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Introduction

Diabetes is the largest global epidemic of the current cen-
tury, affecting 425 million people worldwide, and diabetic 
neuropathy is one of its common complications that occurs 
in nearly half of all diabetic patients. Diabetic neuropathy 
is caused by damage to the peripheral (both motor and sen-
sory) and autonomic neurons [1], and the most common 
form of diabetic neuropathy is distal symmetric polyneu-
ropathy where the extremities (hands, toes, and feet) are 
commonly affected. It manifests as motor weakness and 
sensory symptoms including paresthesia (abnormal painless 
sensations like numbness, tingling, itching), dysesthesia 
(abnormal painful sensations like pricking, burning, ice-
old), allodynia (pain evoked by normally nonpainful stimuli 
like touching, running of water), and hyperalgesia (exag-
gerated pain sensation in response to mild painful stimuli) 
[2, 3]. Diabetic neuropathic pain (DNP) is a general term 
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Abstract
Objectives  Diabetic neuropathic pain (DNP) is a debilitating symptom of diabetic neuropathy which seriously impairs 
patient’s quality of life. Currently, there is no specific therapy for DNP except for duloxetine and gabapentin that show lim-
ited utility in alleviating DNP. The present review aims to discuss the central role of protein kinases in the pathogenesis of 
DNP and their therapeutic modulation.
Methods  Scopus, PubMed, and Google scholar were searched up to January 2022 to find relevant studies with English lan-
guage in which the roles of proteins kinases in DNP were examined.
Results  DNP is associated with hyperactivity in pain sensory neurons and therapies aim to specifically suppress redundant 
discharges in these neurons without affecting the activity of other sensory and motor neurons. Transient receptor potential 
vanilloid 1 (TRPV1) and purinergic 2 × 7 receptors (P2 × 7R) are two receptor channels, highly expressed in pain sensory 
neurons and their blockade produces remarkable analgesic effects in DNP. The activities of receptor channels are mainly 
regulated by the protein kinases whose modulation provides remarkable analgesic effects in DNP models.
Conclusion  Capsaicin, TRPV1 modulator, is the only agent successfully examined in clinical trials with promising effects in 
patients with DNP. Current data suggest that blocking calcium calmodulin dependent protein kinase II (CaMKII) is superior 
to other approaches, considering its pivotal role in regulating the pain neuron potentials. By this means, DNP alleviation is 
achievable without affecting the activity of other sensory or motor neurons.
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that encompasses dysesthesia, allodynia, and hyperalgesia 
which markedly impairs patients’ life quality, affects sleep, 
work, self-esteem, and social relations, and results in social 
abstentions and depression [4]. Generally, one quarter of all 
diabetic patients suffer from DNP [5].

In DNP, a physical damage to pain neurons is not the 
major problem, rather pain sensory neurons become hyper-
active and discharge frequently in this condition. Pain sense 
is transmitted to the central nervous system by dorsal root 
ganglia (DRG) and through un-myelinated C- and thinly 
myelinated A-fibers, and it is now known that the sensitiza-
tion and hyperactivity of these neurons are the mainstay of 
DNP [6]. In the last two decades, efforts have been made 
to elucidate the molecular basis underlying the neuronal 
hyperactivity in DNP in order to tailor specific and effective 
treatment methods for the condition [7]. A-fiber neurons in 
the DRG are large-diameter neurons with thinly myelinated 
axons that convey the pain sensation, and have pivotal roles 
in the induction of allodynia in neuropathic pains [8].

A protein kinase is a kinase enzyme that enacts protein 
phosphorylation by covalently adding a phosphate group 
from adenosine triphosphate (ATP) to an amino acid resi-
due in a protein. Protein phosphorylation is a reversible 
post-translational modification which alters the protein con-
formation, and results in either target activation or deactiva-
tion. Protein kinases are categorized into two main types: 
1- serine/threonine kinases, that target the hydroxyl groups 
of serine or threonine residues in the downstream proteins, 
and 2- tyrosine kinases, which phosphorylate the tyrosine 
residues in their targets [9]. Kinases are extremely crucial 
for cell biology as ∼30% of all human proteins could be 
modified by kinases; and therefore, these enzymes regulate 
the majority of cellular functions [10].

