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Abstract
Purpose Results from a recent study indicated that lower stearic acid/palmitic acid (SA/PA) and arachidonic acid/dihomo-
γ-linolenic acid (AA/DGLA) ratios were associated with metabolically unhealthy obesity. However, this has not been 
extensively studied in the Japanese population.
Methods We recruited 291 Japanese subjects with serum free fatty acid profiles undergoing health examinations. Whole 
serum desaturase activity was estimated as the product: precursor ratio –SA/PA ratio for elongation of long-chain fatty acid 
family member 6 (Elovl6) and AA/DGLA for delta-5 desaturase (D5D). The determinants of Elovl6 and D5D activity were 
investigated using multiple regression analyses.
Results The Elovl6 and D5D activities exhibited a negative correlation with the logmatic-transformed TG/HDL-C ratio and 
TyG index. Multiple regression analyses revealed that the TG/HDL-C ratio and TyG index were negatively associated with 
Elovl6 and D5D activities. Most atherogenic markers were worse in the low Elovl6 or D5D activity group than in the high 
Elovl6 or D5D activity group. When study subjects were further stratified by TG levels, most atherogenic markers were the 
worst in the highest TG group in either the lowest Elovl6 or lowest D5D activity groups.
Conclusion The estimated Elovl6 and D5D activities might be useful markers of insulin resistance in Japanese subjects.

Keywords Elongation of long-chain fatty acids family member 6 activity · Delta-5 desaturase activity · Triglyceride to 
high-density lipoprotein cholesterol ratio · Fasting triglycerides-glucose index · Insulin resistance

Introduction

Previous epidemiologic studies have suggested that individ-
uals with higher plasma concentrations of free fatty acids 
(FAs) are at increased risk of type 2 diabetes [1–3], and 
they have also been linked to peripheral (muscle) insulin 

resistance (IR) [4]. Plasma free FA levels are chronically 
elevated in obese individuals [5]; therefore, it was hypoth-
esized that increased free FA levels are an important feature 
of obesity-associated metabolic syndrome (MetS) and car-
diovascular disease (CVD) [6].

The evaluation of individual serum FA levels is also 
important. For instance, a previous study indicated that 
higher serum total n–6 ( � − 6 ) polyunsaturated fatty acids 
(PUFAs), linoleic acid (LA), and arachidonic acid (AA) con-
centrations are associated with a lower risk of incident type 
2 diabetes and higher γ-linolenic acid (GLA) and dihomo-
γ-linolenic acid (DGLA) concentrations were associated 
with a higher risk [7]. Another study reported that a high 
serum DGLA level was associated with obesity, body fat 
accumulation, a high ALT level, and IR in patients with type 
2 diabetes [8].

Free FA composition depends in part on the endog-
enous metabolism of free FAs via elongation and desatu-
ration [9]. Many previous studies have shown that FA 
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product-to-precursor ratios can be used to estimate elon-
gase and desaturase activities and the association of their 
altered activity with the worsening of glycemia and inci-
dence of type 2 diabetes [7, 10–12]. Higher estimated delta-5 
desaturase (D5D) activity was associated with a lower risk 
of incident type 2 diabetes, and higher estimated delta-6 
desaturase (D6D) activity was associated with a higher risk 
[7]. IR and its associated disorders, including type 2 diabe-
tes, are associated with an increase in the estimated activity 
of the delta-9 desaturase (D9D) [13–17] and D6D [13, 14, 
17], as well as a decrease in the activity of the D5D [13–17].

The results of a recent 10-year longitudinal Shanghai 
Diabetes Study (SHDS) [18] indicate that a higher baseline 
level of oleic acid/stearic acid (OA/SA) and lower levels 
of stearic acid/palmitic acid (SA/PA) and AA/DGLA ratios 
were associated with a higher rate of conversion between 
metabolically healthy obesity (MHO) and metabolically 
unhealthy obesity (MUO) conversion. This finding was vali-
dated in cross-sectional and interventional studies. Recently, 
we reported that the OA/SA ratio might be a useful marker 
for IR in non-obese Japanese subjects [19].

