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Abstract
Background Azo dyes represent themost commonly used group of dyes in the textile industry. These organic dyes aremainly resistant
to biodegradation andmay exhibit toxic and carcinogenic properties. The purpose of this study was to investigate the effects of doping
zinc oxide (ZnO) nanoparticles (NPs) with transition metals (silver, manganese, and copper) on the photocatalytic efficiency of ZnO
NPs in the removal of Direct Blue 15 dye from aqueous environments under ultraviolet (UV) radiation and visible light irradiation.
Methods One or two metals were used for doping the NPs. In total, seven types of undoped and transition metal-doped NPs were
synthesized using the thermal solvent method with ZnO precursors and transition metal salts. The characteristics of the synthe-
sized NPs were determined based on the scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-
ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), atomic force microscopy
(AFM), and zeta potential measurements.
Results The produced ZnO NPs did not exhibit any particular photocatalytic activities under UV radiation and visible light
irradiation. The highest removal efficiency under UV radiation was about 74% in the presence of silver-doped ZnO NPs, while
the maximum efficiency under visible light was 70% in the presence of copper-doped ZnO NPs. The lowest removal efficiency

Highlights
• Transition metal-doped ZnO NPs was used for photocatalytic removal
of Direct Blue 15 dye.

• Photocatalytic activity of ZnO NPs was improved after doping with Ag,
Mn, and Cu.

• SEM, XRD, FTIR, and AFM corroborated the synthesis of transition
metal-doped NPs.

• Photocatalysis using Ag-doped ZnO NPs could degrade 74% of dye
under UV radiation.

• About 70% of dye could be removed using Cu-doped ZnO NPs under
visible light.
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was related to pure ZnO, which was 18.4% and 14.6% under UV and visible light irradiation, respectively. Although the
efficiency of dye removal under visible light was not high compared to UV radiation, this efficiency was noteworthy in terms
of both practical and economic aspects since it was achieved without the presence of ultraviolet radiation.
Conclusions The synthesis of transition metal-doped ZnO nanophotocatalysts (with one or two metals) under UV radiation or
visible light irradiation could be used as an efficient and promising technology for the photocatalytic removal of Direct Blue 15
dye from aqueous environments.
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Abbreviations
AFM Atomic Force Microscopy
AOP Advanced Oxidation Processes
CAS Chemical Abstracts Service
CB Conduction Band
DLS Dynamic Light Scattering
EC European Community
EDX Energy-Dispersive X-ray Spectroscopy
ELS Electrophoretic Light Scattering
FTIR Fourier Transform Infrared Spectroscopy
NPs Nanoparticles
PALS Phase Analysis Light Scattering
SEM Scanning Electron Microscopy
UV Ultraviolet
VB Valence Band
XRD X-ray Diffraction

Background

The waste of textile industries contains high levels of organic
pollutants such as dyeing materials. Untreated discharge of
this waste into receiving waters is a major source of environ-
mental pollution worldwide [1]. Azo dyes are one of the most
widely used dye compounds in textile industries accounting
for 60% to 70% of the total used textile dye around the world
[2]. These dyes, which are characterized by nitrogen-nitrogen
double bonds (-N=N-) in their structure, are responsible for
color formation, together with other chromophores [3].

According to the results of previous studies, nearly 15–20%
of the total produced textile dye around the world is discharged
into wastewater during dyeing processes. The presence of these
compounds in water is noticeable, even at very low concentra-
tions (< 1 mg/L), and negatively acts upon the quality of water
[4]. Besides color formation, these dyeing compounds can affect
environmental aesthetics. In addition, through reducing light
penetration in water, they influence the photosynthetic activities
of plants, reduce the content of dissolved oxygen in water, in-
crease the level of suspended solids and turbidity, and finally
increase organic loading in the aquatic environment. On the
other hand, many dyeing compounds are resistant to biological
degradation and oxidizing agents due to the presence of aromatic
compounds in their molecular structure. Consequently, they are

carcinogenic and toxic to humans and aquatic organisms [5–8].
To reduce the harmful effects of these pollutants on the environ-
ment, it is necessary to remove them from wastewater prior to
discharging into the environment [9, 10].

