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Abstract
Background  Gastric cancer (GC) is known as the fourth leading cause of cancer-related death and the fifth major cancer 
in the world, and this is a serious threat to general health all over the world. The lack of early detection markers results in 
a belated diagnosis, i.e. the final stages, which could be associated with the ineffectiveness of the treatment strategies, and 
naturally, it leads to poor prognosis. Even though a variety of treatments have been developed, there is a trend of studying 
traditional medicinal plants, due to the worrying side effect of drugs available in the market.
Methods  In this study, pharmacophore generation and 3D-QSAR model were created using 50 compounds with anti-gastric 
cancer activity (with IC50 had been reported in the previous studies).
Results  Based on three of the best pharmacophoric hypotheses, virtual screening was performed to discover the top anti-
gastric cancer compounds from a database of 183,885 compounds. The selected compounds were used for molecular docking 
with three protein receptors 7BKG, 4F5B, and 4ZT1 to investigate the intermolecular interactions between these ligands 
and receptors. Finally, 21 lead compounds with the highest amount of docking score ranging from − 13.366 to -6.404 kcal/
mol were selected, and then the ADME/Tox properties of these compounds were calculated. All these compounds have a 
fitness score above 1.8, a molecular weight of less than 500 g/mol, hydrogen bond donors up to 3, hydrogen bond acceptors 
up to 8.50, and logP of 1.013 to 4.174. Finally, molecular dynamic simulations for top-scoring ligand-receptor complexes 
were investigated.
Conclusion  These selected lead compounds have the most anti-gastric cancer effects among the 183,885 compounds in the 
database. Therefore, lead compounds might be considered for gastric cancer therapy in future studies.
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Introduction

Gastric cancer ranks as the fourth leading cause of death 
and the fifth major cancer in the world [1, 2]. GC is a seri-
ous threat to general health all over the world and is one 
of the most common gastrointestinal malignancies in East 
Asia [3–5]. Due to the lack of early detection markers, GC 
is usually possible to be diagnosed in the final stages, which 
is associated with a lack of effective treatment strategies that 

lead to poor prognostication. Surgery is considered the most 
effective way to treat GC in the early stages of the disease, 
although chemotherapy and radiotherapy have been used to 
treat GC-related death, with a 5-year survival rate below 
25% [6–8].

Tumor marker analysis is an important tool for cancer 
prevention. Due to important roles of proteins involved at 
both the cellular and molecular level, proteomics knowledge 
has been used in research into various types of cancer, for 
example, gastric cancer to search for new cancer markers 
and drug targets [9]. Many studies to date have attempted 
to identify markers that are effective in GC such as the fibu-
lin-5 [10], nicotinamide N-methyltransferase (NNMT) [10, 
11], ANXA1 [10], UQCRC1 [10], Her-2 [10, 12, 13], EGFR 
[14, 15], carcinoembryonic antigen (CEA) [16], alpha-feto-
protein (AFP) [16], carbohydrate antigen (CA) [16], VEGF 
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[17], c-SRC [18], HGF/MET [19, 20], cancer antigen 19‑9 
[21, 22], erb‑b2 receptor tyrosine kinase 2 [21], and E-cad-
herin [6, 23].

Nicotinamide N-methyltransferase (NNMT) protein is the 
enzyme that catalyzes the N-methylation reaction of nico-
tinamide, and high NNMT expression has been reported 
in the GC tissues. This abnormal expression reveals that 
NNMT is a potential prognostic biomarker and molecular 
therapeutic target in early and advanced GC [24, 25]. C-Src 
is a sub-group of nonreceptor protein tyrosine kinases (SFK) 
with key roles in intracellular signaling. Upregulation of this 
factor has been found in gastric cancer with the promotion 
of cancer cell proliferation and metastasis. Src is considered 
as a promising therapeutic target for the treatment of gastric 
cancer [26, 27]. Cadherin-1 or E-cadherin (CDH1) belongs 
to the cadherin family, membrane proteins, which play role 
in maintaining cell membrane integrity. Loss or downregula-
tion of E-cadherin has been displayed in GC and this altera-
tion may be considered an effective therapeutic approach for 
GC treatment [28, 29].

Identifying potential targets for metastasis attenuation 
and developing strong therapeutic drugs is essential for the 
effective treatment of GC [30]. The main goal and reason of 
cancer experiments are controlling the cell cycle by induc-
ing cell death by activating a cell cycle blocker or activat-
ing apoptosis [31]. Induction of apoptosis in target cells is 
a key mechanism that should be considered in anti-cancer 
drug activity tests. An important strategy in the prevention 
of chemotherapy and also the use of natural compounds is 
the actuation of apoptotic pathways by inhibition of anti-
apoptotic BLC-2 family or activating TRAIL death recep-
tors [32].