This study was designed to investigate whether the esti-
mated elongation of long-chain fatty acid family member 6 
(Elovl6) (SA/PA ratio) and D5D (AA/DGLA ratio) activities 
are associated with IR. The study also investigated whether 
the Elovl6 and D5D activities measure metabolic abnormali-
ties in Japanese adults.

Materials and methods

Subjects

A total of 319 subjects, undergoing an anti-aging health 
examination at the Health Screening Center, Tokai Univer-
sity Tokyo Hospital in 2016, were included in this cross-
sectional study. After excluding 28 subjects, for whom 
the serum FFA profiles were not analyzed, 291 subjects 
were included in the final analysis. Medical histories were 
obtained using self-administered questionnaires and inter-
views conducted by nurses.

Measurements

Waist circumference (WC) was measured at the level of the 
umbilicus during slight expiration, with the participant in a 
standing position. Blood pressure (BP) was measured on the 
upper right arm using an automatic BP monitor (TM-2655P; 
A&D, Tokyo, Japan) while the participant was seated. Blood 
samples were collected in heparin-coated tubes early in the 
morning following an overnight fast. Fasting plasma glucose 
(FPG) levels were measured with an L-type Glu 2 kit, using 
the hexokinase/glucose-6-phosphate dehydrogenase method 

(Wako Pure Chemicals). The low-density lipoprotein cho-
lesterol (LDL-C), HDL-C, and TG levels were measured 
using visible spectrophotometry (Determiner L LDL-C, 
Determiner L HDL-C, and Determiner L TG II, respectively; 
Kyowa Medex, Tokyo, Japan). Uric acid (UA) levels were 
measured with an L-Type UA M kit using the uricase-N-(3-
sulfopropyl)-3-methoxy-5-methylaniline (Wako Pure 
Chemicals, Osaka, Japan). The serum free FA profile was 
measured by gas chromatography. TyG index was calculated 
as logmatic transformations (ln) [fasting triglycerides (mg/
dL) × fasting glucose (mg/dL)/2] [20, 21].

All subjects provided written informed consent for the use 
of their health records for analysis. This study was approved 
by the Ethics Committee of Tokai University (No. 11R-125) 
and was conducted in accordance with the Declaration of 
Helsinki.

Statistical analyses

Data are expressed as mean ± standard deviation or median 
(interquartile range). The normality of data distribution was 
determined using the Kolmogorov–Smirnov test. Bonferro-
ni’s multiple comparison test was used to compare mean val-
ues across three or more groups. Student’s t-test was used to 
compare the mean values between two groups. To compare 
various markers, the subjects were divided into three groups 
based on Elovl6 and D5D activities and into six groups 
based on the combinations of either Elovl6 activity and TG 
levels or D5D activity and TG levels. The determinants of 
Elovl6 and D5D activity were identified by multiple linear 
regression analysis. TG/HDL-C ratio and TyG index were 
used as markers for IR, as described previously [19]. Two 
sets of variables were considered: one set for TG/HDL-C 
ratio [sex, age, body mass index (BMI), WC, systolic and 
diastolic BP, FPG, TG/HDL-C ratio, LDL-C, UA], and the 
other set for TyG index (sex, age, BMI, WC, systolic and 
diastolic BP, TyG index, HDL-C, LDL-C, UA). The deter-
minants of the upper tertiles of Elovl6 and D5D activities 
were identified through multiple logistic regression analyses 
using the same variables used in the multiple linear regres-
sion analysis, and a stepwise procedure was used to select 
variables for multiple regression analyses. All statistical 
analyses were performed using SAS Studio version 3.4 (SAS 
Institute, Cary, NC, USA). All p-values were two-tailed, and 
a p-value of < 0.05 was considered statistically significant.

