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Abstract
Introduction  Methicillin-resistant Staphylococcus aureus (MRSA) is considered resistant to beta-lactam antibiotic groups. 
Infection caused by this strain is more difficult to treat with antibiotics, and hence, it will be more dangerous. This study 
focused on detecting the mecA gene Staphylococcus in sanitary swimming pools and Jacuzzis in Yazd city, Iran (2019). 
Also, the relationship between methicillin-resistant Staphylococcus aureus (MRSA) and the water quality standards has 
been investigated.
Materials and Methods  60 samples were randomly collected in sterile bottles from 20 active pools and Jacuzzis. Quality 
parameters were analyzed by standard methods. Antibiotic resistance and the mecA gene’s presence were detected by the 
disk diffusion and PCR method, respectively.
Results  The results of this study showed that the resistance of Staphylococcus aureus isolates was high against erythromycin 
(41.20%), tetracycline (35.10%), clindamycin (28.90%), and cefoxitin (25.80%). Out of 97 samples, 9 (25.80%) strains of 
Staphylococcus aureus were identified as MRSA, 30 samples (30.92%) showed multiple patterns of antibiotic resistance, 
and 9 samples (9.27%) carried the mecA gene. The results revealed that water quality has greatly impacted the mecA gene 
strain presence, especially microbial parameters. On the other hand, in the presence of mecA gene strains, the averages 
of microbial qualities were higher than standard in Jacuzzis; the latter finding was confirmed for swimming pools due to 
physicochemical parameters.
Conclusion  The number of reported sanitary water is increasing, and this study's results are useful examples of these find-
ings. Therefore, a lack of careful and regular monitoring of swimming pools and Jacuzzis can lead to MSRA prevalence 
and outbreak sources.
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Introduction

Swimming pools and Jacuzzis can act as a potential source 
of biological contaminants due to direct and continuous con-
tact with different human groups that differ in economic, 
social, individual, and public health status [1, 2]

Recently, the risk of the occurrence and prevalence of 
emerging biological agents is increasing, and therefore, it 
is necessary to consider health measures more than ever. 
Besides, to control pathogens, using beta-lactam antibiot-
ics such as penicillin, methicillin, oxacillin, and cephalo-
sporins is increasing. Despite the effectiveness of using 
these drugs, some pathogens have acquired resistance 
due to continuous contact, and consequently, these drugs 
could not eliminate them. Humans and animals have been 
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reported as potential living sources of antibiotic resistance 
in aquatic environments and can transmit antibiotic resist-
ance genes through transposons, plasmids, and integrons 
to other pathogens and microbes naturally present in water 
[3]. The possibility of antibiotic-resistant genes transmis-
sion is a concern, especially in the presence of these genes 
in the water. Many people may be affected by contami-
nated water containing antibiotic-resistant bacteria [4, 5].

Staphylococcus aureus is one of the pathogens on the 
list of standard criteria that should be considered in rec-
reational water, including swimming pools and Jacuzzis. 
Staphylococcus aureus (MRSA) and infection sources 
cannot be recognized, and infection symptoms may 
appear months after the patient is exposed to the infec-
tion. Infected patients may act as reservoirs for further 
transmission, especially since most of these species con-
tain different types of SCCmec (Staphylococcal Cassette 
Chromosome mec) encoded for resistance to methicillin 
and other beta-lactams [3].

Staphylococcus aureus is an opportunistic bacterium that 
plays a significant role in recreational water [6]. It is also 
a halophile bacterium and causes a wide range of human 
diseases such as skin and soft-tissue infections (SSTIs) and 
invasive diseases such as bacteremia, sepsis, endocardi-
tis, and pneumonia, which are among the leading causes 
of deadly infections in developed and developing societies 
[7–9].