Despite the development of therapies used in the treat-
ment of cancer, due to the worrying side effect of drugs 
available in the market, a wider platform is provided for 
researchers to study traditional medicinal plants, given the 
fact that only 1% of 500,000 (about five thousand) plants 
known to date have been studied, increase the need to dis-
cover bioactive drug compositions [31]. In the develop-
ment of effective drugs with low toxicity to inhibit tumor 
recurrence and metastasis, natural and biologically active 
products are widely used in clinical and basic research. Cur-
rently, plant-derived anti-cancer drugs that are used clini-
cally include vinblastine, vincristine, paclitaxel, and camp-
tothecin. Due to the diverse source of medical plants, much 
research has been done on screening natural compounds as 
molecular targets for cancer prevention which has led to the 
discovery of anti-cancer agents [32, 33].

There are many reports of a high effect of apoptosis on 
gastric cancer cell lines, such as saffron [34], curcumin 
[35–37], quercetin [38, 39], carvacrol [39], berberine [40, 
41], gallic acid [42], resveratrol [43, 44], salidroside [45], 
oleanolic acid [46, 47], anthocyanins [48], stilbenes [32], 

6-gingerole [49], ellagic acid [50], and β-sitosterol [50]. 
These compounds have biological and pharmacological 
properties including anti-inflammatory, antioxidant, anti-
bacterial, anti-cancer, and anti-growth and they affect 
many cancer cell lines including gastric cancer by induc-
ing apoptosis and suppressing the proliferation and inva-
sion of cancer cells.

The current project aims to discover new natural anti-
gastric cancer compounds in the treatment of gastric can-
cer. For this aim, a ligand-based pharmacophore hypoth-
esis was generated and a 3D-QSAR model was performed 
to find common features that can be used to predict the 
biological properties of ligands, and by using these com-
mon features to connect ligands structures and their activi-
ties with predicted pIC50. Then the binding of these active 
compounds to amino acid residues in protein receptors that 
play an important role in the mechanism of gastric cancer 
was investigated by molecular docking. In this context, 
a natural compounds database was created, and by using 
pharmacophore generation and the 3D-QSAR model, 
the virtual screening, molecular docking, and molecular 
dynamic are performed. Ultimately, twenty-one lead com-
pounds were selected from this database.

Methods

Protein preparation

In this study, three protein biomarkers that had an effec-
tive and key role in gastric cancer and drug mechanism 
of action in previously published articles were selected 
as ligand-protein receptors and their crystal structures 
were downloaded from the RCSB Protein Data Bank 
(PDB) (https://​www.​rcsb.​org/​pdb). In addition, a list of 
genes involved in gastric cancer was prepared using pre-
viously published articles; then, by determining these 
genes related to the protein-coding category using the 
GeneCards database (https://​www.​genec​ards.​org/), and the 
identification of these proteins by the UniProt site (https://​
www.​unipr​ot.​org/) was confirmed the same protein bio-
markers involved in gastric cancer. The selected structures 
include PDB IDs 7BKG, 4F5B, and 4ZT1. The structure 
of these proteins was prepared by using a protein prepara-
tion wizard (Maestro version 12.5, 2020). Thus, the addi-
tion of hydrogen atoms, the creation of disulfide bonds, 
the deleting of water molecules beyond 3.00 Å from HET 
groups, generating HET states using Epik (pH 7 ± 2), fill-
ing Missing side chains and loops using prime, and then 
optimization and minimization using the OPLS3e force 
field were performed.

https://www.rcsb.org/pdb
https://www.genecards.org/
https://www.uniprot.org/
https://www.uniprot.org/
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Ligand preparation

To convert 2D to 3D structures, the LigPrep module of 
Maestro version 12.5 (Schrödinger, LLC, New York,) was 
used, and the settings including OPLS3 force field, ioniza-
tion states using Epik (pH 7 ± 2) and generating 4 isomers 
at most per ligand was performed. A database with over 
183,885 structures was created. For creating natural com-
pounds database, compounds were downloaded from the 
AnalytiCon Discovery database (https://​www.​ac-​disco​very.​
com), IBScreenNP database (https://​www.​ibscr​een.​com/​
natur​alcom​pounds), SpecNatural database (https://​www.​
specs.​net), and Zinc15 database (http://​www.​zinc.​docki​ng.​
org/​browse/​catal​ogs/​natur​alpro​ducts).