Results

All the characteristics evaluated in this study are presented 
in Table 1. Of the 291 subjects, 115 (39.5%) were women. 
The mean age, BMI, FPG, median TG, mean TyG index, 
HDL-C levels, and median TG/HDL-C ratio were 54.4 years 
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old, 22.4 kg/m2, 96.8 mg/dL, 85.0 mg/dL, 8.30, 64.3 mg/
dL, and 1.33, respectively. Estimated mean Elovl6 and D5D 
activities were 4.73 and 5.83, respectively.

Possible associations of TG/HDL-C ratio and TyG index 
with Elovl6 and D5D activities were investigated using Pear-
son’s correlation coefficient. As shown in Fig. 1, both Elovl6 
and D5D activities exhibited negative correlations with both 
ln(TG/HDL-C ratio) [r = -0.434, 95% confidence interval 
(CI) -0.523 to -0.336, p < 0.001; r = -0.400, 95% CI -0.493 
to -0.299, p < 0.001, respectively; Fig. 1 (a) and (b), upper 
panel], and TyG index [r = -0.455, 95% CI -0.542 to -0.359, 
p < 0.001; r = -0.357, 95% CI -0.454 to -0.253, p < 0.001, 
respectively, Fig. 1 (a) and (b), lower panel].

Figure 2 shows the association of estimated Elovl6 and 
D5D activities using Pearson’s correlation coefficient. Esti-
mated Elovl6 activity exhibited positive correlation with 
D5D activity (r = 0.280, 95% CI 0.171 to 0.383, p < 0.001).

The determinants of Elovl6 and D5D activities were iden-
tified by multiple linear regression analysis (Table 2). Two 
sets of variables were considered: one set for the TG/HDL-C 
ratio and the other set for the TyG index. Among the vari-
ables included in the TG/HDL-C ratio (sex, age, BMI, WC, 
systolic and diastolic BP, FPG, TG/HDL-C ratio, LDL-C, 

UA), two variables (WC and TG/HDL-C ratio) were selected 
for Elovl6 activity using a stepwise procedure [Table 2 (a)]. 
Among the variables included in the TyG index (sex, age, 
BMI, WC, systolic and diastolic BP, TyG index, HDL-C, 
LDL-C, UA), three variables (WC, TyG index, and LDL-
C) were selected for Elovl6 activity using a stepwise pro-
cedure [Table 2 (b)]. The analysis revealed that WC, TG/
HDL-C ratio, and TyG index were negatively associated 
with Elovl6 activity, while LDL-C was positively associ-
ated with Elovl6 activity. Among the variables included in 
the TG/HDL-C ratio, two variables (BMI and TG/HDL-C 
ratio) were selected for D5D activity using a stepwise proce-
dure [Table 2 (c)]. Among the variables included in the TyG 
index, two variables (BMI and TyG index) were selected for 
D5D activity using a stepwise procedure [Table 2 (d)]. The 
analysis revealed that BMI, TG/HDL-C ratio, and TyG index 
were negatively associated with D5D activity.

Determinants of the upper tertile of Elovl6 activity were 
analyzed using multiple logistic regression analysis [Table 3 
(a) and (b)]. When we analyzed the same variables included 
TG/HDL-C ratio in multiple linear regression analysis, two 
variables (TG/HDL-C ratio and UA) were selected using 
a stepwise procedure [Table 3 (a)]. When we analyzed the 
same variables included TyG index, two variables (TyG 
index and UA) were selected using a stepwise procedure 
[Table 3 (b)]. Determinants of the upper tertile of D5D activ-
ity were analyzed using multiple logistic regression analysis 
[Table 3 (c) and (d)]. When we analyzed the same variables 
included TG/HDL-C ratio in multiple linear regression 
analysis, two variables (TG/HDL-C ratio and BMI) were 
selected using a stepwise procedure [Table 3 (c)]. When we 
analyzed the same variables included TyG index, two vari-
ables (TyG index and HDL-C) were selected using a step-
wise procedure [Table 3 (d)]. Taken together, the results of 
the analysis revealed that TG/HDL-C, UA, and TyG index 
were negatively associated with the upper tertile of Elovl6 
activity. The TG/HDL-C ratio, BMI, and TyG index were 
negatively correlated, while HDL-C was positively associ-
ated with the upper tertile of D5D activity.

