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disorder in which immune cells such as CD4 + and CD8 + T 
cells and macrophages invade the pancreatic islets and 
demolish the β cells, resulting in diminished insulin secre-
tion [2]. However, the primary mechanism of T2DM is the 
dysfunction of synthesis, secretion, and response to insulin, 
which is known as insulin resistance [3]. Obesity and seden-
tary lifestyles are responsible for about 80% of T2DM [4]. 
Obese or non-obese T2DM patients develop insulin resis-
tance due to alterations in cell receptors and post-receptor 
levels, respectively [5].

Long-term uncontrolled diabetes can lead to various 
complications, most importantly micro-and macrovascu-
lar, responsible for significant morbidity and mortality. In 
this regard, neuropathy, nephropathy, and retinopathy are 
categorized as microvascular complications, while mac-
rovascular complications include cardiovascular, cerebro-
vascular, and peripheral artery diseases [6]. Besides, lung 
microvascular complications, nonalcoholic fatty liver dis-
ease (NAFLD), cancer, and atherosclerosis are the other 
nonclassical chronic complications of diabetes.

To date, various drugs and therapies have been used to 
control diabetic manifestations and complications, some of 
which have been relatively effective. Incretin-based therapy 
using the novel anti-diabetic agents, including injectable 
glucagon-like peptide-1 (GLP-1) agonists (Exenatide, Lira-
glutide, Albiglutide, dulaglutide, semaglutide (oral)) and 

Introduction

Diabetes mellitus (DM) is a metabolic syndrome disorder 
characterized by high blood glucose levels (hyperglyce-
mia), defective action and/or secretion of insulin, impaired 
adipocyte’s secretory function, and multiple organ or tissue 
dysfunctions. Diabetes mellitus (DM), which is defined by 
hyperglycemia, describes a group of chronic metabolic dis-
orders. DM complications, such as microvascular and neu-
ropathic disorders may affect the lives of millions of people 
worldwide in the long term. It has been estimated that around 
700 million people will live with DM by 2045 [1]. Apart 
from health problems, it will impose an economic burden 
of 776  billion USD on the health systems throughout the 
world [1]. The two primary forms of this disorder are type 
1 (T1DM) and type 2 (T2DM). T1DM is an autoimmune 
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Abstract
Diabetes mellitus, a metabolic syndrome characterized by hyperglycemia and insulin dysfunction, often leads to serious 
complications such as neuropathy, nephropathy, retinopathy, and cardiovascular disease. Incretins, gut peptide hormones 
released post-nutrient intake, have shown promising therapeutic effects on these complications due to their wide-ranging 
biological impacts on various body systems. This review focuses on the role of incretin-based therapies, particularly 
Glucagon-like peptide-1 (GLP-1) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors, in managing diabetes and its 
complications. We also discuss the potential of novel agents like semaglutide, a recently approved oral compound, and 
dual/triple agonists targeting GLP-1/GIP, GLP-1/glucagon, and GLP-1/GIP/glucagon receptors, which are currently under 
investigation. The review aims to provide a comprehensive understanding of the beneficial impacts of natural incretins 
and the therapeutic potential of incretin-based therapies in diabetes management.
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oral dipeptidyl peptidase-4 (DPP-4) inhibitors (Alogliptin, 
Linagliptin, Saxagliptin, Sitagliptin, Vildagliptin) has 
shown promising impacts on diabetes and its complications 
[7, 8] (Table 1). Some of which, such as liraglutide, have 
had meaningful effects on obesity [9]. The newer agents, 
so-called twincretins and triple agonists such as tirzepatide, 
cotadutide (under development), and some molecules act-
ing on GLP-1, GIP, and GLP-1/GIP/glucagon receptors 
respectively, have exerted substantial effects on glycemic 
control and bodyweight in various studies. The gut peptide 
hormones, incretins, are released after nutrient intake and 
provoke insulin secretion. GIP (glucose-dependent insuli-
notropic polypeptide) and GLP-1 (glucagon-like peptide-1) 
are known incretin hormones that exert an activity so-called 
the incretin effect, a phenomenon whereby oral glucose 
administration provokes further insulin release compared to 
intravenous injection at the same plasma glucose concentra-
tion [10]. Furthermore, GLP-1 is released in a lesser amount 
in the Central Nervous System (CNS) [11–13]. In addition 
to pancreatic β-cells, GLP-1 receptors are also expressed in 
the kidney, lung, heart, walls of arteries, and gastrointestinal 
tract [14], indicating the potential role of GLP-1R agonists 
in the therapy of diabetic complications. Moreover, there is 
evidence regarding the multiple biologic effects of incretin 
hormones on fat deposition, bones, cardiovascular system, 
nerve growth, appetite, obesity, blood glucose, and lipid 
metabolism [15–22], dysfunction of which is the leading 
cause of T2DM and its complications.

Hence, fat deposition, obesity, glucose, and lipid metabo-
lism disorders are the leading causes of diabetes (T2DM), 

which in the long-term lead to multiple organ involvement, 
so-called diabetic complications. The present literature 
aims to review the beneficial impacts of natural incretins 
on human body systems, advantageous effects of incretin-
based therapy on diabetes and its complications (Fig. 1), and 
finally, the novel incretin-based agents will be summarized.

Incretin hormones

The incretin hormones, GLP-1 and GIP are gut-derived pep-
tide hormones, secreted by endocrine intestinal cells of L 
and K–types, respectively, [23, 24]. The K-cells are found in 
the duodenum and proximal jejunum, whereas the L–cells 
are expressed more in the ileum and less in the duodenum 
and even in the colon and rectum [25, 26]. Due to their cru-
cial role in glucose homeostasis and the pathophysiology of 
T2DM, incretins have been broadly investigated so far [27].

Soon after nutrient intake, plasma concentrations of GIP 
and GLP-1 increase to reach their peak in almost one hour. 
Glucose and other carbohydrates, such as starch, sucrose, 
triglycerides, various amino acids and proteins provoke 
GIP and GLP-1 secretion, consequently stimulating insulin 
secretion [28, 29]. Incretins exert a phenomenon called the 
incretin effect, meaning that at the same plasma glucose con-
centration, oral glucose stimulates higher insulin secretion 
levels than glucose infusion [27, 30]. Besides their effect 
on insulin secretion, incretin hormones also affect glucagon 
release, so that while GLP-1 suppresses glucagon release, 
GIP stimulates it [31, 32]. Therefore, the insulinotropic 

Table 1  Anti diabetic agents: 
incretin-based agents
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effect, together with glucagon secretion inhibition of GLP-
1, count as the prominent glucose-lowering mechanism of 
this hormone [33, 34]. However, it should be noticed that 
the function and activity of incretin hormones are not simi-
lar and completely equivalent in different tissues [24]. In 
contrast to GIP, which does not affect gastric emptying, 
GLP-1 slows it. On the other hand, GIP induces triglyceride 
storage, an activity that is unlikely to be done by GLP-1 
[32, 35, 36]. As mentioned previously, the beneficial role of 
incretin receptors in improving diabetic complications can 
be postulated.