Molecular pathogenesis of DNP: the central 
role of receptor channels

Receptor channels, also called ligand-gated ion channels, 
are a set of transmembrane multimeric proteins located on 
the neurons, that open to allow the passage of diverse ions 
like Na+, K+, Ca2+, and/or Cl− in response to the binding of a 
chemical messenger (i.e. a ligand), such as a neurotransmit-
ter [11]. These channels act to regulate or control the func-
tion of neurons, and depending on the ion that allow in or 
out of the cell, they stimulate or suppress the neuronal func-
tion. For instance, increased load of Cl− ions inside neu-
rons opposes the induction of action potential, making the 
neurons less excitable; conversely, increased load of posi-
tively charged ions such as Na+ and Ca+ decreases the stim-
ulatory threshold and renders the neurons hyperactive [12, 
13]. Under diabetic conditions, the expression of receptor 

channels as well as the production of neurotransmitters are 
altered which affects the activity of neurons. Therefore, rec-
ognizing the pathophysiology of receptor channels in dia-
betes will elucidate the nature of neuronal derangements 
seen in these patients and helps in tailoring more targeted 
therapies [14].

The transient receptor potential vanilloid 1 (TRPV1) is 
a ligand-gated nonselective cation channel that specifically 
localizes to C- and A-fiber (nociceptive) sensory neurons 
[15]. TRPV1 activation allows for the inflow of Na+ and 
Ca2+ ions, initiating nerve depolarization. This key role of 
TRPV1 in nociception has been corroborated by the finding 
that TRPV1-knockout mice had decreased pain response 
following thermal hyperalgesia [16]. Kamei et al., were 
the first scholars to show that intrathecal injection of anti-
TRPV1 serum to diabetic mice alleviated thermal allodynia 
[17]. Moreover, substance P is the main neurotransmitter in 
afferent pain fibers, whose expression is greatly increased 
in neuropathic pains, and it has been evidenced that cap-
saicin, a TRPV1 activator, triggers these neurons to even-
tually deplete their substance P reserves, causing pain 
attenuation both in diabetic mice and in human patients; in 
fact, prolonged exposure to capsaicin desensitizes the pain 
nociceptors [18]. Capsaicin 8% patch causes no neurologic 
adverse effects in diabetic patients [19] and attenuates pain 
two weeks after the treatment onset [20]. Similarly, capsaz-
epine, a TRPV1 antagonist, effectively alleviated pain in rat, 
mouse, and guinea pig models of capsaicin-induced, inflam-
matory, and neuropathic pains [21].

The transient receptor potential M8 (TRPM8), formerly 
called menthol and cold receptor 1 (CMR1), is the other 
non-selective ion channel present on pain sensory neu-
rons. Its role in neuropathic pains is less investigated com-
pared to TRPV1. TRPM8 contributes to cold sensation and 
is evoked by temperatures lower than 25°C, as well as by 
cooling agents like menthol and icilin [22]. TRPM8 activa-
tion results in the influx of Na+ and Ca2+ with the conse-
quent membrane depolarization [23]. phosphatidylinositol 
4,5-bisphosphate (PIP2) is the pivotal regulator of TRPM8 
channels, as exogenous PIP2 activates them in DRG neu-
rons in vitro; conversely, inhibition of phosphoinositide 
(PI) 4-kinase, the enzyme responsible for PIP2 synthesis, 
by either wortmannin or phenylarsine oxide (PAO) down-
regulated the TRPM8 activity [24]. Total protein levels as 
well as phosphorylated forms and the activity of TRPM8 
channels are increased in the DRG neurons of diabetic mice, 
and both protein kinase A and protein kinase C contribute 
significantly to the enhanced activities of these channels. 
Moreover. Specific inhibition of TRPM8 channels signifi-
cantly attenuates pain indices in diabetic mice [25].