The conventional physical and chemical methods of waste-
water treatment, including coagulation, flocculation, filtration,
adsorption, and chlorination, cannot completely degrade or min-
eralize organic pollutants. Also, changes in the phase of these
pollutants from liquid to solid and occasional formation of tran-
sition metal complexes (due to decomposition) create a number
of other problems in this area, which require more refinement
and investment [11, 12]. According to the recent literature, ad-
vanced oxidation processes (AOP), especially photocatalytic
methods, are effective and efficient in the treatment of industrial
wastewater. The efficiency of these methods is attributed to the
production of active species, such as hydroxyl radicals (•OH), for
decomposing pollutants, which are resistant to simple and harm-
less substances (e.g., water and carbon dioxide) [13–15].

Photocatalytic reactions occur as a result of ultraviolet
(UV) or visible light irradiation on the surface of a semicon-
ductor catalyst (e.g., TiO2 and ZnO). These reactions can ex-
cite electrons from the valence band and transfer them to the
conduction band. The generated hole-electron (h/e) pair at the
catalyst level oxidizes pollutant molecules by producing more
hydroxyl radicals and participating in oxidation and regener-
ation reactions [16–18]. Figure 1 presents the oxidation mech-
anism of organic pollutants in a nanophotocatalytic process.
Overall, selection of a suitable catalyst is of great significance,
as the optical activity of semiconductor catalysts depends on
their capacity to absorb light and generate hole-electron pairs
and hydroxyl radicals [19, 20].

In recent studies, special attention has been paid to zinc
oxide (ZnO) nanoparticles (NPs) as semiconductor catalysts
with important properties, such as high chemical stability,
nontoxicity, great optical and electrical properties, and high
oxidizing potential. These NPs have been used for decompo-
sition and oxidation of resistant organic pollutants [21].
However, considering the wide band gap (3.37 eV), ZnO
shows photocatalytic activity only under UV light [22], which
constitutes 5% to 7% of the solar energy. Therefore, use of
sunlight as a natural source is limited for this purpose.
Additionally, rapid recombination of hole-electron pairs is an-
other limitation of ZnO NPs [23].
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Generally, it is necessary to overcome the limitations of
photocatalysts to improve their performance and practical ap-
plication. One of the methods, which has recently attracted the
researchers’ attention, is doping of ZnO NPs with transition
metals, such as manganese (Mn), silver (Ag), iron (Fe), gold
(Au), and copper (Cu) [24]. Doping of ZnO with an appropri-
ate dopant can change its bandgap energy and prevent recom-
bination of charge carriers (electron-hole pairs), which pro-
mote its efficiency in photocatalytic and sonocatalytic degra-
dation of organic and toxic pollutants [25–27]. Since the state
and reduction energy level of many transition metals lies with-
in the bandgap energy of ZnO, doping a transition metal ion
into ZnO structures generates new electronic levels from the
conduction band (CB) to the valence band (VB) of ZnO. The
generation of such levels enables absorption of visible light
and charge transition from the d-orbital of the dopant to the
CB or VB of ZnO [28]. Metal ions act as a trap for the pro-
duced light electrons by penetrating into the ZnO structure,
and prevent the rapid hole-electron recombination, resulting in
the increased photocatalytic activity of doped NPs, compared
to their undoped counterpart [19].

In this regard, in a study by Kumar et al. [29], Cu-doped
ZnO exhibited high optical absorption and considerable pho-
tocatalytic activity in decomposition of Red Direct dyes. In
another study, Chang et al. [30] examined the light absorption
capacity, hole-electron pair separation, and photocatalytic ef-
ficacy of cerium-doped ZnO NPs and reported photocatalytic
improvements. With this background in mind, the purpose of
the present study was to investigate the efficiency of doping
ZnO NPs with transition metals, including Ag, Mn, and Cu
(both as single and paired metals), in removing Direct Blue 15
dye under UVand visible light irradiation in the laboratory.