Incretin hormones in T2DM

Insulin resistance, inadequate insulin secretion, and hyper-
glucagonaemia are the main reasons for T2DM occurrence 
[37]. Regarding the role of incretin hormones in stimulating 
insulin secretion and the GLP-1 effect on glucagon release 
suppression, a review on the role of incretin hormones in 
T2DM would be rational. Although various studies and 
meta-analyses have not found significant differences in 
nutrient-induced incretin secretion between healthy indi-
viduals and T2DM subjects [38–40], different experiments 
indicated that GIP could not stimulate insulin secretion in 
patients with T2DM [31, 41, 42]. Nonetheless, the insuli-
notropic and glucagonostatic effects of GLP-1 have been 
well documented [31, 43–45]. Insulin secretory response to 
glucose decreases by 25% in patients with T2DM compared 
to healthy individuals [46]. This level of activity of GLP-1 
in T2DM patients, however is adequate for a proportional 

reduction in plasma glucose [47]. Considering the promi-
nent role of GIP in the incretin effect in healthy subjects, this 
phenomenon is decreased or even lost in T2DM patients [48, 
49]. Despite the minimal impact of GIP on insulin secretion 
in patients with Type 2 Diabetes Mellitus (T2DM), and the 
hormone’s glucagonotropic effect, dual agonists that target 
both GLP-1 and GIP (such as tirzepatide) have demonstrated 
promising results in promoting weight loss. Besides, based 
on data indicating the effect of GIP on enhancing triglyc-
eride deposition, GIP receptor antagonists have been sug-
gested for the therapy of pre-diabetic subjects and metabolic 
disorders [50, 51]. On the contrary, as mentioned above, 
because GLP-1 sustains its effect on glucose metabolism, 
insulin secretion, and glucagon suppression in patients with 
T2DM, receptor agonist of this hormone has been widely 
used in the therapy of diabetes [27, 52].

Effect of incretins on appetite, caloric intake, 
and body weight

Approximately 80% of T2DM is linked to obesity and 
physical inactivity, as the crucial role of these factors in 
T2DM improvement is well-documented [4, 53]. Obesity 
causes excessive triacylglycerol (a fatty acid metabolite) 
and other fatty acid metabolites to deposit in the sarcoplasm 
of skeletal muscles [4], resulting in insulin signal inhibition 
[54, 55]. Moreover, insulin signaling suppression is associ-
ated with the level of circulated fatty acids [56]. Therefore, 
in obese patients with T2DM, insulin resistance impairs 
the ability of β-cells to compensate for decreased insulin 

Fig. 1  The beneficial effects 
of incretin-based therapy on 
diabetes and its complications. 
Incretins, the gut peptide hor-
mones, are released after nutrient 
intake and provoke insulin secre-
tion. In addition to pancreatic 
β-cells, incretin receptors are also 
expressed in the kidney, lung, 
heart, walls of arteries, CNS, 
and gastrointestinal tract which 
result in multiple biologic effects 
in various body tissues. The 
advantageous effects of incretins 
on diabetic complications have 
been demonstrated. The newer 
anti-diabetic agents (GLP-1 
agonists and DPP-4 inhibitors) 
are supposed to improve diabetic 
complications
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lowering agent, GLP-1RAs have recently been approved 
for weight management in the United States [71, 72]. In 
this regard dual agonists affecting on GLP-1/GIP (tirzepa-
tide) have shown encouraging impacts on weight loss [73, 
74]. Semaglutide, the only oral GLP-1R agonist (currently) 
has exerted inspiring effects on bodyweight reduction as 
well [75, 76]. Besides, various studies have shown that 
through some surgical methods, such as bariatric surgery 
and Roux-en-Y gastric bypass, GLP-1 secretion increases 
significantly, associated with further excess weight loss and 
blood glucose improvement [77–79]. However, as reviewed 
above, the potential therapeutic role of incretins in weight 
loss is not negligible. Differential effects of GLP-1 and GIP 
on various biological functions are summarized in Table 2.

Incretin effects on the peripheral and central 
nervous system

GLP-1R is also found in the central nervous system in 
the hypothalamus and brainstem, and in the peripheral 
nervous system (PNS), on afferent branches of the vagus 
nerve which originate from the vicinity of the intesti-
nal L cells [80–82]. Since many diabetic patients suffer 
from neuronal or psychological complications of diabe-
tes, pharmaceutical agents capable of ameliorating both 
hyperglycemia and neuronal complications of the dis-
ease may be of great importance. These agents might 
offer new treatment approaches for neurodegenerative 
diseases, such as Alzheimer’s disease, as well as debili-
ties in cognition and memory [83]. Even some unrelated 
diabetes complications, such as obesity may be affected 
by the CNS which is partially regulated by GLP-1 recep-
tors [82]. The benefits of incretin mimetics are also seen 
in non-diabetic patients, suggesting favorable central or 
peripheral neuronal roles which may be detached from 
their effect on plasma glucose levels [83, 84].

As mentioned above, GLP-1Rs are located on the 
vagus nerve and their stimulation by incretin ligands can 
hinder stomach emptying. This phenomenon, which is 
not merely insulin-dependent, can decrease postprandial 
glucose levels [85]. GLP-1 can ameliorate postprandial 
lipemia by diminishing chylomicron biosynthesis in the 
intestine [86]. It is mediated via the interaction of GLP-1 
with melanocortin-4 receptors in the CNS in a brain-gut 
axis which may be a promising therapeutic strategy for 
hyperlipidemia and hyperchylomicronemia in diabetic 
patients [87]. Apart from its effect on gastric transit time, 
GLP-1 has an anti-appetite effect by stimulating its rel-
evant receptors in the CNS. It seems that the vagus nerve 
mediates the transition of the satiety signals between the 
alimentary tract and the CNS, where signals are received 

sensitivity [57]. Besides, it has been documented that there 
is a profound relationship between physical activity and a 
reduction in T2DM incidence [4].

Incretins influence obesity through different mechanisms, 
such as fat storage promotion, gastric emptying slowness, 
appetite suppression, and satiety increase. In animal mod-
els, GIP enhanced fat storage in subcutaneous adipose tis-
sue by lipoprotein lipase induction [17, 32, 36]. However, 
animals with a GIP receptor knockout did not get fat dur-
ing a high-fat diet [17]. Furthermore, some studies have 
documented the hypersecretion of GIP in obesity to prevail 
over the metabolic disorders resultant from insulin resis-
tance [32, 58]. Conversely, GLP-1 secretion is decreased 
in obese subjects for an unknown reason. Besides, GLP-1 
injection increases satiety and decreases food intake and 
appetite [59], indicating this hormone’s potential role in 
the pathogenesis of obesity. Consequently, various studies 
have focused on the potential therapeutic effect of GLP-1 on 
obesity in diabetic and non-diabetic subjects [60–65]. More-
over, the subjects with obesity and T2DM receiving GLP-1 
analogs exerted metabolic and appetite responses compa-
rable to healthy individuals [16, 66–69]. Therefore, stud-
ies on GLP-1R agonists (GLP-1RAs) and DPP4 inhibitors 
were raised, eventually leading to the introduction of two 
groups of therapeutic agents used as incretin-based therapy 
[27, 70]. In addition to being broadly used as a blood sugar 

Table 2  Differential effects of GLP-1 and GIP on various biological 
functions
Effet GLP-1 GIP
Orgin Secreted by L-cells in the 

ileum, colon and rectum
Secreted by K-cells 
in the duodenum and 
proximal jejunum

Insulin 
secretion

Stimulates insulin 
secretion

Stimulates insulin 
secretion

Glucagon 
release

Suppresses glucagon 
release

Stimulates glucagon 
release

Triglyceride 
storage

No effect on triglyceride 
storage

Promotes triglyceride 
storage

Effect on 
T2DM

Maintains insulinotropic 
and glucagonostatic effects 
in T2DM patients

Minimal effect on insu-
lin secretion in T2DM 
patients

Appetite and 
caloric intake

Increases satiety and 
decreases food intake

No significant effect 
on appetite and caloric 
intake

Body weight Promotes weight loss No significant effect on 
weight

Neural 
effects

Found in CNS and PNS; 
may improve neuronal 
complications and cogni-
tive function

Limited information 
available; GIP receptors 
are expressed in some 
brain areas but less is 
known about their roles.