Acid sensing ion channel 1 (ASIC1) is a proton-gated 
cation channel which allows for the influx of Na+ ions, and 

1 3

148



Journal of Diabetes & Metabolic Disorders (2023) 22:147–154

is widely expressed in nociceptive neurons [26]. It has been 
shown that ASIC1 protein levels are increased in the DRG 
neurons of diabetic rats [27]. However, it is not yet known 
that whether the activity of ASIC1 is altered under diabetic 
circumstances or not, and if ASIC1 stimulation or blockade 
has any therapeutic utility in DNP. Therefore, more thor-
ough investigations are needed to answer these questions.

Orphan G protein–coupled receptor 177 (GPR177) is a 
seven-transmembrane protein and is principally expressed 
in A-fiber DRG neurons that regulates the secretion of wing-
less-type mammary tumor virus integration (Wnt) ligands 
[28]. Despite not being an ion channel, it is discussed here 
because GRP177 is closely related to TRPV1 function. 
GRP177 is specifically up-regulated in A-fiber DRG neu-
rons and exclusively secretes Wnt5a from these neurons in 
diabetic mice. Wnt5a secretions is essential for allodynia 
and hyperalgesia as its blockade abrogates these symptoms 
in diabetic mice. Wnt5a increases intracellular levels of 
Ca2+ and in turn activates the TRPV1 channels [29].

Purinergic 2 × 7 receptors (P2 × 7R) are non-selective cat-
ion channels that are principally expressed in the DRG neu-
rons. These receptor channels are mainly activated by the 
extracellular adenosine triphosphate (ATP). In neuropathic 
conditions, the ATP released from the injured neurons and 
glial cells stimulate P2 × 7Rs on the intact pain neurons [30]. 
P2 × 7R is also present on the glial cells of DRG whose stim-
ulation leads to the release of inflammatory cytokines such 
as tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), 
and plasminogen which aggravate the neuropathic pain [31]. 
It was detected in diabetic rats that the expression of P2 × 7R 
in DRG neurons is increased, and intrathecal administration 
of A438079, the P2 × 7R antagonist, improved allodynia and 
pain indices, and simultaneously decreased protein levels of 
TRPV1. Moreover, it decreased IL-1β levels (a pro-inflam-
matory cytokine) and elevated IL-10 levels (an anti-inflam-
matory cytokine). It was found that P2 × 7R inhibition 
reduced the expression of TRPV1 by down-regulating the 
MAPK signaling pathway [32]. Another study conducted on 
diabetic rats reported that either silencing P2 × 7R or inhib-
iting p38 improved allodynia, attenuated both TRPV1 and 
PKC expressions, and simultaneously decreased IL-1β lev-
els by suppressing NF-kB activity [33].

Cannabinoid 2 receptor (CB2R) is expressed on the DRG 
neurons whose activation produces analgesia. Intrathecal 
administration of AM1241 and AM1710, the CB2R ago-
nists, in rats with sciatic nerve injury alleviated allodynia 
and suppressed inflammation in the dorsal horn of the spinal 
cord [34]. It should be underlined that the increased levels of 
neuroimmune chemokine, C–C class chemokine-2 (CCL2), 
also called monocyte chemo-attractant protein-1 (MCP-1), 
in the dorsal horn of spinal cord increases the expression of 
TRPV1 on DRG neurons [35]. However, it has been shown 

that AM1710 (CB2R agonist) attenuates allodynia both 
independently of TRPV1 and by down-regulating TRPV1 
expression on DRG neurons [36].

Protein kinase C (PKC)

PKC is a serine/threonine kinase which controls the func-
tion of other proteins by phosphorylation. PKC is mainly 
activated by diacylglycerol (DAG), a second messenger 
lipid, which is generated by hydrolysis from the phospho-
lipid phosphatidylinositol 4,5-bisphosphate (PIP2) by the 
function of membrane-anchored enzyme phospholipase C 
(PLC). Inositol trisphosphate (IP3) is the other product of 
PLC which enters the cytosol and induces the release of cal-
cium ions from the smooth endoplasmic reticulum, whereas 
DAG does not diffuse in to the cytoplasm, remains in the 
plasma membrane due to its hydrophobic properties and 
directly activates PKC. Moreover, PKC can be activated by 
calcium ions (Ca2+) [37].