Moreover, Staphylococcus aureus infections become 
more troublesome when they contain MRSA [10]. The 
MRSA strain includes a group of Staphylococcus aureus 
resistant to a wide range of beta-lactam antibiotics, includ-
ing penicillins and cephalosporins [11, 12]. Staphylococcus 
aureus species are not inherently antibiotic-resistant, and the 
development of such resistance does not make them resist-
ant. However, this strain of Staphylococcus aureus infection 
is more difficult to treat with standard antibiotics, and hence, 
it will be more dangerous [13]. On average, 40% of Staphy-
lococcus aureus strains are resistant to methicillin, increas-
ing every year [14]. In 2014, MRSA was estimated to cause 
72,444 clinical infections and 9194 deaths in the United 
States [15]. Besides, methicillin-resistant Staphylococcus 
aureus strains became resistant by acquiring the mecA gene, 
which is scientifically called methicillin resistance [16, 17].

The prevalence of MRSA was initially associated with 
hospital-associated methicillin-resistant Staphylococcus 
aureus (HA-MRSA) and exposure to an infected patient. 
However, community-associated methicillin-resistant Staph-
ylococcus aureus (CA-MRSA) has been identified since 
1990 [18]. MRSA infection can also be transmitted by using 
recreational seawater, beaches, and pools that are not prop-
erly managed or mineral water bottles scattered around [19]. 
Sources of Staphylococcus aureus and MRSA contamination 
in the marine environment have not yet been identified [20].

Given that swimming pools are recreational places for 
public use, it will be necessary to detect this bacterium 
in these places. This study’s main purpose was to detect 
Staphylococcus containing the mecA gene in the sanitary 
swimming pools’ and Jacuzzis’ water. Also, the correlation 
of MRSA and the quality parameters' standards have been 
investigated.

Material and Methods

Study area and sampling

This study was conducted in Yazd (Iran) cross-sectionally 
in two seasons, namely summer and autumn (2019). Ten 
pools and ten Jacuzzis were investigated. Selected pools 
and Jacuzzis had the same treatment methods. According 
to Iranian National Standard No. 4208 [21], the sampling 
method was performed once every 15 days and in a total of 
8 stages. Overall, 160 samples were taken (80 pools and 80 
Jacuzzis). 10–15% of the total analyses were considered as 
repeatability.

Physical parameters of water, including residual chlorine, 
pH, and temperature, were in situ measurements. The Hatch 
device analyzed the turbidity and electrical conductivity 
(EC) parameters (2, 28, 29). DPD (Diethyl-p-phenylene-
diamine) calorimeter kit was used to measure the residual 
chlorine, and a pH Portable Multiparameter Meter was used. 
Total and fecal coliforms were performed as standard meth-
ods for water and wastewater examination [22]. Materials 
were purchased from Merck Company.

Staphylococcus aureus laboratory and antibiotic suscep-
tibility test.

The Membrane Filter (MF) and Baird-Parker Agar Base 
were used to grow and isolate Staphylococcus aureus detec-
tion. 100 ml of the sample was passed through a membrane 
filter of 0.45 μm. The filter was then transferred into a plate 
containing the Baird-Parker Agar Base and placed in an 
incubator at 37 °C for 24 h. Standard microbial tests such as 
catalase, coagulase, DNase, and Gram staining were used to 
identify the bacteria [22, 23].

Antimicrobial agent susceptibility of bacteria was deter-
mined by the Kirby-Bauer test [24]. Muller-Hinton agar 
medium was used as the medium of choice for the experi-
ment. Discs of quinupristin-dalfopristin, cefoxitin, clinda-
mycin, gentamicin, linezolid, erythromycin, tetracycline, 
vancomycin, mupirocin, ofloxacin, and ciprofloxacin of the 
Mast UK. of the United Kingdom were used in this study. 
Freshly purified cultured bacteria were harvested from 3–4 
colonies using a swab to prepare the microbial suspension 
in this experiment. They were suspended in a saline tube to 
obtain turbidity equal to that of a standard tube (0.5 McFar-
land solution). It was then spread on the plate's surface at an 
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angle of 60 degrees toward each other, and finally, the swab 
was rotated around the inner part of the plate. Antibiotic 
discs were placed near the flame at the culture medium’s 
surface and held in place with the pence tip to complete the 
contact. The plates were placed at 35 °C for 18–24 h, after 
which the growth inhibition zone was measured in millime-
ters using an accurate ruler, and the susceptibility of the bac-
teria to antibiotics was reported as sensitive, semi-sensitive, 
and resistant. This method was performed using a cefoxitin 
30 µg disc from Mast UK. The growth inhibition zone of up 
to 21 mm was considered a methicillin-resistant strain [25].