Cardiovascu-
lar effects

Cardioprotective; 
improves endothelial func-
tion, reduces apoptosis, 
and oxidative stress

Limited information 
available; may have 
beneficial effects but 
less well-studied than 
GLP-1.
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presented the contradictory effects of GLP-1 and GLP-
1RAs on endothelial function, atherosclerosis progres-
sion, and cardiac blood supply [18, 19]. The embryonic 
development of the cardiovascular system seems to be 
associated with GLP-1 activity. In a human study, treat-
ment with GLP-1 decreased the ability of tumor necrosis 
factor-alpha (TNF-α) to induce gene and protein expres-
sion of plasminogen activator inhibitor type-1 (PAI-1), 
a prominent factor of endothelial cell dysfunction [101, 
102]. Similarly, a randomized study indicated that GLP-1 
administration in patients with T2DM increased the 
flow-mediated vasodilation, an effect absent in healthy 
individuals, suggesting the potential role of GLP-1 in 
improving endothelial dysfunction associated with ath-
erosclerosis [103]. However, data on the effect of GLP-1 
and/or GLP-1RAs on blood pressure have been contro-
versial [104–107]. On the other hand, GLP-1RA agonists, 
like exenatide demonstrated cardioprotective effects 
by lowering apoptosis and oxidative stress [108]. The 
GLP-1 signaling pathway leads to a decrease in the pro-
apoptotic markers such as caspase-3&9, Bax/Bcl-2, and 
p53 in cardiac Tissue (Fig. 2) [109]. Many human stud-
ies have been carried out to evaluate the cardioprotective 
effects of GLP-1 and GLP-1RAs. For example, GLP-1 
infusion (4 weeks) in patients with severe heart failure 
improved left ventricular function, functional status, and 
Quality of Life (QoL) scores in subjects with and without 
diabetes. GLP-1 administration also improved left ven-
tricular ejection fraction (LVEF) in patients with acute 
myocardial infarction [110, 111]. It is suggested that 
GLP-1 acts through two main pathways. The first one 
is through GLP-1R activation, which induces glucose 
uptake, ischemic preconditioning, and mild vasodila-
tory actions; and the second pathway is GLP-1R–inde-
pendent, meaning that GLP-1 independently affects the 
cardiac post-ischemic recovery and vasodilation, prob-
ably via NOS-induced-cGMP formation [112]. In this 
regard, treatment with liraglutide in mice has improved 
the reduction of the endothelial nitric oxide synthase 
(eNOS), a crucial enzyme for vascular nitric oxide (NO) 
synthesis [113]. NO induces the production of cGMP, an 
intracellular second messenger that consequently stimu-
lates phosphodiesterases (PDE) and cGMP-dependent 
protein kinases (PKGs) effectors. Hypertrophy inhibition, 
vaso-relaxation, and cellular proliferation are mediated 
by these effector molecules in the cardiovascular system 
[114]. Besides, the correlation between eNOS induction 
and reduction in TNF expression and NF-κB stimulation 
in cardiomyocytes has been documented (Fig. 2) [113]. 
However, these findings altogether indicate the cardio-
vascular protective effects of GLP-1R stimulation.

by the solitary tract nucleus and are relayed to the hypo-
thalamus to be sent back for food intake control [88].

Diabetic neuropathy spans a vast spectrum of sufferings 
from simple pain to death. Considering various groups of 
anti-diabetic agents, the incretin-based drugs (GLP-1 ago-
nists and dipeptidyl peptidase-4 inhibitors) stand at the top 
of the anti-diabetic agents for managing peripheral neurop-
athy of diabetes [89]. Besides the incretins’ possible role 
in improving axonal regeneration and neural repair, hip-
pocampal expression of GLP-1R and GIPR suggests their 
involvement in memory formation and synaptic plastic-
ity, a concept highlighted by learning defects in GLP-1R 
knockout mice. Incretins also hinder the progression of 
neurodegenerative diseases, such as Alzheimer’s disease 
and Parkinson’s disease. These agents also impede associ-
ated memory and cognitive defects in animal models of the 
diseases, as mentioned earlier [89, 90]. In myelinated motor 
nerves and unmyelinated pain neurons, GLP-1R may have 
some roles in their function regardless of its glycemic con-
trolling effects [90]. Some studies show that DPP-4 inhibi-
tors can inhibit diabetic neuropathy in rodents [91].

The animal model findings are not confirmed unequiv-
ocally in human studies, maybe because of the small sam-
ple sizes and the paucity of clinical trials. For instance, 
concerns regarding the increased risk of pancreatitis due 
to GLP-1RAs observed in animal studies have not been 
consistently replicated in human trials, likely due to 
variations in study design and participant characteristics 
[92, 93]​. In one clinical trial, exenatide did not improve 
diabetic peripheral neuropathy or the electrophysiologic 
profile of the nerves [94]. In another clinical trial, the 
liraglutide effect on improving polyneuropathy was dis-
couraging [95]. It seems that further studies are required 
before concluding about the effect of GLP-1 and its 
receptor in human diabetic neuropathy [96].

Cardiovascular effects of incretin system

DM-associated cardiovascular disease (CVD) and 
stroke are the leading causes of morbidity and mortal-
ity in patients with diabetes [97]. Death due to coronary 
heart disease occurs much more frequently in diabetic 
patients than non-diabetic subjects (3 to 5-fold) [98, 99], 
especially those with other comorbidities such as hyper-
tension and dyslipidemia who are at increased risk. Man-
agement of these risk factors may improve cardiovascular 
health. However, there is not adequate evidence regard-
ing the favorable effect of conventional oral anti-diabetic 
drugs on cardiovascular disorders in diabetes [100]. 
Studies have shown the multiple effects of GLP-1 on 
the cardiovascular system [18, 19]. Various reports have 
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[119–122]. All trials confirmed the cardiovascular safety 
of GLP-1RAs, with several showing significant efficacy in 
reducing cardiovascular events. Noteworthy among these 
are the LEADER outcomes trial for liraglutide [117], the 
HARMONY trial for albiglutide [122], the REWIND trial 
for dulaglutide [121], and the SUSTAIN-6 trial for injectable 
semaglutide [118]. Liraglutide significantly lowered both 
cardiovascular and all-cause mortality, and both liraglutide 
and injectable semaglutide demonstrated improvements in 
kidney outcomes [117, 118]. Variations in trial outcomes 
may be due to the cardiovascular risk profiles of participants 
and the specific GLP-1RA class used. While A recent meta-
analysis showed a 14% overall reduction in major adverse 
cardiovascular events another meta-analysis indicated 
greater benefits of GLP-1RAs in patients with established 
CVD compared to those without, highlighting the need for 
more studies on primary prevention [123]. Emerging evi-
dence suggests GLP-1RAs could significantly reduce MI 
risk. Clinical studies have shown that GLP-1RAs, such as 
exenatide and liraglutide, administered during acute MI, can 
reduce infarct size and improve cardiac function [124, 125]. 
Furthermore, a prospective observational study with 17,868 