PKC is expressed in high concentrations in neuronal 
tissues and is involved in a wide array of neuronal func-
tions [38]. PKC activates TRPV1 by phosphorylation. It has 
been demonstrated that TRPV1 could solely be activated 
by PKC, even in the absence of TRPV1 agonist. TRPV1 
activation was augmented by tetradecanoylphorbol acetate 
(TPA), a PKC activator; and its activity was reduced by 
bisindolylmaleimide (BIM), a PKC inhibitor [39]. These 
findings were confirmed in vivo by two independent stud-
ies, as it was shown that both phosphorylated protein levels 
and the activity of DRG neurons were increased in rats with 
diabetes; and these effects were enhanced after administer-
ing a PKC activator, and were abrogated after injecting a 
PKC inhibitor [40, 41].

Advanced glycation end products (AGEs) are formed 
in excess quantities in diabetes by non-enzymatic reaction 
of glucose with proteins. AGEs contribute to the pathogen-
esis of diabetic complications by activating the receptor for 
advanced glycation end products (RAGEs), expressed on 
various cell types [42]. High glucose concentrations evoke 
the TRPV1 activity in mice DRG neurons in vitro while the 
cell viability was not affected in the high glucose medium. 
Interestingly, RAGE-knockout DRG neuros demonstrated 
no hyperactivity in high glucose medium; likewise, wild-
type DRG neurons exposed to antioxidants α-lipoic acid 
plus catalase showed no hyperactivity in the same medium. 
Finally, inhibition of either PKC or Drc kinase abrogated 
RAGE-mediated hyperactivity in DRG neurons, suggesting 
that RAGE contributes to the hyperactivity of TRPV1 chan-
nels by activating PKC and Src kinase [43].
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PI3K, PKB, and mTOR are increased, suggesting the acti-
vation of this pathway; and the levels of belcin-1 and LC3-
II, the autophagy-related proteins, are decreased, suggesting 
the inhibition of autophagy. It was found that LY294002, the 
PI3K inhibitor, reversed the above-mentioned indices and 
significantly attenuated pain perception in diabetic rats [53]. 
Whether PI3K/Akt/mTOR activation in the pain sensory 
neurons of diabetic rats affects TRPV1 channels or not has 
not been investigated yet.

Calcium/calmodulin-dependent protein 
kinase (CaMK)

CaMK is a serine/threonine kinase activated by elevations 
in the intracellular levels of Ca2+ and calmodulin. As a 
calcium-binding protein, calmodulin is being targeted by 
the secondary messenger Ca2+. Ca2+/calmodulin complex 
functions as part of a calcium signal transduction pathway 
by activating CaMK. Activated CAMK phosphorylates a 
broad spectrum of membrane-bound to transcription fac-
tor proteins, and thereby, regulates many cellular functions 
including cell division, proliferation, and programmed cell 
death [54]. CaMKII is the main isoform present in neuronal 
cells [55], and therefore, in the following lines the role of 
CaMKII will be discussed in DNP. In basal state, CaMKII 
is phosphorylated at Thr305. When Ca2+ binds CaMKII, it 
gains an auto-phosphorylating property to be self-phosphor-
ylated on Thr286 which is the active form of the enzyme 
[56]. Auto-phosphorylated CaMKII does not need further 
stimulation by calcium and it can maintain its activity inde-
pendent of further stimuli, providing a function of molecu-
lar memory [57].

Nearly a decade ago, two independent experimental stud-
ies on rat models of diabetes demonstrated increased protein 
expression and phosphorylation of CaMKII in DRG neu-
rons. According to these reports, the α isoform of CaMKII 
was the predominant form, and that the increased CaMKIIα 
activity was associated with pain-related behavior in rats [58, 
59]. Increased activity of CaMKIIα in trigeminal nerves of 
diabetic rats has been noticed [60]. Moreover, myristoylated 
autocamtide-2-inhibitory peptide (AIP) produces analgesia 
in rats with sciatic nerve mononeuropathy by inhibiting the 
CaMKII [61]. Both total protein and phosphorylated forms 
of CaMKII are increased in the DRG neurons of diabetic 
rats, and KN-93, the CaMKII inhibitor, alleviates hyperal-
gesia, in addition to reducing phosphorylated CaMKII and 
P2 × 3R levels [62].