DNA extraction and PCR analyses

The boiling method was used to obtain genomic DNA 
[26]. One milliliter of the bacterial suspension was poured 
into a sterile microtubule of 0.2 ml and centrifuged at 
1000 (× g) for 10 min. After draining the supernatant, 
one milliliter of sterile PBS buffer was added, and a uni-
form suspension was obtained. It was then centrifuged 
at 5232 (× g) for 4 min. After draining the supernatant 
to the sediment, one milliliter of PBS buffer was added 
again, and centrifugation was repeated. Finally, the super-
natant was discarded, and the precipitate was used for cell 
lysis. 100 μl of distilled water was added to the precipitate 
for injection, the microtube lid was closed and sealed by 
parafilm, and the microtube was boiled at 100 °C. The 
microtubes were kept in the freezer at -20 °C for 10 min. 
Subsequently, the microtubes containing the solution 
were centrifuged at 4000 (× g) for 5 min. The superna-
tant was transferred into a sterile microtube as a solution 
containing genomic DNA, and the sample was stored in 
a freezer at -20 °C until further testing.

Quantitative analysis of the extracted DNA was per-
formed by spectrophotometry. Each sample was examined 
at wavelengths of 260 and 280 nm, and DNA purity was 
calculated by obtaining the light absorption ratio of 260 
to 280 [27].

16S rRNA gene amplification was used as an internal 
reaction control. Sterile 0.2 ml microtubes were selected 
according to the number of samples tested. Also, a 1.5 ml 
microtube was selected and marked to prepare a master 
mix. The required amount of PCR solution components 
including 5.2 μl of sterile distilled water, 10 μl PCR mas-
ter mix, 5.2 μl primer, and 5 μl of template DNA were 
prepared in a volume of 20 μl for each sample. Accord-
ing to the predetermined temperature programming, the 
microtubes prepared in the thermal cycler (Table 1) were 
used to amplify the desired gene using a specific mecA 
primer with a size of 293 base pairs (bp) in a polymerase 
chain reaction (PCR) [28].

Results

Antibiotic resistance pattern

The antibiotic resistance pattern of Staphylococcus aureus iso-
lates as frequencies are presented in Table 2.

As shown in Table  2, the Staphylococcus aureus iso-
lates were resistant to erythromycin (41.20%), tetracycline 
(35.10%), clindamycin (28.90%), cefoxitin (25.80%), mupi-
rocin (7.20%), ofloxacin (20.6%), and ciprofloxacin (1.10%). 
Figure 1 shows the antibiotics used and the antibiotic resist-
ance pattern based on the Clinical Laboratory Standards Insti-
tute (CLSI) guidlines.

As shown, creating a bright halo around the bacteria indi-
cates susceptibility to an antimicrobial agent. Brighter halo 
was described as more susceptibility to the antimicrobial 
agent.

Table 1   Temperature program for replication with MEC primer

Number of cycles Temperature (°C) Time (s)

1 (Denaturing) 94 300

30 (Annealing)
94 45
52 30
72 45

1 (Extension) 72 300

Table 2   Frequencies and Antibiotic resistance pattern of Staphylococcus 
aureus

Antibiotic resistance Antibiotic concen-
tration (µg)

Antibiotic

Number Per-
centage 
(%)

QD 15 0 0
Linezolid 30 0 0
Mupirocin 20 7.2 7
Cefoxitin 30 25.8 25
Ciprofloxacin 5 1.1 1
Ofloxacin 5 6.2 6
Erythromycin 15 41.20 40
Clindamycin 2 28.9 28
Gentamicin 120 0 0
Vancomycin 30 0 0
Tetracycline 30 35.10 34
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Methicillin‑resistant gene (mecA) and MDR isolates

Table 3 shows the frequency distribution of strains with 
methicillin-resistant gene (mecA) and multidrug resistance 
(MDR) in swimming pools and Jacuzzis.