Effect of incretin-based therapy on 
cardiovascular activity in T2DM

Compared to non-diabetic individuals, diabetic subjects are 
at a much higher risk of cardiovascular (CV) events, so CVD 
accounts for almost 80% of the mortality in individuals with 
T2DM. Metabolic risk factors, such as insulin resistance, 
dyslipidemia, obesity, and hypertension contribute to CVD 
manifestation [115]. The beneficial cardiovascular effects of 
GLP-1RAs have been approved. In this regard, Nathanson 
et al. showed that two-day administration of exenatide in 
patients with T2DM and heart failure improved cardiac out-
put and reduced pulmonary capillary pressure [116]. Nota-
bly, these promising effects of GLP-1RAs on the CV system 
are reported to be independent of glycemic control, likely 
through improvements in vascular risk factors and athero-
sclerosis [115, 117, 118].

Several significant trials have focused on the impact of 
GLP-1RAs on cardiovascular outcomes in patients with 
T2DM and elevated cardiovascular risk. These studies spe-
cifically examined the impact on cardiovascular mortality, 
non-fatal myocardial infarction (MI), and non-fatal stroke 

Fig. 2  GLP-1 signaling pathway 
in the cardiac tissue. Activation 
of GLP-1R in the cardiovascu-
lar system results in multiple 
cascades which lead to beneficial 
effects on the system
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DPP4 inhibitors have shown promising protective effects 
against atherosclerosis through multiple mechanisms. These 
inhibitors improve endothelial cell dysfunction, which is 
crucial for maintaining vascular health and preventing ath-
erosclerosis​ [139, 140]. They regulate blood lipids by reduc-
ing LDL cholesterol and triglycerides and increasing HDL 
cholesterol, thereby mitigating atherosclerotic risk factors​ 
[141, 142]. Additionally, DPP4 inhibitors lower both sys-
tolic and diastolic blood pressure, contributing to a reduc-
tion in atherosclerotic progression​ [143, 144]. Inflammation 
and oxidative stress, key factors in the development of ath-
erosclerosis, are significantly suppressed by DPP4 inhibitors 
[139, 143, 145]. They also affect mononuclear macrophages 
by reducing foam cell formation, which is essential in early 
atherosclerotic plaque development​ [146–148]. The inhibi-
tors further inhibit the proliferation and migration of smooth 
muscle cells, thereby reducing intimal hyperplasia and sta-
bilizing atherosclerotic plaques​ [149, 150]. By reducing the 
levels of MMP2 and MMP9, DPP4 inhibitors (Sitagliptin) 
enhance plaque stability, which lowers the risk of plaque 
rupture and subsequent cardiovascular events​ [151, 152]. 
Additionally, these inhibitors increase the levels of circu-
lating endothelial progenitor cells (EPCs), aiding in vas-
cular repair and maintenance​ [153, 154]. In conclusion, 
DPP4 inhibitors hold significant potential in preventing and 
treating atherosclerosis and related cardiovascular diseases 
through various mechanisms. However, more research 
is needed to fully understand their long-term effects and 
underlying mechanisms.​.

Renoprotective effect of incretin-based 
therapy in T2DM

Diabetic kidney disease (DKD) happens in 20-40% of 
patients with diabetes and is the main leading cause of the 
end-stage renal disease (ESRD) that requires dialysis treat-
ment and affects their QoL [155, 156]. Moreover, DKD not 
only increases the risk of cardiovascular disease in patients, 
even in the early stages [157], but the negative linear rela-
tionship between the glomerular filtration rate (GFR) and 
mortality is reported [158]. Several pathogeneses have been 
described, such as hemodynamic alterations causing glo-
merular hypertension, oxidative stress [157], mitochondrial 
dysfunction [159], endoplasmic reticulum stress [160], acti-
vation of cytokines, profibrotic factors, inflammation, and 
growth factors [161, 162]. The current interventions to slow 
down the DKD development consist of controlling blood 
pressure and blood glucose level, decreasing urinary albu-
min excretion, and stopping smoking [157].

An experiment in rats has shown the GLP-1R mRNA 
expression in the proximal tubules and glomeruli (1). 

diabetic patients discharged after their first MI event found 
that GLP-1RA use was associated with a reduced risk of 
stroke, heart failure, re-infarction, and cardiovascular death 
compared to standard diabetes care [126]. While GLP-1 
RAs have demonstrated cardiovascular benefits, some evi-
dence suggests that they may increase the risk of hospital-
izations in patients with heart failure with reduced ejection 
fraction (HFrEF). Therefore, until more randomized studies 
are conducted, it is advisable to avoid using GLP-1 RAs in 
patients with HFrEF [127].

Evidence regarding the impact of DPP4 inhibitors on 
cardiovascular events is paradoxical [164, 165]. Some stud-
ies have suggested that diabetic patients treated with DPP4 
inhibitors experience fewer cardiovascular events com-
pared to those on other anti-diabetic drugs [128, 129]. For 
instance, a meta-analysis reported that DPP4 inhibitors treat-
ment is associated with a reduced risk of main adverse car-
diovascular events [128]. Another one meta-analysis study 
on 40 trials suggested that long-term treatment of patients 
with T2DM with DPP-4 inhibitors and GLP-1As is associ-
ated with a lower risk of myocardial infarction compared 
to those receiving sulfonylurea drugs [130]. Despite this, 
several randomized controlled trials have been conducted to 
evaluate the cardiovascular outcomes of DPP4 inhibitors in 
diabetic patients, and none demonstrated significant cardio-
vascular benefits [131–133]. Notably, the SAVOR-TIMI 53 
trial found that saxagliptin was linked to an increased risk of 
hospitalization for heart failure [134].

Anti-atherogenic role of incretin-based 
therapy

Numerous preclinical and experimental studies have high-
lighted the anti-atherogenic properties of GLP-1 by reduc-
ing aortic macrophage recruitment and atherosclerotic 
lesion formation [135]. Sudo et al. demonstrated that lix-
isenatide improves advanced atherosclerotic plaques in rab-
bits, increasing fibrotic areas and decreasing necrotic and 
calcified areas, without changing the overall plaque size 
[136]. Incretin treatment, specifically with GLP-1RAs, is 
linked to stable plaque characteristics, showing increased 
collagen and sirtuin-6, with reduced inflammation and oxi-
dative stress in carotid plaques from diabetic patients [137]. 
The long-term effects of GLP-1RAs on atherosclerosis and 
during percutaneous coronary interventions remain unclear, 
with mixed evidence. Some studies suggest a link between 
GLP-1 levels and coronary artery disease progression [138], 
while others show GLP-1’s protective role after myocardial 
ischemia, such as exenatide reducing infarct size in both 
animal models and clinical settings [108].
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affecting the glomerulus, including DKD, lupus nephritis, 
and glomerulonephritis in this population [166].