N-methyl-D-aspartate receptor (NMDAR) is a receptor-
channel activated by the salient excitatory neurotransmitter 
glutamate, and is widely expressed on pain sensory neurons 
[63]. Upon activation, it allows for the inflow of Ca2+ ions. 

Protein kinase (PKA)

PKA, also called cAMP-dependent protein kinase, is a 
kinase which is regulated by cyclic AMP (cAMP). Extra-
cellular molecules such as serotonin, prostaglandins, and 
epinephrine modulate nociception by first binding to a G 
protein–coupled receptor (GPCR) on the neuron. When 
activated, a conformational change is induced in the recep-
tor that is transmitted to an attached intracellular heterotri-
meric G protein complex through protein domain dynamics. 
The Gs alpha subunit of the stimulated G protein complex 
exchanges GDP for GTP in a reaction catalyzed by the 
GPCR and is released from the complex. The activated Gs 
alpha subunit binds to and activates an enzyme called ade-
nylyl cyclase, which, in turn, catalyzes the conversion of 
ATP into cAMP, directly increasing the cAMP level.

It has been shown that the injection of membrane per-
meable cAMP or adenylyl cyclase activators lower the 
nociceptive threshold and lead to hyperalgesia in experi-
mental models [44]. Mechanistically, PKA phosphorylates 
the hyperpolarization activated cation channels (HCN) on 
the nociceptive neurons to allow in more positively charged 
ions, leading to frequent nerve activation [45]. PKA also 
induces the activity of voltage-gated sodium channels on the 
pain sensory nerves which augments their excitability [46]. 
It has been shown that dexmedetomidine relieves hyperal-
gesia induced by brachial plexus root avulsion by suppress-
ing PKA [47]. PKA is also able to directly phosphorylate 
TRPV1 channels. It has been shown that prostaglandin E2 
(PGE2) induces hyperalgesia by increasing intracellular 
c-AMP levels (PKA activation); conversely, the µ-opioid 
agonists produce analgesic effects by decreasing intracel-
lular c-AMP levels (PKA inhibition) [48].

Protein kinase B (PKB)

PKB, also commonly called Akt, is another serine/threo-
nine protein kinase that has multiple roles in various cel-
lular functions including cell survival, proliferation, and 
apoptosis [49]. unlike other protein kinases, PKB is part of 
the PI3K/Akt/mTOR signaling pathway; and it is activated 
by phosphoinositide 3-kinase (PI3K), and then activates 
the downstream kinase, mammalian target of rapamycin 
(mTOR) which is the main effector protein kinase of this 
pathway [50]. mTOR activation downregulates autophagy 
in neuronal tissues, limiting the cells adaptive properties 
and contributes to the pathogenesis of neuropathic pains 
[51]. Impaired autophagy is associated with increased activ-
ity of pain sensory fibers in rats, exacerbating allodynia and 
hyperalgesia indices [52]. It has been shown that in the DRG 
neurons of diabetic rats, the phosphorylated levels of all 
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stimulating TRPV1 activity as blocking TRPV1 channels 
abrogated NMDA-evoked pain. Moreover, it was found that 
NMDA increased the activities of both PKC and CaMKII, 
and these proteins phosphorylated TRPV1 channels. Inter-
estingly, PKA inhibition resulted in reduced pain percep-
tion, however, its mechanism of action was independent 
from TRPV1 because chemical activation of PKA did not 
increase phosphorylated TRPV1 levels [66].