Materials and methods

Chemicals

The dye used in this study was Direct Blue 15
(C34H24N6O16S4Na4) and was purchased from Alvan

Sabet Company (Iran). Structural and some physicochem-
ical characteristic of Direct Blue 15 dye are presented in
Table 1. Merck Company (Darmstadt, Germany) supplied
other chemicals, including silver nitrate (AgNO3), manga-
nese acetate (Mn(CH3COO)2.4H2O), and copper acetate
(Cu(CH3COO)2, which were used as precursors for the
synthesis of Ag-, Mn-, and Cu-doped ZnO NPs, respec-
tively. Zinc nitrate hexahydrate (99%) and oxalic acid
(99%) were also purchased from Merck for the process
of synthesis.

Synthesis of nanoparticles

The thermal solvent method was used to synthesize
undoped ZnO nanocatalysts, as well as doped ZnO nano-
particles (NPs) with Ag, Cu, and Mn; one or two metals
were used for doping the NPs (seven NP types). First, to
synthesize undoped ZnO, a solution containing 100 mL of
0.4 M zinc nitrate hexahydrate (Zn(NO3)2.6H2O) (119 g/
L) and 100 mL of 0.6 M oxalic acid (HO2CCO2H)
(54.18 g/L) were prepared in deionized water under
heating. Then, the oxalic acid solution was slowly added
to the ZnO solution, and the sample was placed on a
shaker. The resulting solution was stirred for 1 h at
60 °C to 70 °C and finally cooled down at room temper-
ature. Small and even ZnO deposits were washed with
distilled water several times. Finally, after 24 h of expo-
sure to ambient air, they were dried in an oven at 100 °C
for 5 h [31]. The calcination temperature for the synthesis
of ZnO NPs was 450 °C, and the initial pH of solution
was 7.0. pH was not measured during the synthesis,
which was in accordance with the specific method used
by Subash et al. [31].

For the synthesis of Ag-doped ZnO NPs, after preparing
the ZnO solution, 5 mL of 0.15 M silver nitrate was added;
then, oxalic acid was added, and the synthesis process was
repeated similar to undoped NPs. In addition, for the syn-
thesis of Mn-Cu-doped, Ag-Cu-doped, and Ag-Mn-doped
ZnONPs, ZnO solution was first prepared, and then, 0.15M
nitrate silver, 0.397 g of Mn(CH3COO)2.4H2O, and 0.235 g

Fig. 1 The photocatalytic
processes of contaminant
oxidation [21]
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of Cu(CH3COO)2 were added. Following that, the oxalic
acid solution was added, and the synthesis process was re-
peated similar to undoped NPs [31]. For the synthesis of all
NPs, dopant concentration was 2.5%.

Characterization of nanoparticles

The characteristics of synthesized NPs were determined,
based on the scanning electron microscopy (SEM), X-
ray diffraction (XRD), Fourier transform infrared (FTIR)
spectroscopy, dynamic light scattering (DLS), atomic
fo r ce mic roscopy (AFM) , and ze t a po t en t i a l

measurements. For this purpose, a TESCAN microscope
(model MIRA3, Czech Republic) was used to describe
the shape and size of ZnO NPs. On the other hand,
XRD analysis was performed to investigate the crystal-
line structure and network of NPs using an Inel instru-
ment (EQUINOX 3000, France). Also, FTIR spectrosco-
py of synthesized NPs was carried out using a Bruker
Tensor 27 instrument (Germany). To determine the sur-
face morphology of NPs, an AFM microscope (Advance
model, Iran) was used. Finally, the size of NPs and zeta
potential were measured using a DLS instrument
(NanoBrook model, USA).

