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Abstract
Diabetes mellitus is a worldwide impacting disorder and the ratio through which the number of diabetic patients had increased 
worldwide, puts medical professionals to serious stress for its effective management. Due to its polygenic origin and involve-
ment of multiple genes to its pathophysiology, leads to understanding of this ailment more complex. It seems that current 
interventions, such as dietary changes, life style changes and drug therapy such as oral hypoglycaemics and insulin, are unable 
to halt the trend. There are various novel and emerging targets on which the researchers are paying attention to combat with 
this ailment successfully. Human glucokinase (GK) enzyme is one of these novel and emerging targets for management of 
diabetes. Its availability in the pancreas and liver cells makes this target more lucrative. GK’s presence in the pancreatic and 
hepatic cells plays a very important function for the management of glucose homoeostasis. Small molecules that activate GK 
allosterically provide an alternative strategy for restoring/improving glycaemic regulation, especially in type 2 diabetic 
patients. Although after enduring many setbacks in the development of the GK activators, interest has been renewed especially 
due to introduction of novel dual acting GK activator dorzagliatin, and a novel hepato-selective GK activator, TTP399. This 
review article has been formulated to discuss importance of GK in glucose homeostasis, recent updates on small molecules 
of GK activators, clinical status of GK activators and challenges in development of GK activators.
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Introduction

Diabetes (type 2) is distinguished by high level of glycaemic 
content in blood caused due to inadequate pancreatic β-cell 
secretion of insulin associated with insulin resistance, which 
is mostly evident in the liver and skeletal muscles. Diabetic 
complications, if left untreated, will result in vision loss, 
peripheral neuropathy, reduced renal function and various 
cardiovascular disorders like stroke and heart diseases [1, 2]. 
Since the condition has a polygenic basis and multiple genes 
(over 20 according to the most recent count) are implicated 
in its pathogenesis, western lifestyles marked by minimum 

workout and excessive intake of caloric food are essential 
devastating factors for the emerging outbreak of type 2 dia-
betes (T2D) worldwide [3, 4]. It seems that current interven-
tions, such as dietary changes and drug therapy such as insu-
lin formulations and oral hypoglycaemics, are unable to halt 
the trend. In addition, an overdose of oral hypoglycaemic 
drugs may possibly lead to hypoglycaemia and many other 
adverse drug events [5]. As a result, new approaches are 
needed, such as the production of new chemical entities with 
novel mechanisms of action [6–10]. Activation of enzyme 
glucokinase (GK) might be able to address this unmet need. 
Due to glucose sensing function of GK in β-cells of pancreas 
and its role in the clearance of hepatic glucose and glycogen 
biosynthesis, all of which are inhibited in type 2 diabetic 
patients, GK has been recognized as an excellent target for 
designing of novel and effective antidiabetic medications 
[3, 11]. This review article has been designed to discuss 
role of GK in glucose homeostasis, recent updates on small 
molecules of GK activators, clinical status of GK activators 
and challenges in development of GK activators.
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Glucokinase (GK)

GK (hexokinase IV or D, ATP: D-glucose-6-phos-
photransferase, EC 2.7.1.2) is one sort of hexokinase 
(out of four) having unique properties. It is a cytoplas-
mic enzyme which catalyses the early reactions of glu-
cose breakdown and convert glucose to its phosphoryl-
ated product glucose-6-phosphate (G-6-P) [12, 13]. It is 
expressed mainly in pancreatic β-cells and liver cells due 
to which it plays a significant role in the glucose homeo-
stasis [14–16]. At glucose concentration of 8.0 mM, GK 
reaches at its half-maximal activity, while the other three 
hexokinases become saturated at significantly lower blood 
glucose values (1.0 mM). Hence, GK’s glucose metabo-
lism increases as blood glucose levels rise from fasting 
to postprandial levels following carbohydrate-rich meal 
consumption [3, 6, 17]. GK is not blocked by G-6-P and 
it has a non-Michaelis-Menten sigmoidal concentration 
curve of glucose and its inflection point lies in the range 
of 4–5 mmol/L that is comparable to the insulin secre-
tion threshold. This leads to guaranteed graded response 
to changes in the level of glucose, and GK activity enters 
a plateau period when glucose levels are near to the physi-
ological limit for secretion of insulin caused by glucose 
(5 mM) [18, 19]. GK regulatory protein more commonly 
known as GKRP binds with GK enzyme with strong affin-
ity at threshold glucose concentrations, i.e., 5 mmol/l and 
inactivate GK after sequestering it in the nucleus [20]. 
GK control in the liver is essential for postprandial gly-
cogen synthesis and storage, rather than utilizing glucose 
as its main energy source. Glucose supply to the brain 
is maintained during hunger, while liver glycogen stocks 
decline, by an increasing the degree of gluconeogenesis in 
the hepatocytes [11, 21–24].