As presented, 30 samples (30.92%) of Staphylococcus 
aureus isolates revealed multidrug resistance (resistance to 
3 or more classes of antibiotics studied), and 9 Staphylococ-
cus aureus isolates (9.27%) contained methicillin-resistant 
gene (mecA). Figure 2 demonstrates the electrophoresis of 
the mecA gene by PCR method in a 1.5% agarose gel with 
a bandwidth of 293 bp.

Frequency of mecA gene strains 
and physicochemical parameters

A comparison of the frequency of strains with the mecA gene 
concerning physicochemical parameters in the swimming 
pools and Jacuzzis is presented in Table 4.

As shown, in compression with lack of a resistant gene, in 
swimming pools with conditions including average residual 
chlorine of 0.83 ± 0.05, an average temperature of 32 ± 1 °C, 
average turbidity of 0.52 ± 0.04, and the average EC was 
equal to 2086.66 ± 201.32 uS/cm. Besides, the frequen-
cies of Staphylococcus aureus strains with the mecA gene 
were higher. These conditions were also similar for Jacuz-
zis including average residual chlorine of 0.15 ± 0.19, the 
average temperature of 41.5 ± 0.54 °C, average turbidity of 
0.72 ± 0.1, and the average EC was equal to 2230 ± 7100.54 
uS/cm.

Frequency of mecA gene strains and microbial 
quality parameters

Table 5 indicates the frequency of mecA gene strains consid-
ering total coliform, fecal coliform, and heterotrophic bacte-
ria (parameters mentioned in the standard) in the swimming 
pools and Jacuzzis.

According to Table 5, in the presence of mecA gene 
strains, the averages microbial quality in the Jacuzzi was 
higher than the microbial standard, so that the average 

Fig. 1   The antibiotic resistance pattern according to CLSI standard 
guidelines

Table 3   Frequencies of mecA gene and MDR in Staphylococcus 
aureus isolates

mecA MDR

Percentage (%) Number Percentage (%) Number

9.27 9 30.92 30

Fig. 2   Electrophoresis of PCR product of the mecA gene

Table 4   Frequency of 
mecA gene strains and 
physicochemical parameters

Variables Pool Jacuzzis

Lack of a resistant 
gene

Containing a resist-
ant gene

Lack of a resistant 
gene

Containing a resistant 
gene

N Average Sd N Average Sd N Average Sd N Average Sd

cl2 77 1.9 0.88 3 0.83 0.05 74 1.18 1.05 6 0.15 0.19
Temperature 77 30.63 1.5 3 32 1 74 40.70 1.31 6 41.5 0.54
pH 77 7.79 0.14 3 7.73 0.05 74 7.73 0.11 6 7.75 0.10
Turbidity 77 0.4 0.21 3 0.52 0.04 74 0.46 0.26 6 0.74 0.34
EC 77 1503.59 537.68 3 2086.66 201.32 74 1244.75 568.97 6 2230 710.54
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number of total coliforms, fecal coliform, and hetero-
trophic bacteria in the presence of mecA gene strains were 
165 ± 228.61, 50 ± 93.33 and 2599 ± 2026, respectively. 
On the other hand, in the absence of mecA gene strains, 
the average resistance of these bacteria was 53 ± 181.22, 
20 ± 1918.74, and 165 ± 228.61, respectively. However, this 
situation was not the case in the swimming pools.

Discussion

This study aimed to determine the presence of Staphylococ-
cus aureus with mecA gen and its frequencies with physico-
chemical and microbial standard values. The results of this 
study indicated that the highest drug resistance of Staphy-
lococcus aureus isolates was to erythromycin (41.20%), 
tetracycline (35.10%), clindamycin (28.90%), and cefoxitin 
(25.80%). A similar study on public recreational water and 
coastal sands in the Eastern Cape Province of South Africa 
has shown Staphylococcus aureus resistance to erythro-
mycin (70%) and clindamycin (80%) [3]. Staphylococcus 
aureus isolated from treated wastewater and surface water in 
Durban, South Africa, was resistant to erythromycin (40%) 
and cefoxitin (96.25%) [29]. The Staphylococcus aureus 
antibiotic susceptibility test in water resources from differ-
ent regions in Al Anbar Province, Iraq, showed complete 
resistance to methicillin, erythromycin, and doxycycline [4].