To evaluate the impact of Elovl6 activity on various 
markers, the subjects were divided into three Elovl6 groups. 
Table 4 (a) shows the characteristics of the study subjects 
stratified according to Elovl6 activity. BMI, WC, systolic BP, 
TG, TyG index, TG/HDL-C ratio, UA, PA, AA, and DGLA 
decreased as Elovl6 activity increased. In contrast, HDL-C 
and D5D activity increased as Elovl6 increased.

To evaluate the impact of D5D activity on various mark-
ers, the subjects were divided into three D5D groups. Table 4 
(b) shows the characteristics of the study subjects stratified 
according to the D5D activity. BMI, WC, BP, FPG, TG, TyG 
index, TG/HDL-C ratio, LDL-C, PA, and DGLA decreased 
as D5D activity increased. In contrast, HDL-C and Elovl6 
activity increased as D5D activity increased.

Table 1  Characteristics of study subjects

Variables are given as mean ± standard deviation or median [inter-
quartile range]. BMI, body mass index; BP, blood pressure; FPG, 
fasting plasma glucose; TG, triglyceride; TyG index, triglyceride-
glucose index; HDL-C, high-density lipoprotein cholesterol; LDL-C, 
low-density lipoprotein cholesterol; UA, uric acid; SA, stearic acid; 
PA, palmitic acid; Elovl6, elongation of long-chain fatty acids family 
member 6; AA, arachidonic acid; DGLA, dihomo-γ-linolenic acid; 
D5D, delta-5 desaturase

Men/women (n) 176/115

Age 54.4  ± 13.9
BMI (kg/m2) 22.4  ± 3.1
Waist circumference (cm) 81.6  ± 9.1
Systolic BP (mmHg) 122.1  ± 16.4
Diastolic BP (mmHg) 77.9  ± 11.5
FPG (mg/dL) 96.8  ± 12.1
TG (mg/dL) 85.0 [57.5,119.5]
TyG index 8.30  ± 0.57
HDL-C (mg/dL) 64.3  ± 14.9
TG/HDL-C ratio 1.33 [0.81,2.11]
LDL-C (mg/dL) 119.4  ± 31.3
UA (mg/dL) 5.6  ± 1.3
SA (µg/mL) 202.5  ± 54.8
PA (µg/mL) 48.6  ± 22.8
Elovl6 activity 4.73  ± 1.62
AA (µg/mL) 164.1  ± 38.2
DGLA (µg/mL) 30.4  ± 10.1
D5D activity 5.83  ± 1.91
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PUFAs are known to suppress TG synthesis, resulting in 
decreased TG levels in the blood through sterol regulatory 
element-binding protein (SREBP)-1c suppression [22]. To 
evaluate the impact of TG levels on various markers in the 

Elovl6 or D5D activity stratified groups, the study subjects 
were further divided into three TG groups. Tables 5 and 6 
presents the characteristics of the study subjects stratified 
according to either Elovl6 or D5D activity and TG levels. 
Most markers, except for age and FPG, were the worst in the 
highest TG group irrespective of Elovl6 activity [Table 5]. In 
addition, most markers except for age, systolic BP, FPG, and 
LDL-C were worse in lower Elovl6 activity (< 4.55) than in 
those with ≥ 4.55 [Table 5]. Most markers, except for age, 
were the worst in the highest TG group irrespective of D5D 
activity [Table 6]. In addition, most markers except for SA 
and AA were worse in lower D5D activity (< 5.39) than in 
those with ≥ 5.39 [Table 6].