Table 1 Structural and physicochemical characteristic of Direct Blue 15 dye

Chemical formula C34H24N6O16S4Na4

Skeletal formula

3D representation (JSmol)

Class Double azo

Hazard class Health hazard (GHS08)

Hazard and precautionary 

statements
H350; P201, P202, P281, P308+313, P405, P501

Molecular weight 992.80 g/mol

Solubility in water
Soluble in water 60 g/L (85 

      
); insoluble in organic  

solvents

Appearance (physical description) Dark blue powder

CAS (Chemical Abstracts Service) 

number
2429-74-5

European Community (EC) number 219-385-3

PubChem Compound ID 5479507
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Analytical methods

The photocatalytic removal of Direct Blue 15was investigated
using ZnO NPs, doped with 2.5% M silver, manganese, and
copper, respectively. The sources of UV light included two
30 W lamps (Philips, Netherlands), while sunlight was con-
sidered as the source of visible light. In order to compare the
photocatalytic activity of undoped NPs and Ag-, Cu-, andMn-
doped NPs, a synthetic dye solution was prepared, containing
1000 mg/L of Direct Blue 15, and used as the standard solu-
tion kept at 4 °C.

The experiments were performed in a 250-mL reactor at
neutral pH, with an initial dye concentration of 100 mg/L, NP
concentration of 2 g/L, and UV light intensity of 30 W, and
sunlight was the source of visible light. In this study, two 15-
W ultraviolet lamps (UV-C) were used. The distance between
the UV lamps and the sample was 10 cm. Temperature control
was not necessary because the sample temperature did not
change significantly during the process. The samples were
placed on a magnetic shaker, which was exposed to a light
source for 120 min. At specific intervals, 5 mL of the solution
was collected, and absorbance was read after centrifugation,
using a UV-Vis spectrophotometer in a wavelength of 585 nm.
Then, the percentage of removal efficiency was calculated
using the following formula:

R ¼ C0−Ce

C0
� 100 ð1Þ

where R represents the percentage of dye removal (%),C0 and
Ce denote the initial and the final dye concentration (mg/L),
respectively. All experiments were carried out in triplicate.
Duplicate experiments in each group were carried out under
the same condition, and the mean values were reported.

Results and discussion

Characterization of synthesized nanoparticles

The SEM images of undoped ZnO and Cu-doped ZnO NPs
are presented in Fig. 2. The image of undoped ZnO NPs is
shown in Fig. 2a. As presented in undoped ZnO image, there
are agglomerations and adhesions in these NPs, and particles
are not separated. Figure 2b demonstrates Cu-doped ZnO
NPs, showing adhesion among particles. Agglomerations
and mass formation were observed in these NPs due to their
very small size. According to these images, the size of Cu-
doped ZnO NPs is smaller than that of undoped ZnO NPs.
Moreover, the EDX (energy-dispersive X-ray spectroscopy)
images of undoped ZnO and Cu-doped ZnONPs are shown in
Fig. 3. It can be seen that Zn content of undoped ZnONPs was
simultaneously decreased after modification, but Cu content

of Cu-doped ZnO NPs significantly increased from 0 to 3.72
(wt%) which indicated the successful deposition onto ZnO
NPs.

In Fig. 4, images of the XRD spectra of undoped ZnO NPs
along with Mn-, Ag-, Cu-, Mn-Cu-, Ag-Cu-, and Mn-Ag-
doped ZnO NPs are presented. The main seven XRD peaks
were identified in (100), (002), (101), (012), (110), (013), and
(112) planes, respectively, corresponding to the crystalline
structure of ZnO in the Miller index (Joint Committee on
Powder Diffraction Standards (JCPDS), No. 36–1451). The
sharp peaks indicate the proper crystallization of ZnO NPs.
The maximum intensity peak was observed at 2θ = 37.095°,
corresponding to the (101) plane [32]. The present results of
XRD analysis are consistent with similar studies in this area
[33, 34].

The FTIR spectra of undoped ZnO NPs along with Ag-
Mn-, Ag-Cu-, Mn-Cu, Mn-, Ag-, and Cu-doped ZnO NPs
are shown in Fig. 5. This figure shows a strong bond in the
wavelength of 469 cm−1, corresponding to the stretching vi-
bration of ZnO NPs [35]. The C=O stretching bond was ob-
served in the wavelength of 1730 cm−1, which is attributed to
the presence of organic materials. Also, N-H stretching vibra-
tion was seen at 3448 cm−1, which corresponds to N-H
stretching bond in amine groups. Mote et al. [36] also reported
similar results in an analysis of ZnO NPs doped with chromi-
um oxide. The stretching bond of ZnO NPs was observed in
the range of 400–600 cm−1, while N-H bond was reported at
3400–3600 cm−1.