Various studies in DKD models have demonstrated the 
beneficial effects of GLP-1RAs and DPP-4 inhibitors in 
lowering proteinuria and glomerular sclerosis by reducing 
oxidative stress and inflammation and protecting against 
endothelial injury [157]. The administration of DDP-4 
inhibitors in rats with T1DM increased the serum concen-
tration of active GLP-1, declined urinary albumin excre-
tion, and improved diabetic nephropathy histology. They 
inhibited macrophage infiltration, inflammatory molecules, 
and downregulated nuclear factor NF-κB activity in the kid-
ney [167]. Along with these effects, no significant change 
in glycemic profiles was observed, indicating anti-inflam-
matory and antifibrotic renoprotective impacts of DDP-4 
inhibitors, such as sitagliptin, linagliptin, and vildagliptin 
through amplifying serum concentration of active GLP-1 
[168]. Sitagliptin has decreased tubulointerstitial, glomeru-
lar, and vascular lesions in type 2 diabetic Zucker diabetic 
fatty (ZDF) rats [169]. Moreover, this drug attenuated the 
inflammatory cytokines and apoptosis of cells in the kidney, 
which diminished the glomerulosclerosis and tubulointer-
stitial fibrosis [170]. In addition, exenatide decreased the 

Moreover, a human study indicated that GLP-1R was 
expressed in tubules and glomeruli (2); however, another 
study stated that proximal tubules were the dominant loca-
tion of GLP-1R expression (3). This discrepancy can be 
explained by the limitation of sensitivity and specificity of 
antibodies against these receptors (4). Studies on rats have 
shown the enhancement of DPP-4 activity in response to a 
high-fat diet or obese state (5) and downregulation of the 
expression of GLP-1R in the tubules of diabetic rats (6), 
demonstrating the potential role of incretin-based therapies 
against diabetic nephropathy. The probable mechanism 
underlying the beneficial effect of GLP-1RA and DPP-4 
is mainly through the inhibition of sodium–hydrogen 
exchanger 3 (NHE3), which ultimately results in natriure-
sis as a result of inhibition of sodium reabsorption from 
the proximal tube. Moreover, tubuloglomerular feedback is 
activated because of enhanced sodium chloride delivery to 
distal tubules, leading to diminished glomerular hyperfiltra-
tion and pressure [163]. Furthermore, calcium, phosphate, 
chloride, and bicarbonate are excreted as well; however, the 
excretion of potassium is not influenced (Fig. 3) [164]. It 
has been shown that in the urine of individuals with T2DM, 
DPP-4 was found to correlate with albuminuria [165], 
which offers DPP-4 as a marker of tubular injury in diseases 

Fig. 3  Beneficial effects of 
incretin based-therapy on kidney 
activities. GLP-1R stimulation 
causes stress oxidative reduc-
tion and anti-inflammatory and 
anti-apoptotic effects. It can also 
increase natriuresis and calcium, 
phosphate, bicarbonate, and 
chloride excretion
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and DPP-4 inhibitors through attenuating inflammatory 
cytokines and markers, such as IL-1β, TNF-α, chemoat-
tractant protein-1 (MCP1), and high-sensitivity C-reactive 
protein (hs-CRP) in DKD cases and models [170, 174, 
199–202]. Moreover, these results strongly suggest that 
the renoprotective impact of GLP-1RAs might be exerted 
through inflammation suppression [203]. Furthermore, the 
mechanism behind the favorable effects of GLP-1RAs is 
speculated to be through reducing inflammation, improve-
ment of renal substrate metabolism resulting in improved 
insulin sensitivity, production of valuable systemic metabo-
lites through activation of GLP-1R agonism [204], or direct 
effect of GLP-1 on tubules of the kidney regardless of the 
mechanism mediated by the receptor [205]. Furthermore, 
GLP-1RAs show an antioxidant effect by lowering oxida-
tive markers and improving oxidative damage, as reported 
by various investigations [200, 203, 206, 207]. For instance, 
exenatide is shown to exert an anti-inflammatory effect 
by directly inhibiting the generation of H2O2-induced 
free radical species, attenuating the lactate dehydrogenase 
(LDH), creatine kinase-MB (CK-MB), and malondialde-
hyde (MDA) levels [200, 207]. It is stated that the cAMP-
dependent pathway could be responsible for the observed 
antioxidant impact [208]. Teneligliptin is shown to reduce 
free radical species generated by NADPH oxidase activity 
and act as an antioxidant [209]. According to the evidence, 
GLP-1 can regulate NO synthesis [210, 211], which can be 
beneficial for preventing renal failure progression in diabe-
tes [212]. Moreover, NO synthesis modulation by exenatide 
lowered blood pressure [213]. Thomson et al. revealed that 
exenatide improved renal hemodynamics and GFR by NO 
synthesis-related mechanism [212]. In a study by Jensen 
and coworkers, hypertensive animals with problems in kid-
ney functions GLP-1 receptors were reduced in the renal 
tissues, indicating the major role of GLP-1 in the homeosta-
sis of the renal vasculature and renal function [214]. Other 
studies have confirmed the modulatory function of GLP-1 
agonists on the renal renin-angiotensin system as well.

Effect of incretin-based therapy on diabetic 
retinopathy

Various clinical trials and studies have been carried out to 
scrutinize the effects of GLP-1RAs and DPP-4 inhibitors 
on diabetic retinopathy. It has been shown that subcutane-
ous injection of semaglutide, but not oral administration, in 
the SUSTAIN-6 study resulted in an increase in retinopathy 
in Type 2 DM patients [118, 120]. Nevertheless, a posthoc 
analysis of the SUSTAIN-6 trial did not demonstrate any 
difference in the incidence of diabetic retinopathy between 
the semaglutide and placebo groups in patients with no 

concentration of TGFβ (Transforming growth factor), a dia-
betic nephropathy-related cytokine [171].

In several clinical studies, the renoprotective effects of 
incretin-based therapies have been reported [172, 173]. 
For instance, in studies evaluating semaglutide [118] and 
liraglutide [117] effects on renal function, they lowered the 
rate of new-onset or deterioration of established nephropa-
thy compared to the placebo group. Moreover, lixisenatide 
lowered the risk of new-onset macroalbuminuria even after 
adjustment for HbA1c concentration [174]. Importantly, 
liraglutide in the LEADER trial not only improved albumin-
uria, but reduced secondary kidney outcomes, such as the 
persistent doubling of the serum creatinine level, new-onset 
persistent macroalbuminuria, kidney failure, or death due to 
kidney disease, which was not observed by exenatide [175], 
albiglutide [176], linagliptin [132], dulaglutide [121], saxa-
gliptin [177] and alogliptin [178] treatment in other studies. 
Linagliptin diminished albuminuria and UACR indepen-
dent of HbA1c and systolic blood pressure (32). In two dis-
tinct studies about the effects of linagliptin and alogliptin, 
no beneficial effect was observed when the drugs were 
used as monotherapy. Nevertheless, adding these drugs to 
patients’ established treatment based on blocking the renin-
angiotensin system remarkably diminished the albuminuria 
in patients with type 2 DM [179, 180]. It should be noted 
that though several studies failed to indicate the renopro-
tective impacts of DDP-4 inhibitors, they emphasized the 
safety and tolerability of these medications in patients with 
renal disorders [181–183].