In this study, cefoxitin disc was used to confirm the 
resistance of Staphylococcus aureus isolates to methicillin, 
and as mentioned, 25.80% of Staphylococcus aureus iso-
lates were MRSA (Table 2). In a similarly conducted study 
by Puma et al., 67% of domestic water samples contained 
staphylococci, and 30.7% were MRSA [12]. In the study 
of Masoud et al., nine strains of Staphylococcus aureus 
were identified as MRSA out of 18 samples collected from 
swimming pool water in Alexandria [2]. Also, the result 
of a study performed by Sinigalliano et al. showed that 
1% of MRSA was in seawater [30]. The results of a per-
formed study by Sina et al. revealed that 53.85% of the 
groundwater with irrigation purpose in Cotonou contained 
S. aureus [31]. Some factors could be effective in causing 
MRSA, such as changes in the geographical location of the 
study areas and the type of water resource. The resistance 
may be due to the accidental use of antibiotics or drugs 

over an incomplete period, leading to bacterial multidrug 
resistance (MDR) [4]. In this study, 30 isolates of Staphy-
lococcus aureus (30.92%) were MDR. Another study con-
ducted by Messi et al. showed 55% of bacterial isolates 
with MDR in the mineral water [32]. In the Aluva River, 
Nigeria, MDR (100%) was established to all antibiotics 
by all Bacillus strains, Micrococcus, and Pseudomonas, 
and therefore the Aluva River was not safe for drinking 
[33]. In health centers and hospitals, the high frequency 
of multidrug resistance of isolated Staphylococcus aureus 
may lead to failure of the patient’s treatment process and 
the possibility of transmitting plasmid resistance to patho-
genic bacteria. As a result, the health of people who come 
in contact with polluted recreational water will also be 
endangered.

The results of the current study showed that nine Staphy-
lococcus aureus strains (9.27%) were methicillin-resistant 
(mecA) genes (Table 3). Tiao found that none of the 20 
strains of Staphylococcus aureus tested in his study had 
the mecA gene, and one case showed methicillin resistance 
phenotypically [34]. All 30 (100%) Staphylococcus aureus 
isolates of recreational water and coastal sand in the Eastern 
Cape Province of South Africa exhibited multiple antibiotic 
resistance patterns (resistant to three or more antibiotics). 
Meanwhile, the mecA gene was detected in only five sam-
ples (22.7%)[13].

Comparing the frequency of mecA gene strains and 
physicochemical parameters (Table 4) showed that when 
the physicochemical parameters of water were higher than 
standard, the frequency of mecA gene-containing Staphylo-
coccus aureus was also high. In the study done by Masoud 
et al., MRSA did not survive long in hot water pools or 
Jacuzzis using the proper disinfectant (chlorine) and pH [2]. 
Gregg and Robin found that chlorine significantly reduced 
MRSA growth and eliminated all MRSA after one hour [35]. 
In the study of Geyse et al., the bacteriological water quality 
criteria of drinking water in four urban parks of Sao Paulo 
were according to Brazilian regulations, but no residual 
chlorine was found in the samples (< 0.1 mg/l). These data 
were significantly correlated with the prevalence of Staphy-
lococcus aureus found in 25.2% of the samples. The mecA 
gene was detected in 36.7% of the isolates, indicating its 
potential for resistance to several antimicrobials. In addition, 

Table 5   Frequency of mecA 
gene strains and microbial 
parameters

Variables Pools Jacuzzis

Lack of a resistant 
gene

Containing a 
resistant gene

Lack of a resistant 
gene

Containing a resist-
ant gene

N Average Sd N Average Sd N Average Sd N Average Sd

Total coliform 77 17 126.58 3 13 3.46 74 35 181.22 6 165 228.61
Fecal coliform 77 15 125.66 3 8 1.15 74 20 130.74 6 50 93.33
Heterotrophic 77 562 2028.06 3 1210 1398 74 1016 1918 6 2599 2026
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27.3% of isolates carrying the mecA gene had MRSA phe-
notypic potential [36].