Modulating TRPV1 activity also impacts CaMKII, as it 
has been demonstrated in a rat model of neuropathic pain 
that silencing TRPV1 suppresses the expression of CaM-
KII and declines phosphorylated ERK levels in DRG neu-
rons [67]. In addition to CaMKII, the role of CaMKIV in 
neuropathic pain has also been investigated. Zhao and col-
leagues reported that CaMKIV inhibition reduced HMGB1 
expressions in DRN neurons of diabetic rats, alleviating the 
thermal hyperalgesia and mechanical allodynia. Therefore, 
dual blockade of CaMKII and CaMKIV can produce more 
efficient analgesic effects [68].

It was first demonstrated by Matsumura and colleagues that 
NMDAR-knockout mice had decreased allodynia in sciatic 
neuropathic pain. Moreover, in NMDAR-knockdown mice, 
the concentration of intracellular Ca2+ did not increase as 
much as the wild-type mice. Indeed, pT286-CaMKII levels 
did not increase in NMDAR-knockdown mice, whereas, its 
levels were significantly elevated in wild-type mice [64]. 
These findings suggested that CaMKII has a key role in 
nociception in neuropathic pains. (Fig. 1)

Capsaicin cannot be administered orally due to its gas-
trointestinal side effects. Fajrin et al., investigated 6-sho-
goad, a chemical agent extracted from ginger with structural 
similarity to capsaicin, in diabetic rats and found that this 
agent alleviated thermal allodynia and suppressed the gene 
expressions of both TRPV1 and NMDAR in the DRG neu-
rons of rats. Interestingly, 6-shogoal treatment intensified 
insulin immunoreactivity in the pancreatic islets cells of 
diabetic rats, a unique feature that has not been reported for 
capsaicin [65].

The central role of NMDAR in pain perception has been 
shown in rats with induced trigeminal nerve pain as induc-
ing NMDAR enhanced pain perception and inhibition of 
NMDAR resulted in reduced pain feeling. NMDA acted by 

Fig. 1  Overview of the role of receptor channels and protein kinases 
in pain sensory neuron hyperactivity. ATP, adenosine triphosphate; 
CaMK, calcium/calmodulin dependent protein kinase; cAMP, cyclic 
adenosine monophosphate; DAG. diacylglycerol; IP3, inositol tri-
sphosphate; GPR177, orphan G protein–coupled receptor 177; mTOR, 
mammalian target of rapamycin; NMDAR, N-methyl-D-aspartate 

receptor; P, phosphate; P2 × 7R, purinergic 2 × 7 receptor; PI3K, phos-
phatidylinositol 3-kinase; PIP2, phosphatidylinositol bisphosphate; 
PIP3, phosphatidylinositol triphosphate; PKA, protein kinase A; PKB, 
protein kinase B; PKC, protein kinase C; PLC, phospholipase C; SER, 
smooth endoplasmic reticulum; TRPV1, Transient receptor potential 
vanilloid 1
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Conclusion

Diabetic neuropathic pain is an important sequela of dia-
betic neuropathy which deeply affects patient’s life quality. 
It is related to abnormally increased activity of pain sensory 
neurons and therefore neither steroidal nor non-steroidal 
anti-inflammatory drugs are effective in alleviating DNP. 
Therapeutic goal is to specifically suppress pain sensory 
neurons, without affecting motor as well as other sensory 
neurons. Opioid analgesics are not routinely prescribed for 
DNP due to their broad spectrum of side effects. Currently, 
DNP is mainly managed by duloxetine or venlafaxine 
(serotonin–norepinephrine reuptake inhibitor antidepres-
sants) and pregabalin, or gabapentin (gabapentinoid anti-
convulsants). Again, these agents are non-specific and are 
switched if there is no response or if side effects develop. 
TRPV1, P2 × 7R, and NMDAR are receptor channels 
mainly expressed on pain sensory neurons and their modu-
lation attenuates diabetes associated pain with no effect on 
other nervous functions; for instance, the safety and efficacy 
of %8 capsaicin dermal patch has been proved in large scale 
clinical studies. However, the majority of studies are at the 
experimental levels and conducting clinical trials to evalu-
ate the safety and efficacy of these therapeutic modalities 
are highly warranted.
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