The renoprotective effects of incretin-based therapies can 
be attributed to the modification of renal risk factors as well. 
In this regard, GLP1RA has been shown to reduce waist cir-
cumstance, body weight, visceral and trunk fat, and systolic 
blood pressure [184, 185]. This blood pressure reduction 
was significant when liraglutide and albiglutide were used. 
However, with exenatide and dulaglutide, this effect was 
insignificant compared to placebo [186]. On the other hand, 
the direct impact of GLP-1RA on the kidney is presumed to 
have a positive effect on albuminuria regardless of changes 
in hyperglycemia, blood pressure, and body weight [187]. 
It creates a consensus about the presence of GLP-1R in the 
kidney vessels [188]. Nonetheless, different trials failed 
to demonstrate the desirable effect of GLP-1Ras on renal 
hemodynamics, mainly on eGFR, reduction of which over 
time manifests a decline in intraglomerular pressure [187, 
189–196]. Besides, sodium secretion resulting from inhi-
bition of NHE3 was not persistent in the long term [187]. 
The central role of inflammation in DKD is demonstrated 
by several studies [197, 198], which motivated the scien-
tists to seek the effect of incretin-based therapies on inflam-
mation. In this regard, numerous studies on animals and 
humans showed the anti-inflammatory effect of GLP-1RA 
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On the other hand, Kolibabka et al. indicated the anti-
angiogenic effects of linagliptin, a DPP-4 inhibitor [231]. 
Vildagliptin could inhibit the thrombogenic reactions and 
inflammation in the retina of Otsuka Long-Evans Tokushima 
Fatty rats (OLETF rats), models of obese type 2 diabetes 
[232]. Moreover, topical DPP-4 inhibitors have shown pre-
ventive effects on vascular leakage and neurodegeneration 
in the retinas of mice [233]. Besides, in a study by Kim et 
al., the overall risk of diabetic retinopathy did not increase 
with DPP-4 inhibitor treatment. At the same time, it was sig-
nificantly raised within 12 months after treatment initiation 
and later decreased with no rational explanation.

It should be noted that the impact of undesirable glyce-
mic control on diabetic retinopathy risk in the treatment 
group compared to the control one cannot be excluded 
[234]. Sitagliptin is shown to inhibit the breakdown of the 
blood-retina barrier in type 1 and 2 diabetes models through 
the alteration made in dispersing tight junction proteins, 
inflammatory cytokines, like IL-1β, and apoptosis-induced 
cell death. Moreover, it prevented the decline of endothelial 
progenitor cells (EPCs) adhesion to the retinal vessels [235, 
236]. In a double-blind, placebo-controlled trial scrutinizing 
the six-week saxagliptin treatment effect on microvascular 
changes in retina in type 2 diabetes, it normalized the retina 
capillary flow (RCF) and ameliorated central hemodynam-
ics [237]. These findings suggest that the beneficial effects 
of DPP-4 inhibitors are attributed to inhibiting retinal cell 
nitrosative stress, inflammation, and apoptosis; however, 
it should be tested to determine whether these effects are 
related to GLP-1 [90].

Novel incretin-based agents at a glance

Semaglutide

Semaglutide, initially designed as an injectable long-acting 
GLP-1RA, was approved in the United States in September 
2019 as an oral compound [238]. With a slight change in 
the amino acid sequence of natural GLP-1, semaglutide has 
been developed to improve albumin binding, renal clear-
ance, DPP-4 cleavage, and gastric mucosa absorption [239]. 
To protect the peptide-based construction of Semaglutide 
from proteolytic enzymes and gastric pH, the absorption 
enhancer sodium N-[8-(2-hydroxybenzoyl) amino] capry-
late was added to the oral tablet [239, 240]. For predictable 
absorption, it should be given on an empty stomach with 
limited volumes of water (120  ml) [241]. The impacts of 
Semaglutide on glycemic control and body weight reduc-
tion have been demonstrated in different clinical trials [75, 
76, 242]. The PIONEER clinical trial program consisted of 
eight Phase 3 trials designed to evaluate the efficacy and 

pre-existing diabetic retinopathy [215]. Moreover, liraglu-
tide [117], albiglutide [216], and exenatide [217] in differ-
ent studies showed progression of diabetic retinopathy. It 
should be noted that this increase in the liraglutide group 
was not statistically significant, and in follow-up of patients 
receiving exenatide the improvement or stability of diabetic 
retinopathy was reported. Besides, when GLP-1 RAs were 
compared to two or more oral glucose-lowering drugs in a 
study, the overall incidence of diabetic retinopathy was not 
enhanced. Nevertheless, the secondary analysis showed that 
GLP-1RA was associated with a transient 44% increased 
risk of diabetic retinopathy over 6–12 months, particularly 
in patients with arterial hypertension [218]. The possible 
explanations for these results seem to be due to a short 
period of diabetic retinopathy follow-up, lack of baseline 
diabetic retinopathy staging, a rapid drop in HbA1c, and ret-
inal microvascular angiogenesis [219]. On the other hand, 
no association between GLP-1RA exposure and severe dia-
betic retinopathy has been reported by several studies [175, 
215, 218, 220–223], even among patients with pre-existing 
ocular disease [224]. A meta-analysis revealed the safety 
of GLP-1RAs for diabetic retinopathy treatment [225]. 
Based on the FDA (Food and Drug Administration) report 
regarding ocular adverse events due to GLP-1RAs, such 
as vitreous hemorrhage, diabetic retinopathy, proliferative 
diabetic retinopathy, macular edema, or blindness, GLP-
1RAs did not enhance the diabetic retinopathy development 
risk [226]. Hernandez and coworkers found that systemic 
administration of liraglutide in db/db mice inhibited reti-
nal neurodegeneration by stimulating the AKT pathway, a 
vital pathway for retinal neurons to survive [227]. More-
over, they observed these desirable effects via administered 
liraglutide, native GLP-1, lixisenatide, or exenatide topi-
cally, suggesting that the neuroprotective effects are inde-
pendent of the type of GLP-1 RA and blood glucose levels 
[227]. Besides, GLP-1RA therapy in diabetic rats improved 
B wave and OPs [228], the most sensitive index of elec-
trophysiology of diabetic retinopathy declined in diabetic 
retinopathy. The differences in the structure of the medica-
tion could explain the observed discrepancy. It is essential 
to state that in the various studies examining GLP-1RA-
related diabetic retinopathy, a standard AE report was used 
instead of a retinal image, except for one retrospective study 
in which a robust method was applied [229]. The results of 
a clinical trial (FOCUS), which will analyze semaglutide-
related ocular events via retinal imaging, are expected to 
provide significant insights into this issue [135].

The detrimental effect of DDP-4 inhibitors on diabetic 
retinopathy has been reported recently. Lee and coworkers 
stated that DPP-4 inhibitors in their murine diabetic retinop-
athy model aggravated diabetic retinopathy after one week 
of treatment due to increased retinal vascular leakage [230].
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seems to be mediated by weight reduction and activation 
of glucose, lipids and branched-chain amino acids oxida-
tion [9]. Moreover, insulin-like growth factor-binding pro-
tein 1,2 (GFBP-1, 2) deficiency which is associated with 
insulin resistance and fatty liver respectively [250, 251] are 
increased after treatment with tirzepatide [246].