In Fig. 6, the AFM images of Cu-doped ZnO NPs are
presented. Generally, AFM is a powerful and accurate tool
for determining the surface area and size of materials on a
nanoscale. The images clearly indicate the uneven surface of
Cu-doped NPs. The size of NPs doped with Cu was about
90 nm, respectively, which confirms the results of SEM anal-
ysis. Also, in the image, the surface roughness of NPs can be
observed due to the uniform distribution of doping agents [37,
38].

Figure 7 presents the distribution of NP size in the aqueous
environment, as measured by the DLS technique. Generally,
DLS is a useful technique for determining the size of NPs in
form of liquid suspensions considering their Brownian mo-
tions. The mean NP size was almost 82 nm for both Cu-
doped and Ag-doped ZnO NPs, which is slightly different
from the results of SEM analysis. This difference can be at-
tributed to the state of agglomeration and NP accumulation in
the SEM analysis [39].

Electrostatic zeta potential of nanoparticles was measured
using principles of phase analysis light scattering (PALS) and
electrophoretic light scattering (ELS), and its result is present-
ed in Table 2 and Fig. 8. Zeta potential plays an important role
in determining the stability of dispersed particles in a liquid
environment. In aqueous environments with low ionic
strength, a zeta potential above 30 mV is adequate to ensure
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colloidal stability. On the other hand, in aqueous environ-
ments containing particles with a low zeta potential, particles
have a greater tendency towards agglomeration. In this study,
the ionic strength was improved by doping ZnO NPs with
transition metals [40].

Effect of transition metals-doped ZnO NPs on dye
removal efficiency

ZnO doping with Ag

The photocatalytic decomposition of Direct Blue 15, using
undoped, Ag-doped, Ag-Mn-doped, and Ag-Cu-doped ZnO
NPs is presented in Fig. 9 under UVand visible light irradia-
tion, respectively. As indicated in Fig. 9, Ag-doped ZnO NPs
showed the highest removal efficiency percentage for Direct

Blue 15 under UV radiation within 120 min (73.6%). In com-
parison with undoped NPs, the improved photocatalytic activ-
ity of Ag-doped ZnO NPs under UV radiation could be attrib-
uted to the reduced hole-electron recombination due to light
exposure on the catalyst surface.

In explanation, as Ag+ is integrated in the crystalline struc-
ture of ZnO NPs, it changes their electron structure. This cat-
ion attracts excited electrons from the valence band, prevents
the return of electrons, and consequently inhibits the hole-
electron recombination in the band. Therefore, free electrons
in the conduction band and silver produce more super oxides
on the surface of ZnO. On the other hand, the holes exhibit
great oxidizing properties and produce hydroxyl radicals by
reacting with water molecules. Through greater production of
super oxides and radical hydroxyls and prevention of hole-
electron recombination, oxidation-regeneration reactions

484 J Environ Health Sci Engineer (2019) 17:479–492
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Fig. 2 SEM images and size distribution of a undoped ZnO NPs and b Cu-doped ZnO NPs



improve, leading to an increase in the removal efficiency of
organic dye under UV radiation [21].

The results of a study by Mohammadzadeh et al. [41] on
decomposition of Acid Blue 113 by Ag-doped ZnO NPs
showed that this catalyst has much greater photocatalytic ac-
tivities in dye decomposition, compared to undoped ZnONPs,
which is consistent with the results of our study. In addition,
Dhatshanamurthi et al. [42] investigated the simultaneous ef-
fects of two metals (silver and barium) on the enhanced pho-
tocatalytic degradation of azo dye of (Trypan blue) in aqueous
solutions using Ba-loaded Ag@ZnO nanocomposite. Their
results indicated the greater decomposition of contaminants
in the presence of ZnO doped with two metals simultaneously.