Discussion

In this study, we showed that ELOVL6 and D5D activi-
ties are associated with IR. Most atherogenic markers were 
worse in the low ELOVL6 or D5D activity group than in the 
high ELOVL6 or D5D activity group. When study subjects 
were further stratified by TG levels, most atherogenic mark-
ers were the worst in the highest TG group in either the low-
est ELOVL6 or lowest D5D activity group. We concluded 
that the estimated ELOVL6 and D5D activities might be 
useful markers of IR in Japanese subjects.

Fig. 1  Scatter plots and regres-
sion lines for the comparisons 
of ln(TG/HDL-C) or TyG index 
and Elovl6 (a) or D5D (b) 
activities. Pearson’s correlation 
coefficients with 95% confi-
dence intervals are shown in the 
graph. Ln(TG/HDL-C), loga-
rithmically transformed triglyc-
eride to high-density lipoprotein 
cholesterol ratio; TyG index, 
triglyceride-glucose index; 
Elovl6, elongation of long-chain 
fatty acids family member 6; 
D5D, delta-5 desaturase

Fig. 2  Scatter plots and regression lines for the comparisons of esti-
mated Elovl6 and D5D activities. Pearson’s correlation coefficients 
with 95% confidence intervals are shown in the graph. Elovl6, elon-
gation of long-chain fatty acids family member 6; D5D, delta-5 desat-
urase
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The function of Elovl6 gene was mainly investigated 
by mouse models. Elolv6 has been shown to be a target of 
SREBP-1 by microarray analysis of SREBP-1 transgenic 
mice, and it was predicted to be important for tissue FA 
composition [22]. A high-fat, high-sucrose diet induced 
IR and hyperglycemia are improved by the deletion of the 
Elovl6 gene in mice, suggesting that Elovl6 is a determinant 
of insulin sensitivity [23]. The same group later reported that 
Elovl6 expression is positively correlated with the sever-
ity of hepatosteatosis and liver injury in nonalcoholic stea-
tohepatitis (NASH) patients [24]. However, another study 
indicated that when mice were fed a high-fat diet or Elovl6 
was deleted in ob/ob mice, the absence of Elovl6 did not 
alter the development of obesity, fatty liver, hyperglycemia, 
or hyperinsulinemia [25]. Consistent with these results, inhi-
bition of Elovl6 activity by compounds changed tissue fatty 
acid compositions, but they did not improve IR in genetically 
obese and diabetic animal mice [26].

Our results suggested that estimated low Elovl6 activity 
was associated with high IR. This is probably due to a pro-
tective role in β-cell function when Elovl6 gene expression 
was reduced. Deletion of Elovl6 gene limits the elongation 
of palmitate to stearate, which instead allows palmitate to be 
desaturated to palmitoleate, a potentially less lipotoxic FA 

in mice. This leads to the attenuation of palmitate-induced 
endoplasmic reticulum stress and apoptosis in pancreatic 
β-cells [27].

Although there are a few studies describing estimated 
Elovl6 activity and IR in humans, estimated Elovl6 activity 
was a significant predictor of IR in children aged 9–12 years 
[28]. Cofounding factors such as alcohol intake, physical 
activity, diet, and fatty liver were not considered; transami-
nases in our study subjects were higher in the lower Elovl6 
or D5D groups (data not shown). Moreover, estimated 
Elovl6 was associated with high IR, when the estimated 
Elovl6 activity was low. Taken together, lower Elovl6 activ-
ity might be ideal for protection against atherosclerosis and 
NASH. Since information on how diet intake and lifestyle 
habits (i.e., exercise, physical activity, alcohol drinking, and 
smoking) affect Elovl6 activity is limited, it would be inter-
esting to investigate their relationship in human studies.