Developing a pharmacophore model

The PHASE module of Maestro version 12.5 (Schrödinger 
LLC New York) was used for pharmacophore modeling. 
A common pharmacophore hypothesis is created by the 
placement of several pharmacophoric features together 
that indicates the major binding interactions between the 
active ligand and the receptor [51]. Pharmacophore features 
include a hydrogen bond acceptor (A), a hydrogen bond 
donor (D), a hydrophobic group (H), a negatively charged 
group (N), a positively charged group (P), and an aromatic 
ring (R). In the present study, a set of 50 diverse structures 
with anti-gastric cancer effects were collected from previ-
ously published reports (7 of these 50 ligands contain chem-
otherapeutic drugs used to treat gastric cancer and are FDA 
approved) with the reported amount of IC50 (The half-maxi-
mal inhibitory concentration). Using the following formula, 
IC50 values were converted to pIC50.

In this study IC50 is the nanomolar (or micromolar) con-
centration of half maximal inhibitory. All the chemical struc-
tures of these ligands and their IC50 values are shown in 
Table S1 in supplementary data. The Pharm Set column was 
divided into active and inactive groups, taking into threshold 
range of pIC50 ≥ 6.5 for active and < 5.5 for inactive. How-
ever, only all active ligand conformations are involved in the 
formation of pharmacophore hypotheses.

Pharmacophore model validation

The validity and significance of pharmacophore models were 
validated with statistical parameters. In this study evaluat-
ing the quality of the pharmacophore model and enrichment 
calculations were performed using the PHASE application. 
The validation set consists of two groups, the decoy set (A 

pIC50 = − log 10 IC50

dataset of 1,000 drug compounds with 400 molecular weight 
Da (http://​www.​schro​dinger.​com/​glide_​decoy_​set)) and the 
active set (Contains 70 known compounds with anti-cancer 
effect) that were used for validation. The studied parameters 
include the enrichment factor, robust initial enhancement, 
Boltzmann-enhanced discrimination of receiver operating 
characteristic, and the goodness of hit.

Building a pharmacophore‑based 3D QSAR model

The PHASE module of Maestro version 12.5 (Schrödinger) 
was used for building 3D-QSAR models. Models that link 
molecular descriptors and encode molecular structure infor-
mation to the target property of molecules are quantitative 
structure-activity relationships (QSARs) [52]. There are 
several methods for quantifying the relationship between 
structure and activity, one of the most important of which 
can be partial least-squares regression (PLS) [52]. The most 
important purpose of creating the QSAR model is to predict 
the biological activity of new structures. A QSAR model can 
be performed in two forms: atom-based or pharmacophore-
based. In the atom-based model, all atoms are deemed in the 
entire structure of the molecules, but in the pharmacophore-
based model, only the pharmacophoric features that can be 
matched to the hypothesis are considered. The first model is 
suitable for congeneric series ligands and the second model 
is suitable for diverse series ligands that have more flexibil-
ity [53, 54]. To create the QSAR model, a set of 50 diverse 
structures, which have the reported amount of pIC50, were 
randomly divided into two groups, training set, and test set, 
considering 80% of the training structures. The training set 
is used to create the QSAR model and the test set is used 
to validate the created model. The QSAR model must be 
validated both internally and externally [51]. Externally 
validation is performed using the predicted activities of the 
test set compounds. Internally validation of pharmacophoric 
hypotheses is performed with statistical parameters includ-
ing correlation coefficient (R2), cross-validation regression 
coefficient (q2), the standard deviation of regression (SD), 
statistical significance (P), and variance ratio (F) [52, 55]. 
The cross-validation regression coefficient was calculated by 
two factors, the prediction error sum of squares (PRESS) and 
the sum of squares of deviation of the experimental values 
from their mean (SSY), according to the following equation:

 where Yexp, Ypred and Ymean indicate the experimental activ-
ity of the training set compound, the predicted activity of 
the training set compound and the mean values of the activ-
ity of training set compound, respectively [55]. Also, the 
efficiency of the model was validated by the determination 

q2 = 1 −
press

ssy
= 1 −

∑n

i=1

�

Yexp − Ypred

�

2

∑n

i=1
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Yexp − Ymean
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https://www.ac-discovery.com
https://www.ac-discovery.com
https://www.ibscreen.com/naturalcompounds
https://www.ibscreen.com/naturalcompounds
https://www.specs.net
https://www.specs.net
http://www.zinc.docking.org/browse/catalogs/naturalproducts
http://www.zinc.docking.org/browse/catalogs/naturalproducts
http://www.schrodinger.com/glide_decoy_set
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of the coefficient in prediction (r2 test), according to the fol-
lowing equation:

The Ypredtest, Ytest and Ymean show the predicted activity of 
the test set compound, the experimental activity of the test 
set compound and the mean values of the activity of test set 
compound, respectively [55].