Based on the nanophotocatalyst test of ZnO NPs, which
were doped with Ag for degradation of Direct Blue 15, dye
removal was found to be scarce under visible light (similar

conditions to UV radiation). Since Ag+ (1.26 Angstrom) has a
greater ionic radius than ionized Zn2+ (0.74 Angstrom), it is
not fully integrated into the ZnO structure. Therefore, the band
gap of ZnO is not reduced, and the shift from UV to visible
light spectrum is not prominent. In this regard, Bordbar et al.
[43] compared the band gap of ZnO doped with three metals,
including Ag, Cu, and Cd. It was found that metals with an
ionic radius below that of Zn showed a greater reduction in the
band gap. In addition, Subash et al. [24] used cerium (Ce)- and
Ag-doped ZnO NPs to remove Reactive Red 120 dye, and
they reported consistent results with the present study.

ZnO doping with Mn

The photocatalytic degradation of Direct Blue 15 was inves-
tigated using undoped, Mn-doped, Ag-Mn-doped, and Mn-
Cu-doped ZnO catalysts under UVand visible light radiation;
the results are presented in Fig. 10. As can be seen in the
figure, the removal efficiency of catalysts was higher under
visible light, compared to UV light. The highest removal ef-
ficiency under visible light radiation was observed in Ag-Mn-
doped ZnO NPs (46.3%).

ZnO doping with Mn and other transition metals can create
an intermediate state near the valence band through metal
integration in the ZnO structure and consequently reduce the
energy gap; the resulting energy gap can extend the light ab-
sorption spectrum from UV to visible light. Therefore, at light
intensities below UV, electrons are transferred to the interme-
diate state and conduction band and produce more super ox-
ides and hydroxyl radicals.

Gallegos et al. [44], by analyzing the structural and
optical properties of Mn-doped ZnO NPs, showed that
the energy gap reduced from 3.3 eV to 3.1 eV, which
confirms the results of the present study. Similarly, the
results reported by Li et al. [45] showed the high
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Fig. 5 FTIR diffractograms of undoped ZnO NPs along with Ag-Mn-,
Ag-Cu-, Mn-Cu, Mn-, Ag-, and Cu-doped ZnO NPs
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Fig. 6 The AFM images of Cu-doped ZnO NPs

Fig. 7 DLS images of a undoped and b Cu-doped ZnO NPs



removal efficiency of methyl orange for Mn-doped ZnO,
compared to undpoed ZnO, which is consistent with our
findings. Additionally, Ullah et al. [46] studied and com-
pared the photocatalytic efficiency of Mn-doped and
undoped ZnO NPs in the removal of ethylene blue and
reported increased dye removal under visible light radi-
ation in the presence of doped ZnO in comparison with
undoped ZnO NPs.

ZnO doping with Cu

The analysis of dye removal efficiency by Cu-doped and Ag-
Mn-doped ZnO NPs is demonstrated in Fig. 11. Evidently, the

Fig. 8 Zeta potential and mobility (ELS method) of a undoped and b Cu-doped ZnO NPs

Table 2 Zeta potential (PALSa method) details of undoped and doped
(with Cu, Ag, Mn, Cu-Mn, Cu-Ag, and Mn-Ag) ZnO NPs using the
Smouluchowski’s model

Sample Zeta potential (mV) Mobility (μ/s)/(V/cm)

ZnO −10.66 −0.83
Cu.ZnO −9.71 −0.76
Ag.ZnO −8.69 −0.68
Mn.ZnO −12.4 −0.97
Cu.Mn.ZnO −9.25 −0.72
Cu.Ag.ZnO −6.81 −0.53
Mn.Ag.ZnO −3.33 −0.26

aPALS Phase Analysis Light Scattering

J Environ Health Sci Engineer (2019) 17:479–492 487



optical activity of Cu-doped, Ag-Cu-doped, and Mn-Cu-
doped ZnO catalysts increased under visible light, compared
to UV light radiation. Since the ionic radius of Cu2+ (0.73) is
smaller than that of Zn (0.74), it can easily penetrate into the
crystalline structure of ZnO. Cu increases the luminescence
properties of ZnO and causes local impurities in the bond gaps
and therefore, resulting the light absorption spectrum shifted
to visible light. In addition, Cu2+ metal cations act as an elec-
tron trap considering the partially filled electron configuration.
They also play an important role in reducing hole-electron
recombination and increasing the production of oxidizing rad-
icals [47, 48].