Biological functions of GK

GK is responsible for glucose phosphorylation and con-
vert it to G-6-P after its entry into the cell. Low levels of 
insulin and high glucose also cause stimulation of GK, a 
glucose-specific enzyme that is unaffected by the phospho-
rylated component, G-6-P. GK is found in many organs, 
including the pancreas and liver, which are also essential 
for glucose metabolism [16]. GK stimulates the synthesis 
of glycogen in the hepatic cells, and regulate the synthe-
sis of insulin in pancreatic β-cells, hence proved as a key 
player in blood glucose regulation [25]. Mutations (non-
sense, missense and many other mutations) in the genes 
of GK enzyme may lead to development of many types of 
diabetes. The maturity onset diabetes (MODY) group with 

the name MODY2 includes GK mutation-related diabetes. 
Patients with MODY2 had lower hepatic glycogen produc-
tion after three meals compared to the general population, 
and their hyperglycaemic state had a weak inhibitory effect 
on liver glucose performance. GK contributes an impor-
tant function in overall blood glucose homeostasis as it is 
a primary enzyme expressed in the hepatic cells which has 
a strong controlling effect on hepatic glucose clearance 
ultimately reducing hyperglycaemia, and is responsible for 
release of glucose stimulated insulin secretion [3, 6]. Inac-
tivating mutations in the gene of GK enzyme decreased the 
enzyme’s affinity for its substrate (i.e., glucose) or com-
promised expression of GK which leads to development 
of maturity onset diabetes of the young type 2 (MODY2), 
while opposite to this, i.e., activating mutations in the GK 
gene, decreased glucose level in the blood [26].

Role of GK in glucose homeostasis

Although glucose homeostasis is a complicated process 
and majorly can be clarified on the basis of its two impor-
tant hormones glucagon and insulin. Former is secreted by 
α-cells of pancreatic islet and maintains energy by preserv-
ing euglycemia during fasting. This is done by increasing 
hepatic glucose supply by encouraging gluconeogenesis (de 
novo glucose generation from non-carbohydrate sources) 
and glycogenolysis (glycogen catabolism and glucose libera-
tion from the liver). In contrast to this, insulin is generated 
by pancreatic β-cells, reduces blood glucose in postprandial 
state by facilitating glucose utilization in various peripheral 
tissues and increased glucose absorption by hepatic cells 
after switching it to glycogen synthesis mode [27, 28]. The 
location of GK gene on chromosome is 7p15.3-p15.1, and 
it is made up of 12 exon that extend 45,168 base pairs and 
encodes for a 465-amino-acids with molecular weight of 
52,191 Da that is expressed predominantly in various organs 
like pancreas, liver, brain and many more [26]. GK induce 
secretion of insulin from pancreatic β-cells depending upon 
the glucose concentration hence referred as “glucose sensor” 
and as a “gate-keeper” in liver cells as facilitating glucose 
absorption in hepatocytes as well as synthesis and accumu-
lation of glycogen. As GK enzyme is activated, its desired 
substrate glucose catabolised to its phosphorylated form 
G-6-P which again act as a substrate for the synthesis of gly-
cogen in the liver [29, 30]. When concentration of glucose is 
<10 mM, hepatic GK enzyme remain in inactive state due to 
its association with GKRP, which confers much lower affin-
ity for its substrate (glucose) then pancreatic β-cells, which 
is stimulated only during the well feed condition to fulfil 
its role of increasing hepatic glucose intake [11, 31, 32]. In 
the hepatic cell, GKRP functions as a competitive regula-
tor of glucose, sequestering GK at low blood glucose level 
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and detaching from enzyme GK while glycaemic content of 
the blood increases. Apart from the pancreas and hepatic 
cells, GK is also present in different parts of body’s like 
entero-endocrine, anterior pituitary and nerve cells. Hence, 
GK has significant role in overall glucose homeostasis by 
inducing secretion of insulin, facilitating glucose absorption 
and switching the liver cells to glycogen synthesis mode.33 
Blood glucose levels are lowered in both direct and indirect 
forms as a result of the above GK-mediated pathways [3, 
20].