In contrast to Elovl6, estimated D5D activity has been 
well studied in clinical studies. Our findings on the associa-
tions between estimated D5D activity and risk factors are 
consistent with the results of most previous studies, where 
high estimated D5D activity has been favorably associated 
with risk factors. Higher estimated D5D activity has been 
associated with lower LDL-C [29], higher HDL-C [30], 

Table 2  Multiple linear regression analyses

Variable selection was made by a stepwise procedure. Elovl6, elongation of long-chain fatty acids family member 6; RC, regression coefficient; 
SRC, standardized regression coefficient; WC, waist circumference; D5D, delta-5 desaturase; BMI, body mass index; TG, triglyceride; HDL-C, 
high-density lipoprotein cholesterol; TyG index, triglyceride-glucose index; LDL-C, low-density lipoprotein cholesterol

(a) Elovl6 (c) D5D

RC SRC t P RC SRC t P
WC -0.03960 -0.22303 -3.89 0.0001 BMI -0.17457 -0.28339 -4.86  < 0.0001
TG/HDL-C ratio -0.27885 -0.25929 -4.52  < 0.0001 TG/HDL-C ratio -0.21741 -0.17104 -2.93 0.0036
(b) Elovl6 (d) D5D
WC -0.13242 -0.02351 -2.24 0.0256 BMI -0.14128 -0.22934 -3.81 0.0002
TyG index -1.230408 -0.42948 -7.14  < 0.0001 TyG index -0.86101 -0.25425 -4.22  < 0.0001
LDL-C 0.00635 0.12291 2.26 0.0246

Table 3  Multiple logistic regression analyses

Variable selection was made by a stepwise procedure. Elovl6, elongation of long-chain fatty acids family member 6;D5D, delta-5 desaturase; 
TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; RC, regression coefficient; SE, standard error; OR, odds ratio; CI, confidence 
interval; TyG index, triglyceride-glucose index; UA, uric acid; BMI, body mass index

(a) Elovl6 (c) D5D

RC SE OR 95% CI P RC SE OR 95% CI P
TG/HDL-C ratio -0.4584 0.1566 0.632 0.465–0.859 0.0030 TG/HDL-C ratio -0.4374 0.1619 0.646 0.470–0.887 0.0069
UA -0.3327 0.11600 0.717 0.571–0.900 0.0041 BMI -0.1457 0.0532 0.864 0.779–0.959 0.0062
(b) Elovl6 (d) D5D
TyG index -1.1860 0.28950 0.305 0.173–0.539  < 0.0001 TyG index -1.1015 0.31040 0.332 0.181–0.611 0.0004
UA -0.2918 0.1171 0.747 0.594–0.940 0.0127 HDL-C 0.0286 0.0114 1.029 1.006–1.052 0.0120
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Table 4  Characteristics of study 
subjects stratified by Elovl6 or 
D5D activities

Variables are given as mean ± standard deviation or median [inter-quartile range]. BMI, body mass index; 
BP, blood pressure; FPG, fasting plasma glucose; TG, triglyceride; TyG index, triglyceride-glucose index; 
HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; UA, uric acid; 
SA, stearic acid; PA, palmitic acid; Elovl6, elongation of long-chain fatty acids family member 6; AA, ara-
chidonic acid; DGLA, dihomo-gamma-linolenic acid; D5D, delta-5 desaturase
(a)  ** p < 0.01, *p < 0.05 (< 3.85 vs 3.85- < 5.33, < 3.85vs ≥ 5.33), ##p < 0.01, #p < 0.05 ( 3.85- < 5.33 
vs ≥ 5.33) by Bonferroni's multiple comparison test
(b)  ** p < 0.01, *p < 0.05 (< 4.84 vs 4.84- < 6.24, < 4.84 vs ≥ 6.24), ##p < 0.01, #p < 0.05 ( 4.84- < 6.24 
vs ≥ 6.24) by Bonferroni's multiple comparison test