A study by Mittal et al. [15] reported an increase in the
efficiency of Cu-doped ZnO in comparison with undoped
ZnO in crystal violet decomposition due to a shift in absorp-
tion towards the visible light spectra. This finding is consistent
with the results of our study. Moreover, Sriram et al. [49]
found that Cu-doped ZnO nanophotocatalysts exhibited great-
er photocatalytic activity in methylene blue removal under
visible light radiation due to the increased Cu content. In the
present study, Ag metal cations had the greatest synergistic

effects on the photocatalytic removal efficiency of Cu-doped
ZnO NPs [50].

Comparison of removal efficiency of synthesized
nanocatalysts

The results related to the efficiency of seven synthesized
nanocatalysts in decomposition of Direct Blue 15 under UV
and visible light radiations are presented in Fig. 12, respec-
tively. As shown in these figures, Ag-doped ZnO NPs had the
highest efficiency in dye degradation under UV radiation
(73.6%), while under similar conditions, a much lower effi-
ciency was reported with visible light radiation (29.96%) for
Ag-doped ZnO NPs. Among all synthesized NPs, Cu-
doped ZnO NPs exhibited the highest removal efficiency
in dye degradation (70%) under visible light irradiation,
while under similar conditions Cu-doped ZnO NPs exhib-
ited a lower degradation efficiency about 40% under UV
light radiation. According to the results of the experiments
and diagrams, other synthesized NPs showed less efficacy
in dye degradation under visible light irradiation and UV
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light radiation. For example, the degradation efficiency of
Mn-doped ZnO, Ag-Mn-doped ZnO, Ag-Cu-doped ZnO,
and Mn-Cu-doped ZnO NPs under ultraviolet light after
120 min was 33.49, 30, 24, and 23.4%, respectively. For
these NPs and under the same conditions, the degradation

efficiency in the presence of visible light irradiation was
increased slightly and showed 47.87, 46.31, 37.89 and
39.69% for Mn-doped ZnO, Ag-Mn-doped ZnO, Ag-Cu-
doped ZnO, and Mn-Cu-doped ZnO, respectively. Further
explanations are needed in this area.
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Conclusion

Undoped ZnO NPs along with Mn-, Ag-, Cu-doped ZnO NPs
were successfully synthesized using the thermal solvent meth-
od for photocatalytic decomposition of Direct Blue 15 under
UVradiation and visible light irradiation. The highest removal
efficiency under UV radiation was obtained about 74% in the
presence of Ag-doped ZnONPs, while the maximum efficien-
cy under visible light irradiation was achieved as 70% in the
existence of Cu-doped ZnO NPs. From practical and econom-
ic viewpoints, the efficiency obtained UV radiation was found
to be important, and higher removal efficiency values could be
achieved by changing the conditions of process-related oper-
ating parameters (e.g. pH, light intensity, NP concentration).

The experimental findings revealed that the photocatalytic
activity of ZnO NPs in organic dye removal increased after
doping with Ag, Mn, and Cu, compared to the undoped state
under UV radiation and visible light irradiation. In other
words, these results indicated the efficacy of transition metals
on reducing the hole-electron recombination, increasing hy-
droxyl radical (•OH) formation in ZnO, and formation of im-
purity states in the structure of doped ZnO NPs, which result-
ed in the increased photocatalytic activity of synthesized NPs.
Thus, the synthesis of transition metal-doped ZnO
nanophotocatalysts (with one or two metals) under UV radia-
tion or visible light irradiation could be used as an efficient
and promising technology for the photocatalytic removal of
Direct Blue 15 dye from aqueous environments.
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