GK as a potential therapeutic target for T2D

Role in pancreas

In pancreatic β-cell and liver parenchymal cells, glucose 
transporter 2 (GLUT2) aids glucose transport across the 
plasma membrane. The rate of conversion of glucose to 
G-6-P, which is catalysed by GK enzyme, limits the amount 
and speed of glucose transport. Phosphorylation of glucose 
to G-6-P causes glycogen synthesis in hepatocytes (L-Type 
GK) and glucose metabolism to pyruvate in pancreatic 
β-cells (B-Type GK). This results in an increase in the Kreb’s 
cycle and electron transport, resulting in a rise in the ATP/
ADP ratio, which blocks ATP-sensitive  K+ ion channels, 
producing membrane depolarization and as a consequence, 
 Ca2+ influx. This causes the pancreatic β-cells to secrete 
insulin into the bloodstream (Fig. 1) [3, 6, 17, 33, 34].

Role in liver

The GK enzyme converts glucose to G-6-P, which triggers 
glucose absorption, storage in the form of glycogen, and 

inhibition of gluconeogenesis (synthesis of glucose from 
non-carbohydrate sources) in liver hepatocytes, resulting in 
lower blood glucose levels (Fig. 2). GK can be activated by 
small molecules attaching to the GK enzyme allosterically 
or disrupting the GK-GKRP complex. Compounds that have 
any of the aforementioned effects might be useful in the 
treatment of T2D [3, 17, 33–37].

Overview of GK activators

Hoffman La Roche’s invention of allosteric GK activator 
drug candidates in the beginning of twenty-first century was 
a landmark moment. It offered pharmacological guidance 
for glucose sensor model based on GK enzyme and poten-
tial experimental methods and optimism for the treatment 
of diabetes. From that time GK activator’s ability has been 
extensively studied by both academia as well as industry 
[3, 6]. Since the first GK activator was launched in 2003 
[38], several others have been developed and evaluated as 
potential type 2 antidiabetic agents [39–50]. They are all 
small molecules that can bind to enzyme GK at its allosteric 
site, stabilizing a high-affinity conformation to facilitate GK 
activation. The chemical composition of these small com-
pound GK activators can be used to categorize them (car-
bon-, urea-, 1,2,4 and 1,3,5- substituted aryl- centred amides 
and others) [37, 51, 52]. Second categorization option is 
based on the site of action site: hepato-selective GK activa-
tors that perform their function in the hepatic cells with or 
without causing disruption in the inhibitory complex, i.e., 
GK-GKRP interaction and pancreatic and liver dual GK 
activators [53, 54]. By adding a carboxyl group to the com-
position of GK activators, the compound is unable to reach 
the pancreas, resulting in liver specificity. Hypoglycaemia 