In T2DM, the conversion of proinsulin to insulin is 
impaired due to pancreatic beta cell dysfunction. However, 
tirazepatide dose-dependently attenuates proinsulin level, 
proinsulin/insulin and proinsulin/C-peptide ratios, indica-
tive of ameliorated beta cell function [252, 253]. Different 
randomized clinical trials investigated the efficacy of vari-
ous doses of tirzepatide in lowering HbA1c and body weight 
as monotherapy or add-on therapy to metformin in patients 
with T2DM when compared to dulaglutide, semaglutide 
or placebo [73, 254–257]. The results showed the superi-
ority of tirzepatide in reducing body weight and glycated 
hemoglobin levels in a dose-dependent manner. The fast-
ing hyperglucagonemia, commonly seen in diabetic patients 
that dysregulates hepatic glucose metabolism, was improved 
resulting in better HbA1c control in patients treated with 
the tirzepatide [258, 259]. Moreover, a meta-analysis study 
demonstrated a dose-dependent superiority of tirzepatide on 
glycaemic control and bodyweight reduction compared to 
placebo, GLP-1 RAs and basal insulin [74].

Furthermore, tirzepatide had favorable impacts on a 
range of cardiovascular risk factors, such as blood pressure 
and lipid profile. In this regard, a 26-week study demon-
strated dose-dependently reduction of apoC- III, apoB lev-
els, small low-density lipoprotein and large triglyceride-rich 
lipoprotein particles following treatment with tirzepatide. 
Besides, the effect of tirzepatide on lipid profile is mainly 
similar to that of semaglutide and dulaglutide, except for 
HDL-C level improvement which was significantly greater 
by tirzeatide than other drugs [260]. Moreover, several sys-
temic inflammation and endothelial dysfunction biomark-
ers associated with atherosclerotic cardiovascular disease, 
including hsCRP, intercellular adhesion molecule-1and 
N-terminal-pro hormone B-type natriuretic peptide (NT-
proBNP) have been shown to be suppressed after adminis-
tration of tirzepatide [261].

Although the SURPASS-4 study found no tirzepatide-
related cardiovascular adverse effects [262], increased heart 
rate without alteration in laboratory values, ECG or vital 
signs was reported by some studies as the serum concentra-
tion of the drug rose [255, 263]. However, in the phase 2 
trial systolic and diastolic blood pressure as well as pulse 
rate were not significantly different in the tirzepatide treat-
ment group compared to placebo or dulaglutide [256]. On 
the other hand, in the SURPASS-1 trial [257], tirzepatide 
in a dose of 10 mmHg lowered systolic blood pressure 
significantly when compared to placebo. A meta-analysis 

safety of oral semaglutide, a novel GLP-1 receptor agonist, 
in patients with type 2 diabetes [243]. In the PIONEER tri-
als, oral semaglutide (14 mg) exerted a large reduction in 
HbA1c compared to placebo, empagliflozin, sitagliptin, 
liraglutide, and dulaglutide [75, 76, 242, 244, 245]. In addi-
tion, the efficacy of semaglutide in weight reduction across 
the PIONEER trials has been documented. Besides, 14 mg 
of oral semaglutide resulted in greater weight loss com-
pared to the drugs mentioned above [75, 76, 242, 244, 245]. 
The cardiovascular safety of oral semaglutide was inves-
tigated in the PIONEER 6 trial. Compared to the placebo 
group (4.8%), the major adverse cardiovascular events were 
lower (3.8%) in the oral semaglutide group [120]. Given 
the oral dosage form of the drug compared to other GLP-1 
analogues, its efficacy in glycemic control and weight loss, 
and its relatively safe cardiovascular profile, it can improve 
patient compliance.

Dual and triple agonists

Besides the GLP-1 receptor agonists with encouraging effi-
cacy in glycemic control and weight loss, new agents acting 
on two or more different enteropancreatic receptors, includ-
ing dual agonists acting on GLP-1/GIP or GLP-1/glucagon, 
and triple agonists stimulating GLP-1/GIP/glucagon recep-
tors, are under development.

Dual agonists stimulating GLP-1 and GIP receptors 
(twincretins)

Tirzepaptide, a novel, once-weekly injectable agent recently 
approved for chronic weight management in adults with 
obesity or overweight and also to be used along with diet 
and exercise to help improve blood sugar (glucose) in adults 
with type 2, is a synthetic peptide with dual agonist activity 
on GLP-1 and GIP receptors [246, 247]. It has shown sig-
nificant A1C and weight reductions in the SURPASS global 
clinical development program. The SURPASS trials (SUR-
PASS-1-6) were a global series of Phase 3 clinical studies 
designed to evaluate the efficacy and safety of tirzepatide 
in various patient populations with type 2 diabetes. Across 
all SURPASS trials, tirzepatide consistently met its pri-
mary and key secondary endpoints for efficacy. Participants 
experienced sustained A1C reductions and progressive 
weight loss. The safety profile of tirzepatide was favorable, 
with gastrointestinal, nausea, diarrhoea and vomiting side 
effects being the most commonly reported adverse events 
[248, 249]. It decreases insulin resistance associated with 
lowering fasting insulin level and HOMA2-IR (an Insulin 
resistance index) that attenuates pancreatic beta cell stress 
to secrete insulin and improves insulin sensitivity [246]. 
The advantageous insulin-sensitizing action of tirzepatide 
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doses of Cotadutide resulted in marginal enhancements in 
total cholesterol and triglyceride levels compared to liraglu-
tide, but these improvements were not statistically signifi-
cant [276].

However, AstraZeneca, the developer of cotadutide, has 
revealed plans to discontinue its clinical program for the 
daily GLP-1R/GCGR in favor of prioritizing the advance-
ment of AZD9550, its once-weekly injectable GLP-1RA/
GCGR. [277].

SAR425899, another dual agonist, has shown glycemic 
control, bodyweight reduction, and reduced gastric empty-
ing effects in human studies. [278, 279]. Sanofi’s GLP-1R/
GCGR dual-agonist SAR425899 has been evaluated in 
a phase I clinical study using single and multiple ascend-
ing subcutaneous doses daily. The experiment comprised 
healthy/overweight and overweight/obese type 2 diabetics. 
In healthy/overweight individuals and overweight/obese 
type 2 diabetes patients, SAR425899 reduced body weight 
by 5.32 kg and 5.46 kg, respectively, over 21–28 days. In 
the latter group, fasting plasma glucose and glycated hemo-
globin decreased significantly. [278]. The research assessed 
the effect of SAR425899 on the functioning of β-cells in 
36 obese individuals with type 2 diabetes. These patients 
were randomly assigned to receive either a placebo or dif-
ferent doses of SAR425899 (low or high) for a period of 28 
days. The results demonstrated enhancements of 23% (pla-
cebo), 163%, and 95%, correspondingly. [279]. Despite the 
encouraging outcomes, SAR425899 was terminated during 
Phase II clinical trials owing to a significant prevalence of 
gastrointestinal side effects among patients.