(a)
Elovl6
 < 3.85 3.85- < 5.33  ≥ 5.33
(n = 95) (n = 99) (n = 97)

Men/women (n) 69/26 63/36 44/53
Age 56.0  ± 14.5 54.2  ± 14.4 52.9  ± 12.8
BMI (kg/m2) 23.6  ± 3.2 22.3  ± 3.9* 21.4  ± 2.9**
Waist circumference (cm) 85.2  ± 8.8 81.3  ± 8.8** 78.3  ± 8.5**,#
Systolic BP (mmHg) 126.1  ± 15.7 122.4  ± 16.3 117.8  ± 16.2**
Diastolic BP (mmHg) 79.9  ± 12.0 77.9  ± 11.2 75.9  ± 11.2
FPG (mg/dL) 98.6  ± 9.4 96.8  ± 11.8 95.2  ± 14.6
TG (mg/dL) 122.0 [87.0,163.0] 77.0 [59.0,112.0]** 66.0 [47.0,90.0]**
TyG index 8.67  ± 0.50 8.25  ± 0.48** 8.04  ± 0.53**,#
HDL-C (mg/dL) 59.8  ± 15.4 63.4  ± 14.4 69.6  ± 13.3**,##
TG/HDL-C ratio 2.04 [1.26,3.30] 1.31 [0.89,1.90]** 0.89 [0.65,1.36]**
LDL-C (mg/dL) 120.0  ± 33.3 120.7  ± 29.8 117  ± 31.1
UA (mg/dL) 6.1  ± 1.2 5.6  ± 1.3* 5.1  ± 1.2**,##
SA (µg/mL) 210.9  ± 44.4 196.6  ± 36.8 200.4  ± 75.1
PA (µg/mL) 70.9  ± 21.9 43.8  ± 9.2** 31.6  ± 14.1**,##
Elovl6 activity 3.08  ± 0.53 4.53  ± 0.42** 6.54  ± 1.19**,##
AA (µg/mL) 176.0  ± 39.8 162.5  ± 33.7* 154.2  ± 38.1**
DGLA (µg/mL) 35.9  ± 11.0 29.9  ± 8.5** 25.5  ± 8.0**,##
D5D activity 5.25  ± 1.66 5.75  ± 1.70 6.49  ± 2.15**,#
(b)

D5D
 < 4.84 4.84- < 6.24  ≥ 6.24
(n = 96) (n = 97) (n = 98)