Ligand‑based virtual screening

The PHASE module of Maestro version 12.5 was used for 
ligand and database screening. This module with the best 
pharmacophores matching, creates a 3D database of hit 
compounds with the best fitness scoring and keeps an inter-
site distance matching tolerance of 2.0 Å to study molecular 
docking against three protein receptors. For hypotheses with 
5 sites, the compounds must be matched at least 4 sites. The 
fitness score represents the alignment of these compounds 
on the selected hypotheses. The range of fitness score is 0 
to 3 and the score of 3 indicates the most ligand alignment 
on the hypothesis.

Molecular docking

Glide application of Maestro version 12.5 (Schrödinger) was 
used to study the docking between prepared protein recep-
tors and ligands. For this purpose, in the receptor grid gen-
eration panel, the active binding site of protein was created 
with a dimension of 20 Å to interact with the ligands. To 
generate an active site for two protein structures with PDB 
IDs 7BKG and 4F5B used their native ligand and for pro-
tein structure with PDB ID: 4ZT1, the site map application 
was used with the highest score. Grid box dimensions are 
shown in Table 1. The ligands docking was performed first 
by the high throughput virtual screening (HTVS) method 
and then the first 100 of the compounds by extra precision 
(XP) method with flexible docking and keeping 10% of the 
best compound after docking.

r2test = 1 −

∑n

i=1

�

Ypredtest − Ytest

�

2

∑n

i=1

�

Ytest − Ymean

�

2

ADME and molecular properties (absorption, 
distribution, metabolism, and excretion)

QikProp application of Maestro version 12.5 (Schrödinger) 
was used to study the physicochemical properties and 
Drug-likeness calculations of all hit compounds by apply-
ing Lipinski’s rule of five, central nervous system activity 
(CNS), human oral absorption (PCaco), predicted brain/
blood partition coefficient (logBB) and polar surface area 
(PSA).

Molecular dynamics (MD) simulation

MD simulations were applied for top-scoring ligand-receptor 
complexes to investigate the ligand-receptor interactions 
and to confirm their stability. Ligand-receptor complexes 
selected from docking calculations were moved to molecu-
lar dynamics simulations by using GROMACS software. 
Ligand preparation was done using Swiss Param web server 
by CHARMM force field. All systems were solvated in a tri-
clinic box with TIP3P water molecules as shown in Fig. S1 
in supplementary data. Energy minimization by using SD 
algorithm for 1 ns, equilibration of system by using NVT 
and NPT ensembles by maintaining temperature at 300 K 
and pressure 1 bar, Figs. S2 and S3, were done and a total 
production run, was completed during 100 ns. Finally, by 
using VMD and Tecplot, gain trajectories were analyzed.

Results and discussion

The generation of pharmacophore and 3D‑QSAR 
model

Many studies have investigated the anti-gastric cancer effect 
of natural compounds either in vitro on gastric cancer cell 
lines or in silico. Among these, we can refer to natural com-
pounds such as saffron [34], curcumin [36], quercetin [38], 
gallic acid [42], carvacrol [39], and anthocyanins [48]. Also, 
in the other study, the inhibitory effect of kaempferol on Jack 
bean urease with a highlighted role in creating gastric cancer 
has been examined using docking and molecular dynamic 
(MD) simulation [56]. To the best of our knowledge, to date, 
few studies, or maybe no study has investigated the inhibi-
tory effect on gastric cancer using virtual screening of a 
large number of compounds at the same time, pharmacoph-
ore modeling, and the 3D-QSAR.

The purpose of this study is to find new natural compounds 
with the best and most effective anti-gastric cancer properties. 
So, pharmacophore generation, 3D-QSAR, virtual screening, 
molecular docking, and molecular dynamic are used to dis-
cover these compounds. At first, 183,885 hit compounds were 
investigated for ADME and physicochemical properties and 

Table 1   Grid box dimensions of the three receptors

PDB Molecule X Y Z

7BKG Nicotinamide 
N-methyltrans-
ferase

19.75 -27.84 -18.75

4F5B Proto-oncogene 
tyrosine-protein 
kinase Src

-0.93 20.56 -5.97

4ZT1 Cadherin-1 7.10 14.25 25.71
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then 141,173 compounds were selected in ligand and data-
base screening step to be matched with the best pharmaco-
phoric hypotheses. Then 1000 compounds after matching the 
hypotheses were obtained in the ligand and database screening 
step which was used for the virtual screening workflow step. 
Common pharmacophore hypotheses have been created of a 
set of 23 active ligands in the Pharm Set column that have the 
maximum and most important structural features required to 
interact with protein receptors. For this purpose, to match the 
hypothesis with the active ligands we considered at least 50% 
matching and the minimum site to be 5 and a maximum site 
to be 6 to optimum the best feature for creating pharmaco-
phore hypotheses. Eventually, 10 five-feature pharmacophore 
hypotheses were developed, and the three best pharmacoph-
ore hypotheses with the most survival score, site score, vector 
score, and volume score were chosen (Fig. 1; Table 2).