Efinopegdutide also referred to as MK-6024, JNJ-
64,565,111, and HM12525A, was investigated in a clini-
cal study including individuals who were both obese and 
diagnosed with T2DM. During a 12-week treatment period, 
dosages of 5.0 mg, 7.4 mg, and 10 mg were administered 
once weekly, resulting in substantial decreases in body 
weight of -4.6%, -5.9%, and − 7.2% respectively, when 
compared to the placebo. Significantly, there were no con-
siderable changes seen in HbA1C%, fasting insulin, or 
blood sugar levels [280]. Efinopegdutide (at 5.0, 7.4, and 
10.0 mg) showed significant placebo-corrected body weight 
decreases of 6.7%, 8.1%, and 10.0% in non-diabetic obese 
individuals during 26 weeks, compared to 5.8% for Lira-
glutide (3 mg). For all Efinopegdutide dosages, side events 
caused 18–32% of patient discontinuation, whereas Liraglu-
tide had 17% [281]. Efinopegdutide is being evaluated for 
non-alcoholic fatty liver disease after discontinuation for 
obesity and T2D.

Another dual agonist, once-weekly Mazdutide (IBI362 
or LY3305677), showed therapeutic effectiveness in over-
weight and obese individuals with dose-escalation in a 
12-week phase I clinical study. Body weight decreased by 

and systematic review of GLP-1RA- related cardiovascu-
lar outcomes reported a reduction of major cardiovascular 
side effects and all-cause mortality [264]. Moreover, its 
long-term cardiovascular safety is still being investigated in 
different RCTs (A Study of Tirzepatide (LY3298176) Com-
pared with Dulaglutide on Major Cardiovascular Events in 
Participants with Type 2 Diabetes [249, 265, 266].

It has been shown that the serum markers such as kera-
tin-18 (K-18) and adiponectin which are associated with 
Non-alcoholic fatty liver disease (NAFLD) (occurring in 
the most of diabetic patients) have been improved after tirz-
epatide therapy [267, 268]. The rodent models of obesity 
and human studies demonstrated the inverse association 
between adiponectin and insulin resistance [269].

Dual agonists stimulating GLP-1 and glucagon receptors

Dual agonists targeting GLP-1 and glucagon receptors 
(GLP-1R/GCGR) can decrease plasma glucose and body-
weight. Improvements in energy expenditure and reduc-
tions in food intake highlight the potential value of glucagon 
pharmacology as a treatment for metabolic syndrome. 
However, the hindrance posed by its hyperglycemic effects 
has rendered practical implementation non-existent. Data 
showed that glucagon receptor agonists enhance resting cal-
orie consumption, which leads to greater bodyweight loss 
compared to GLP-1 receptor stimulation alone [270–272]. 
While it might appear that stimulating glucagon receptors 
could potentially elevate plasma glucose levels, simulta-
neous targeting of both receptors may likely act as a com-
pensatory mechanism to mitigate this effect. Cotadutide 
(MEDI0382) was the first GLP-1R/GCGR dual agonist to 
enter clinical trials. [273]. Cotadutide revealed an adverse-
effect profile similar to liraglutide in a phase I research on 
healthy participants, with dose-escalation associating with 
vomiting, nausea, dizziness, and small elevations in heart 
rate. There were dose-dependent effects on peak glucose 
levels and food intake, with the maximum dosage (300 g) 
showing a significant decrease in food intake but with a high 
rate of adverse effects [274]. In subsequent trials (Ib, IIa) 
involving individuals with T2DM and those who were over-
weight, Cotadutide demonstrated general safety and toler-
ability, as well as efficacy in reducing fasting blood glucose, 
post-prandial glucose flactuations, body weight, and liver 
fat [273]. The improvements in post-prandial glucose gly-
cemic variation found with Cotadutide administration are 
related to increased insulin release and postponed stomach 
emptying. [275]. In a long-term investigation (54 weeks), 
both Cotadutide dosages (100 µg and 200 µg) reduced body 
weight to the same extent as the GLP-1R agonist liraglutide. 
Cotadutide, on the other hand, had a greater rate of adverse 
reactions resulting in study discontinuation. However, both 

1 3



Journal of Diabetes & Metabolic Disorders

address safety concerns and confirm their effectiveness in 
combating obesity and diabetes.

Conclusion

Diabetes and its complications are responsible for remark-
able mortality all over the world. Conventional anti-diabetic 
agents have not been able to control these life-threatening 
complications efficiently. Incretins, the gut peptide hor-
mones, along with insulin release stimulation, have some 
other effects on the cardiovascular system, appetite, obesity, 
lipid metabolism, and others. Incretin-based therapy relying 
on novel anti-diabetic agents like GLP-1 agonists and DPP-4 
inhibitors acting on the incretin system has shown encourag-
ing therapeutic effects on diabetic manifestations and com-
plications. In this regard, semaglutide, initially designed as 
an injectable long-acting GLP-1RA, was recently approved 
in the United States as an oral compound. Dual and triple 
agonists targeting GLP-1, GIP, and glucagon receptors such 
as tirzepatide and cotadutide with inspiring impacts on gly-
cemic control, bodyweight, live fatty acid, and plasma tri-
glyceride levels are currently under investigation.
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4.8% for 3 mg, 6.4% for 4.5 mg, and 6.0% for 6 mg in the 
research. adverse events did not cause individuals to stop 
therapy. Gastrointestinal adverse effects were prevalent but 
insignificant. Three individuals had asymptomatic cardiac 
issues [282]. Both 4.5  mg and 6  mg Mazdutide provide 
comparable fasting glucose and HbA1c decreases to 1.5 mg 
dulaglutide over 12 weeks, but results in more weight loss 
[283].

BI 456,906, a Boehringer-Ingelheim GLP-1R/GcgR 
dual-agonist, reduced body weight in a repeated escalat-
ing dosage phase Ib clinical research. At maximum doses, 
decreases were − 5.8% in 6 weeks and − 13.8% in 16 weeks. 
Due to gastrointestinal, vascular, and cardiac side effects, 
12.5% of patients discontinued at 6 weeks and 17.8% at 16 
weeks. Plasma amino acid and glucagon decreases indicated 
GcgR and GLP-1R targeting, according to the research 
[284].

NNC9204–1777, a drug developed by Novo Nord-
isk, reduced obesity-related body weight by 12.6% in a 
12-week multiple ascending dosage phase I clinical study. 
The research indicated safety concerns owing to dose-
dependent heart rate increases, reticulocyte count decreases, 
higher markers of inflammation and liver abnormalities, and 
reduced glucose tolerance at high doses. The study conse-
quently concluded that NNC9204–1777 had unacceptable 
safety risks. [285].

Triple agonists

Triple agonists, which activate GLP-1, GIP, and gluca-
gon receptors, are primarily in the developmental stage. 
Three such triple-agonists, SAR441255, LY3437943 and, 
HM15211 have advanced to clinical trials. SAR441255, 
a triple-agonist utilizing the exendin-4 sequence, exhibits 
enhanced glycemic control and body weight reduction in 
phase Ia trials involving healthy humans and phase I trials 
with diabetic obese monkeys [286]. LY3437943, character-
ized by its C20-diacid acylated compound, demonstrates 
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