Fig. 1  Role of Glucokinase 
enzyme in pancreatic β cell. 
GK: Glucokinase enzyme; 
G-6-P: Glucose-6-phosphate; 
F-6-P: Fructose-6-phosphate; 
F-1,6-BP: Fructose 1,6 bis-
phosphate; PEP: Phospho-enol 
pyruvate; GLUT2: Glucose 
transporter 2
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is a typical adverse effect that varies based on the type of 
compound and dosage. The glucose lowering effects has not 
been maintained in clinical trials that have lasted months 
rather than hours. Insulin is released too often when GK 
is activated at lower glucose concentrations, exacerbating 
peripheral insulin resistance. GK activators regulate blood 
glycaemic content by improving the potential of β-cells 
towards detection of glucose and its proportional insulin 
secretion in a glucose-dependent manner. Furthermore, 
these activators increase the disposal of glucose and reduce 
hepatic glucose production. Every GK activator has the abil-
ity to cause a distinct conformation at allosteric site of GK 
(active form), and the resultant complexes can have distinct 
kinetic profiles [55]. Many small molecule GK activators 
were shown to facilitate insulin secretion through a  Ca2+ 
dependent pathway in previous studies [56]. Another way 
GK activators promote insulin secretion is by fixing defects 
in pancreatic cell oxygen intake and intracellular  Ca2+ reac-
tion in T2D patients [57]. In liver, GK activators can activate 
GK directly, as well as facilitate the dissociation of the GK/
GKRP complex, which activates GK and stimulates glyco-
lysis and glycogen synthesis [37]. Various types of natural 
extracts (such Allium hirtifolium and Sapiumellipticum) or 
phytoconstituents (such as ganoderan B, glucolipsins A and 
B, eupatilin, coagulanolide, mangiferin, and kaempferol) 
were reported with potent GK stimulating property [58–68]. 
Several hundreds of GK activators have been developed by 
various pharmaceutical companies over the last 20 years. 
Just a limited number of GK activators have advanced to 
various phases of clinical investigations, but the majority 
of these have been halted owing to hypoglycaemia and liver 
side effects [17, 37]. In clinical trials, drugs like TMG-123, 
PF 04937319, R1511 or GK3HMS5552, TTP3999 and 
Dorzagliatin were shown to efficiently regulate blood glu-
cose levels. R1440 GKA2, GKA 50, YH-GKA, PSN 010, 
MK-0941, ZYGK1, and Ro-28-1675 are among the other 

agents undergoing preclinical testing. Some GK activator 
agents, such as Piragliatin, ARRY-403, etc., were dragged 
out from the clinical investigations due their toxic effects and 
a loss of efficacy over prolonged use [37, 69–73]. Some of 
prominent GK activators (which advanced in clinical inves-
tigations) are presented in Table 1.

Challenges with GK activators

The use of older generation GK activators posed signifi-
cant questions about efficacy and safety. Hypoglycae-
mia, initiation of fatty liver, hepatic cells lipidosis, and 
decreased efficacy over the period of time proved to be the 
most significant side effects observed with GK activators. 
In reality, during the early stages of GK activators growth, 
the incidences of hypoglycemia and dyslipidemia as a 
result of over-stimulating effect of pancreatic and hepatic 
GK, respectively, were seen as possible intimidations [18, 
82]. Acute insulin release (disproportionate to the stimu-
lus) as a result of an exaggerated glucose reaction could 
normally occur as a result of activation of GK and was 
always a possibility. Piragliatin and MK-0941 were shown 
to cause hypoglycemic episodes more frequently. To coun-
ter this risk, partial activators with a higher dependence 
on glucose levels were designed to reduce the risk of over 
activation at low glucose concentrations [51]. Agents that 
are hepato-selective were also developed and tested [54]. 
With the partial GK activator, PF-04937319, the chances 
of hypoglycaemia were reduced. According to the patho-
physiological processes associated with activation of GK 
that may contribute to dyslipidemia is due to excessive 
G-6-P accumulation, arising due to hyper stimulation of 
hepatic GK enzyme stimulates glycolysis via interme-
diate product fructose-2,6-bisphosphate, this indicates 
correspond to G-6-P rise and acts through feed forward 