A good pharmacophoric hypothesis can discriminate 
between active and inactive ligands. Here the best-developed 
hypothesis is AARRR, which shows the two groups of the 
hydrogen acceptor (AA) and three groups of the aromatic 

ring (RRR) come together. The distance of pharmacophoric 
hypotheses features is shown in Table 3.

Before the virtual screening, generated pharmacophore 
hypotheses should be validated using the enrichment fac-
tor. The results are shown in Table 4. According to these 
results, the pharmacophore hypothesis AARRR-2 has shown 
the highest EF1%, BEDROC, and ROC, which indicates that 
the prediction ability of hypothesis AARRR-2 is more com-
pared to other hypotheses. Figure 2 shows the active and 
inactive ligands alignment on pharmacophoric hypothesis 
AARRR-2.

The QSAR models were created for three of the top-
ranked hypotheses using the atom-based partial least square 
regression (PLS) method. To generate good 3D-QSAR mod-
els, QSAR must be validated. Internal validation of three 
pharmacophore hypotheses was performed using statistical 
parameters based on PLS calculations. The statistical param-
eters of the developed 3D-QSAR models for three of the best 

Fig. 1   Three best five-feature pharmacophore hypotheses with the 
distance of pharmacophoric hypothesis features. A  AARRR-1, 
B AARRR-2, C AARRR-3. Note:(A), hydrogen bond acceptors (Pink 

sphere with arrows); (R), aromatic ring (yellow open circle) and all 
distances are in Å units

Table 2   Three best pharmacophore hypotheses with their Scores

hypothesis survival score vector score volume score site score

AARRR-1 5.728 1.000 0.920 0.974
AARRR-2 5.718 0.999 0.931 0.968
AARRR-3 5.715 1.000 0.918 0.978

Table 3   Distance of 
pharmacophoric hypothesis 
features

Hypothesis A-A A-R A-R A-R A-R A-R A-R R-R R-R R-R

AARRR-1 7.68 2.72 5.53 5.25 9.25 2.68 3.72 6.72 6.46 2.47
AARRR-2 8.90 2.72 6.85 5.67 7.30 2.68 3.72 5.36 4.99 2.48
AARRR-3 8.02 2.72 5.67 5.65 8.03 2.68 3.72 6.18 5.14 2.47

Table 4   Validation of hypothesis features

a EF1%: Enrichment factor at 1% of the decoy data set, bBEDROC: 
Boltzmann-enhanced discrimination of receiver operating characteris-
tic, and cROC: Receiver operating characteristic curve value

No. hypothesis EF 1%a BEDROC 
(α-160.9)b

ROCc

1 AARRR-1 4.17 0.16 0.44
2 AARRR-2 4.17 0.25 0.51
3 AARRR-3 1.39 0.10 0.47
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pharmacophore hypotheses are shown in Table 5. Although 
the high value of R2 (squared correlation coefficient), the 
low value of SD (Standard deviation), the high value of F 
(variance ratio), and the lowest value of RMSE (root-mean-
square error) are the hallmarks of all three hypotheses, how-
ever, hypothesis 2 (AARRR-2) has a better prediction ability 
than the other two. Hypothesis 2 (AARRR-2) showed the 
value of R2 = 0.94, F = 242, SD = 0.34 and RMSE = 0.98. 
These statistical parameters indicate the robustness of the 
developed 3D-QSAR model and pharmacophoric hypoth-
esis. The Scatter plot of the actual and predicted biological 
activity of the training and the test sets is shown in Fig. 3. 
It reveals the linear regression model of predicted pIC50 
values versus the real activity of training and test sets for 
the third PLS factor. The effectiveness of the model was 

determined from the calculated correlation coefficient and 
Q2 for the randomly selected test set. Therefore, it confirmed 
the selected model has a good predictive ability.