Water temperature was another factor influencing the fre-
quency of the mecA gene strains in the way that increasing 
the average temperature of swimming pools, 32 °C, com-
pared to a temperature of 30.36 °C, increased the frequency 
of strains with the mecA gene. Moreover, the number of 
strains (6 cases) was more in swimming pools than in Jacuz-
zis (3 cases), which can be related to their higher tempera-
ture. When the water temperature was higher in Jacuzzis, 
more frequencies of mecA gene strains were observed. As 
reported by Leoni et al. [37] and Osei-Adjei et al. [38], 
microbial growth increases when the swimming pool water 
temperature rises. Turbidity and EC were the other influen-
tial physical parameters assisting the prevalence of strains 
with the mecA gene, so their increase has risen mecA. Other 
studies have revealed that Staphylococcus aureus and MRSA 
can survive for days in seawater. They can even survive bet-
ter in seawater due to their higher salinity preference [5, 
20, 39]. Kloos et al. [39] and Tolba et al. [40] reported that 
higher salt concentrations were more desirable for staphy-
lococci and microscopes. Levin-Edens et al. reported that 
salinity is an important factor in MRSA and MSSA. This 
study indicated that the MRSA/MSSA ratio in freshwater 
versus seawater was higher in the Pacific Northwest [19], 
which is consistent with the present study’s findings. The 
results of the frequency of mecA gene strains and microbial 
contamination also showed that the average number of all 
three types of bacteria is higher in the presence of strains 
containing the mecA gene in Jacuzzis (Table 5). However, 
this latter finding was not applicable for swimming pools, 
which may be due to the much higher pollution of the 
Jacuzzis.

The prevalence of Staphylococcus aureus and MRSA is 
increasing, leading to the inclination of hospital-associated 
and community-acquired infections worldwide, which is 
a major public health concern [3]. It may be hypothesized 
that recreational water, contaminated water, acts as a tran-
sient environmental reservoir for MRSA. Thus, dangerous 
crowds may use these resources for recreational purposes, 
especially those with open wounds or skin abrasions [40]. 
However, MRSA can be spread by direct and indirect contact 
with infected people in swimming pools, Jacuzzis, and other 
places [2, 41]. Studies conducted in previous years have also 
confirmed the presence of this microorganism containing 
resistant genes. As observed in reports, with time and con-
ducting further studies, the number of reported cases, even 
in sanitary water, is increasing. So, the result of this study is 
a useful example of these findings.

Finally, the results demonstrated that the poor qual-
ity of physicochemical and microbial parameters of water 
increases the abundance of the mecA gene; therefore, there is 
an urgent need for regular controlling and strict monitoring 

of the implementation of regulations to ensure that stand-
ards are met in various pools, especially in public swimming 
pools.

Conclusion

The results of this study revealed that the resistance of 
Staphylococcus aureus isolates against antibiotics of eryth-
romycin (41.20%), tetracycline (35.10%), clindamycin 
(28.90%), and cefoxitin (25.80%) was high. Considering 97 
samples, 9 (25.80%) strains of Staphylococcus aureus were 
identified as MRSA, 30 samples (30.92%) showed multiple 
patterns of antibiotic resistance, and 9 samples (9.27%) car-
ried the mecA gene. Hence, it can be concluded that despite 
the development of health considerations, sanitary recrea-
tional water can be a source for the presence and spread of 
this pathogen due to various reasons such as negligence of 
executives, lack of proper management of treatment plants, 
and lack of accurate monitoring. If no measures are taken, 
infectious diseases, especially pathogens resistant to strong 
antibiotics, will occur and spread quickly in huge reser-
voirs, and consequently, controlling those infections will be 
excruciating.
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