Fig. 2  Role of GK enzyme in 
liver. GK: Glucokinase; GKRP: 
Glucokinase regulatory protein; 
G-6-P: Glucose-6phosphate; 
F-6-P: Fructose-6-phosphate; 
F-1,6-BP: Fructose-1,6 bis-
phosphate; PEP: Phospho-enol 
pyruvate; GLUT2: Glucose 
transporter 2; GS: Glycogen 
synthase
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allosteric activation mechanisms. As a result of this effect 
(glycolysis activation), acetyl CoA levels rises, this causes 
increased inflow to fatty acids and triglycerides, as well 
as increased hepatic de-novo lipogenesis. According to 
the report, this corresponds to the initial stage of fatty 
liver disease (non-alcoholic), which may vary from sim-
ple steatosis to its complicated form, i.e., steato-hepatitis 
[83]. Furthermore, long-term exposure may be required for 
the latter. Compound MK-0941 was shown to cause acute 
hyperlipidosis. While rise in level of fatty acid by less than 
20% is not as significant as that caused by a high-glycemic 
low-fat diet, it is also undesirable in T2D patients who 
are also prediagnosed to dyslipidemia, NAFLD and high 
blood pressure [80]. Histological studies in mouse mod-
els indicating double-strand breaks in DNA, presumably 
accounting for activation of the p53 tumour suppressor and 
consequent β -cell death, have also been used to propose 
toxicity of GK activators on the β-cells [19, 84, 85].

Conclusion and future perspective

Diabetes is a metabolic condition that affects people all over 
the world, and its prevalence is increasing on a daily basis 
in both developed and developing nations. Reduced physi-
cal activity and sedentary lifestyles have a higher chance of 
exacerbating the disease’s consequences. Despite the fact 
that there are several medicines that operate through various 
pathways, no one can claim that any of the currently avail-
able medications can completely reverse disease develop-
ment. Small molecules that activate GK provide an alterna-
tive strategy for restoring/improving glycaemic regulation 
in patients with T2D. GK activators reduce hepatic glucose 
production by increasing insulin secretion and glycogen syn-
thesis. Despite a number of setbacks in their growth, the GK 
activators class has reawakened interest, especially after the 
release of dorzagliatin, a dual-acting and novel GK acti-
vator and TTP399, a hepato-selective novel GK activators. 

Table 1  Prominent GK activators which had advanced in clinical investigations

Compound Chemical structure Clinical 
status

Company Refs.

AMG 151 

(ARRY-403)

N

S O

NHN

S N
N

OH OH

N

Phase I 

(Discontinued)

Array 

BioPharma 

Inc.

[70]

Piragliatin 

(RO-4389620)

Cl N

O

H
N

N

H

S
O

O

O

Phase II 

(Discontinued)

Roche [74]

AZD-1656

O O

O

NHO

N
N

N

N
O

N

Phase II Astra Zeneca [75]
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Table 1  (continued)

Globalagliatin 

(LY2608204, 

SY-004) 

SO O

N

O

H
S

N
S

NH

Phase II Yabao 

Pharmaceutical 

Group

[81]

PF-04937319

O

O

N

O

H

N
N

N

N
O

N

Phase II Pfizer Inc. [76]

MK-0941

S
O

ONHO

O O

N
N

OH

Phase II Merck & Co [77]

Dorzagliatin 

(Sinogliatin, 

HMS-5552)

O
N

O NH
O

N
N

OH

Cl

OH

Phase III Hua Medicine [72]

AR453588
N S

N
N

O

N N
O

S

H Phase I Array 

BioPharma 

Inc.

[78]

LY2599506 

(PSN010)

O

N S

N

H

F

O

S
O O

Phase II Eli Lilly and 

Company

[79]

GKM001

N

O

H

S

N

Cl

O
O

O

SO O

F

F

Phase II Advinus 

Therapeutics

[80]
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With the use of older generation GK activators, both effi-
cacy (diminished long-term efficacy) and safety concerns 
(hypoglycemia, fatty liver, and dyslipidaemia) were raised. 
Clinically relevant and prolonged glycaemic effectiveness, 
as well as a minimal risk of adverse effects, such as hypo-
glycemia, hepato-steatosis, and hypertriglyceridemia, are the 
basic conditions for new GK activators to be considered as 
a serious alternative to prior GK activator therapies. A new 
compound’s desirable properties would be the ability to treat 
long-term consequences of persistent hyperglycemia and/or 
change the disease’s natural course.
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