The validated hypothesis AARRR-2 obtained from the 
3D-QSAR was used to generate the contour map. Contour 
maps can help understand the importance of functional 
groups at specific points in a biological activity pathway. 
These insights can be obtained by comparing the contour 
maps of ligands with the most and least activity. The results 
of the hydrogen-bond donor, negative ionic, and positive 
ionic contour map on the most and least active ligands are 
shown in Fig. 4. Blue and red cubes show favorable and 
unfavorable regions of hydrogen bond donor effect, respec-
tively, while pink and green cubes indicate favorable and 
unfavorable regions of negative ionic effect, and purple and 

Fig. 2   The alignment of a all active and b all inactive ligands and c most active and d most inactive ligand on the best pharmacophoric hypoth-
esis AARRR-2

Table 5   Statistical parameters 
of the developed 3D-QSAR.

a SD: Standard deviation of the regression, bR2: regression co-efficient, cF: the ratio of the observed activity 
variance to the model variance, dP: Significant level of variance ratio, eRMSE: root-mean-squared-error, 
and fQ2: cross-validated correlation coefficient of the test set

Hypothesis Training set The test set SDa R2b R2 cv Fc Pd RMSEe Q2f

AARRR-1 80% 20% 0.35 0.94 0.59 242.0 1.43E-28 0.84 0.52
AARRR-2 80% 20% 0.34 0.94 0.59 251.8 5.96E-29 0.98 0.32
AARRR-3 80% 20% 0.36 0.92 0.50 146.9 6.00E-21 1.04 0.23
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yellow cubes indicate favorable and unfavorable regions of 
positive ionic effect.

Molecular docking studies

Molecular docking studies were performed using the 
virtual screening workflow in the Glide application of 

Maestro version 12.5 (Schrödinger) to investigate the 
intermolecular interactions between the ligand and the 
receptor. At first, the HTVS (high throughput virtual 
screening) method was used for docking, which resulted 
in 254 compounds, that all of these ligands had a molecu-
lar weight of less than 500 g/mol, matched ligand sites 
above 4, and a fitness score above 1.8. This great fitness 
score indicates that the ligands are well-matched to the 
pharmacophoric hypotheses in the ligand and database 
screening step. These ligands were docked with nicotina-
mide N-methyltransferase (PDB ID: 7BKG), cadherin-1 
(PDB ID: 4ZT1), and proto-oncogene tyrosine-protein 
kinase Src (PDB ID: 4F5B) receptors. Then, for further 
analysis, the first 100 compounds obtained from HTVS 
(with docking score higher than − 7  kcal/mol) were 
investigated with XP (extra precision) method. Finally, 
21 compounds of Glide XP were obtained, and the dock-
ing score of these lead compounds was from − 13.366 
to -6.404 kcal/mol. The docking score, fitness score, 
ΔG Bind, amino acid residues involved in the interac-
tion, and predicted pIC50 using the QSAR model of lead 
compounds are listed in Table 6 and their 2D chemical 
structure is shown in Fig. 5.

The NA-1 compound with the highest docking score 
(-13.366 kcal/mol) showed the highest interaction with 
the nicotinamide N-methyltransferase (PDB ID: 7BKG) 
receptor compared to other compounds in Table 6. Analy-
sis of this ligand docking results showed that the interac-
tions between the ligand and the active site of the protein 
were hydrogen bonding and pi-pi stacking. 2D and 3D 
interactions between the NA-1 compound and nicotina-
mide N-methyltransferase (PDB ID: 7BKG) receptor are 
shown in Fig. 6. Important interactions include hydrogen 
bonding with amino acid residues ASN 90, LEU 164, 
and TYR 204 and pi-pi stacking with amino acid resi-
dues TYR 11 and TYR 204. Also, the study of the first 9 
compounds in Table 6, which have docking score values 
of -13.366 to -10.207 kcal/mol and have the highest inter-
action with receptor nicotinamide N-methyltransferase 
(PDB ID: 7BKG) shows that the amino acid residues 
involved in interaction include TYR 11, ASP 85, ASN 
90, VAL 143, LEU 164 and TYR 204.

Next, we used the native ligand (UOZ) for the nicoti-
namide N-methyltransferase (PDB ID: 7BKG) receptor 
as a control for molecular docking. This native ligand 
with the docking score values of -7.889 kcal/mol showed 
the interactions include hydrogen bonding with amino 
acid residue SER 213 and pi-pi stacking with amino 
acid residues TYR 204 and TYR 24. The comparison of 
native ligand and receptor interactions with our selected 
ligands shows the same active site and interactions.

The NA-10 compound with a docking score of 
-9.219 kcal/mol showed the highest interaction with the 

Fig. 3   Scatter plot of actual and predicted biological activity of the 
training and the test set

