaCO3-nZVI after treatment
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the surface modification of nZVI favourable for enhanced 
adsorption. EDX, XRD, FTIR and XPS spectra revealed 
the elemental and functional characteristics of modified 
nanoparticle. Ratio of CaCO3 to Fe in surface modifica-
tion was found to affect the iron removal efficiency. Fur-
thermore, the iron removal efficiency of CaCO3-nZVI was 

Conclusion

The prevention of aggregation behaviour as well as excel-
lent iron removal performance was achieved through the 
surface modification of nZVI using CaCO3. The TEM and 
SEM images as well as increment in BET surface area show 

Table 2 iron adsorption kinetic parameters for CaCO3-nZVI
qe,exp (mg/g) Pseudo-first-order kinetics Pseudo-second-order kinetics

k1 (h− 1) qe,cal (mg/g) R2 k2 (h− 1) qe,cal (mg/g) R2

3.96 0.327 0.982 0.435 0.168 4.26 0.988
χ2 1.882 0.705

Fig. 14 (a) pseudo-first-order 
kinetic model (b) pseudo-second-
order kinetic model

 

Fig. 13 Isotherm plots for iron 
adsorption on CaCO3- nZVI: (a) 
Langmuir isotherm (b) Freun-
dlich isotherm (c) D-R isotherm
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