Men/women (n) 66/30 59/38 51/47
Age 55.9  ± 13.4 51.7  ± 14.1 55.5  ± 13.9
BMI (kg/m2) 23.8  ± 3.2 22.3  ± 2.8** 21.3  ± 2.8**
Waist circumference (cm) 85.7  ± 8.8 80.7  ± 8.4** 78.4  ± 8.6**
Systolic BP (mmHg) 126.5  ± 17.0 120.3  ± 14.4* 119.5  ± 16.7*
Diastolic BP (mmHg) 80.8  ± 11.9 76.5  ± 11.3* 76.4  ± 11.0*
FPG (mg/dL) 99.5  ± 14.4 96.1  ± 10.2 95.0  ± 11.3*
TG (mg/dL) 110.0 [74.5,151.0] 84.0 [58.0,117.0]** 67.5 [47.0,98.0]**
TyG index 8.60  ± 0.52 8.28  ± 0.52** 8.07  ± 0.53**,#
HDL-C (mg/dL) 58.7  ± 15.0 63.5  ± 13.4 70.5  ± 14.0**,##
TG/HDL-C ratio 1.93 [1.17,3.17] 1.31 [0.86,1.98]** 0.93 [0.65,1.53]**
LDL-C (mg/dL) 127.9  ± 31.4 116.3  ± 31.5* 114.0  ± 29.5**
UA (mg/dL) 5.8  ± 1.3 5.6  ± 1.2 5.4  ± 1.4
SA (µg/mL) 213.4  ± 44.0 194.7  ± 34.2 199.5  ± 75.7
PA (µg/mL) 56.5  ± 24.2 46.4  ± 20.4** 43.1  ± 21.6**
Elovl6 activity 4.24  ± 1.40 4.76  ± 1.71 5.2  ± 1.62**
AA (µg/mL) 158.2  ± 35.5 163.7  ± 34.0 170.4  ± 43.7
DGLA (µg/mL) 39.2  ± 9.2 30.0  ± 6.4** 22.2  ± 6.3**,##
D5D activity 4.09  ± 0.57 5.48  ± 0.45** 7.89  ± 1.73**,##
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lower blood pressure [31, 32], lower BMI [30, 33–35], and 
lower HOMA-IR [36]. FADS1, which encodes D5D, poly-
morphisms have been shown to associate, for example, with 
serum lipid levels and glucose metabolism [37], adding more 
evidence for the impact of D5D activity on these risk factors. 
Estimated D5D activity was independently associated with 
HOMA-IR in Japanese patients with type 2 diabetes [38]. In 
prospective cohort studies, D5D activity has been reported 
to be associated with incident type 2 diabetes [7, 11]. Not 
only estimated D5D activity, but also decreased D5D activ-
ity in obese patients who underwent subtotal gastrectomy 
was reported. In this study, 5D activity was measured using 
liver samples and negatively correlated with IR [39]. The 
linking low D5D activity to high IR may be due to an under-
lying inflammation, since previous studies indicated that low 
D5D activity were associated with high serum concentra-
tion of C-reactive protein [40] and has been associated with 
markers of IR and type 2 diabetes [41].

Knockdown of mouse Fads1 resulted in a striking reor-
ganization of both ω-6 and ω-3 polyunsaturated FA levels 
and their associated pro-inflammatory and pro-resolving 
lipid mediators in a highly diet-specific manner [42]. There-
fore, it is possible that different amounts of precursor ω-6 or 
ω-3 FA intake can influence the harmony of specialized pro-
resolving mediators. This may lead to differential phenotypic 
response to Fads1 deletion. For this reason, information on 
dietary food and estimated FA intake should be considered 
for D5D activity in future studies.

Conditions such as obesity, IR as well as nonalcoholic 
fatty liver disease, a de novo lipogenesis has been found 
markedly induced, heavily contributing to liver fat deposi-
tion and changes in FA composition [43], resulting in dis-
rupted homeostatic control of FA tissue concentrations [44]. 
Thus, it would be interesting to investigate whether esti-
mated Elovl6 and D5D activities are associated with serum 
concentrations of transaminases and liver fat deposition in 
the future study.

This study has several limitations. Desaturase activities 
are commonly estimated from phospholipid or cholesterol 
ester FAs, not from whole serum FAs. However, the direct 
measurement of enzyme activity is not realistic in clinical 
settings. D5D activity estimated from whole serum has been 
shown to be strongly associated with a known intron variant 
of the FADS1 gene, which provides indirect validation for 
the use of whole serum FAs as well to estimate desaturase 
activity [45]. The cross-sectional design of this study was 
its major limitation, as it hindered the determination of a 
causal relationship between Elovl6, D5D activity, and IR. 
The data regarding fasting immunoreactive insulin levels are 
not available in this study, and therefore, the IR measured 
by TG/HDL-C and TyG index was not compared with the 
HOMA-IR. In addition, information on dietary FA intake 
was not considered. All the participants in this study were 

middle-aged and Japanese; thus, we were not able to deter-
mine whether the relationship between the Elovl6 and D5D 
activities and clinical markers reported here was affected by 
ethnicity. Finally, our dataset was small, and our findings 
may not apply to all Japanese individuals.

Conclusions

Our results indicate that the estimated Elovl6 and D5D 
activities might be useful markers of insulin resistance in 
Japanese adults.
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