Fig. 4   Hydrogen-bond donor effect of a least active and b most active 
(blue, favorable; red, unfavorable), negative ionic effect of c  least 
active and d most active (pink, favorable; green, unfavorable), posi-
tive ionic effect of e least active and f most active (purple, favorable; 
yellow, unfavorable)
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cadherin-1 (PDB ID: 4ZT1) receptor (Table 6). Analy-
sis of the docking results of the NA-10 compound with 
cadherin-1 (PDB ID: 4ZT1) receptor showed that the 
important protein-ligand interactions include hydrogen 
bonding with amino acid residues LEU B:21, SER A:8, 
and SER B:8 and pi-pi stacking with amino acid residue 
TRP B:59. 2D and 3D interactions between the NA-10 
compound and cadherin-1 (PDB ID: 4ZT1) receptor are 
shown in Fig. 7. Also, the study of the 8 compounds 
that have the most interaction with the cadherin-1 (PDB 
ID: 4ZT1) receptor (-9.219 to -7.695 kcal/mol docking 
score) shows that the interactions are hydrogen bonding 
and pi-pi stacking, and the amino acid residues involved 

in the interaction include SER A:8, SER B:8, LEU A:21, 
LEU B:21, PRO A:6, PRO B:6, and TRP B:59.

Finally, the NA-18 compound (docking score: 
-7.620 kcal/mol) showed the most interactions with proto-
oncogene tyrosine-protein kinase Src (PDB ID: 4F5B) 
receptor (Table 6). The most important of these interactions 
include hydrogen bonding with amino acid residues ARG 
158, THR 182, ASN 201, HIE 204, SER 180, and GLU 
181 and and pi-cation with amino acid residue LYS 198. 
2D and 3D interactions between the NA-18 compound and 
proto-oncogene tyrosine-protein kinase Src (PDB ID: 4F5B) 
receptor are shown in Fig. 8. The study of the last 4 com-
pounds in Table 6 (-7.620 to -6.404 kcal/mol docking score) 

Table 6   Docking score (kcal/mol), fitness score, ΔG Bind, an amino acid involved in the interaction and predicted pIC50

NO. Fitness score Docking 
score (kcal/
mol)

Best receptor ΔG Bind Type of interactions Amino acid involved pIC50 
(pre-
dicted)

NA-1 1.868 -13.366 7BKG -76.41 hydrogen bonding, pi-pi stacking TYR D:11, ASN D:90, LEU D:164, 
TYR D:204

5.67

NA-2 1.82 -13.34 7BKG -67.53 hydrogen bonding, pi-pi stacking TYR D:11, ASP D:85, LEU D:164, 
TYR D:204

6.36

NA-3 1.818 -11.883 7BKG -63.73 hydrogen bonding, pi-pi stacking TYR D:11, VAL D:143, LEU 
D:164, TYR D:204

6.30

NA-4 1.852 -11.517 7BKG -45.61 hydrogen bonding, pi-pi stacking TYR D:11, LEU D:164, TYR 
D:204

5.41

NA-5 1.858 -11.126 7BKG -45.7 hydrogen bonding, pi-pi stacking TYR D:11, LEU D:164, TYR 
D:204

5.9

NA-6 1.856 -10.469 7BKG -23.08 hydrogen bonding, pi-pi stacking VAL D:143, TYR D:204 5.52
NA-7 1.938 -10.237 7BKG -43.68 hydrogen bonding, pi-pi stacking ASP D:85, ASN D:90, TYR D:20, 

TYR D:204
6.79

NA-8 1.826 -10.218 7BKG -38.68 hydrogen bonding, pi-pi stacking TYR D:11, ASN D:90, LEU D:164, 
TYR D:204

5.60

NA-9 1.886 -10.207 7BKG -11.61 hydrogen bonding, pi-pi stacking ASP D:85, TYR D:204 6.07
NA-10 1.816 -9.219 4ZT1 -60.51 hydrogen bonding, pi-pi stacking TRP B:59, LEU B:21, SER A:8, 

SER B:8
6.55

NA-11 1.832 -8.659 4ZT1 -43.63 hydrogen bonding LEU A:21, SER B:8, SER A:8 5.7
NA-12 1.851 -8.255 4ZT1 -38.36 hydrogen bonding PRO B:6, SER B:8, SER A:8 6.01
NA-13 1.821 -8.19 4ZT1 -43.57 hydrogen bonding SER B:8, SER A:8 5.88
NA-14 1.952 -7.906 4ZT1 -43.25 hydrogen bonding SER B:8, SER A:8 6.01
NA-15 1.912 -7.888 4ZT1 -35.32 hydrogen bonding SER A:8, SER B:8 6.22
NA-16 1.95 -7.827 4ZT1 -46.56 hydrogen bonding PRO A:6, SER A:8, SER B:8 6.53
NA-17 1.924 -7.695 4ZT1 -43.07 hydrogen bonding SER B:8, SER A:8 5.99
NA-18 1.818 -7.62 4F5B -41.73 hydrogen bonding, pi-cation ARG A:158, ASN A:201, SER 

A:180, GLU A:181, HIE A:204, 
THR A:182, LYS A:198

6.69

NA-19 1.865 -6.772 4F5B -38.33 hydrogen bonding ARG A:158, ARG A:178, THR 
A:182, GLU A:181

5.61

NA-20 1.814 -6.559 4F5B -32.67 hydrogen bonding ARG A:158, ASN A:201, SER 
A:180, THR A:182

5.93

NA-21 1.871 -6.404 4F5B -50.24 hydrogen bonding ARG A:158, ARG A:178, LEU 
A:206, THR A:182

5.42
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which had the most interaction with proto-oncogene tyros-
ine-protein kinase Src (PDB ID: 4F5B) receptor showed that 
the NA-19 to the NA-21 compounds had hydrogen bond-
ing interactions. The amino acid residues involved in these 
protein-ligand interactions include amino acid residues ARG 
158, ARG 178, SER 180, GLU 181, THR 182, ASN 201, 
HIE 204, and LEU 206.

Also, the molecular docking study of the native ligand 
(PTR) with proto-oncogene tyrosine-protein kinase Src (PDB 
ID: 4F5B) receptor (-8.269 kcal/mol docking score) showed 
that the most interaction includes hydrogen bonding with 
amino acid residues HIE 204, ARG 178, ARG 158, SER 
180, and GLU 181. So, the active site and the interactions 
are the same for our selected ligands with the native ligand.

ADME/Tox studies

QikProp application of Schrödinger software was used 
to predict the pharmacokinetic properties and Drug-like-
ness calculations of 21 lead compounds. Lipinski’s rule 
of five (Molecular Weight ≤ 500 g/mol, hydrogen bond 
donors ≤ 5, hydrogen bond acceptors ≤ 10, octanol-water 
partition coefficient ≤ 5), central nervous system activity 
(CNS), human oral absorption, PCaco, brain/blood par-
tition coefficient (logBB) and polar surface area (PSA) 
were calculated for these 21 lead compounds. The results 
are reported in Table 7. As it is shown in Table 7, the 
molecular weight of all lead compounds is below 500 g/
mol, hydrogen bond donors are up to 3, hydrogen bond 

Fig. 5   The 2D chemical structures of all the lead compounds are presented
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acceptors are up to 8.50 and the octanol-water parti-
tion coefficient of all compounds 1.013 to 4.174 is esti-
mated. Also, all compounds have a polar surface area of 
less than 140 Å, except for the NA-21 compound (with 
PSA = 143.487 Å). Percent human oral absorption is one 

of the important factors in predicting pharmacokinetic 
properties. This study predicted 100% oral absorption for 
8 compounds (NA-4, NA-5, NA-8, NA-9, NA-10, NA-13, 
NA-14, and NA-15), and oral absorption is above 70% 
for most of the remaining compounds.

Fig. 6   The 2D (right) and 3D (left) receptor-ligand interaction of NA-1 compound with nicotinamide N-methyltransferase (PDB ID: 7BKG) 
active site. Important amino acid residues involved in the binding are shown in 2D and 3D interactions

Fig. 7   The 2D (right) and 3D (left) receptor-ligand interaction of NA-10 compound with cadherin-1 (PDB ID: 4ZT1) active site. Important 
amino acid residues involved in the binding are shown in 2D and 3D interactions
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Fig. 8   The 2D (right) and 3D (left) receptor-ligand interaction of NA-18 compound with proto-oncogene tyrosine-protein kinase Src (PDB ID: 
4F5B) active site. Important amino acid residues involved in the binding are shown in 2D and 3D interactions

Table 7   ADME properties of the lead compounds

a MW: molecular weight, blogPo/w: octanol/water partition coefficient, clogBB: brain/blood partition coefficient, dPCaco: Caco-2 cell permeabil-
ity, ePSA: polar surface area, and fCNS: central nervous system activity − 2 (inactive) to + 2 (active)

No. MWa Donor HB Accept HB QPLog Po/wb QplogBBc QPPCacod (%) Oral
absorption

PSAe CNSf

NA-1 415.401 1.00 8.00 2.863 -1.231 314.998 88.422 119.454 -2
NA-2 383.357 3.00 8.00 1.65 -1.553 167.958 76.432 133.21 -2
NA-3 395.411 0.25 6.75 3.207 -1.323 320.012 90.561 120.19 -2
NA-4 359.356 1.00 5.00 4.174 -0.456 1241.949 100.00 72.845 0
NA-5 399.445 0.00 6.00 4.169 -0.279 971.521 100.00 55.606 1
NA-6 429.428 1.00 8.00 3.251 -1.303 322.391 90.877 117.635 -2
NA-7 345.357 3.00 7.00 1.201 -1.372 136.92 72.214 123.654 -2
NA-8 421.449 1.00 7.00 4.169 -0.594 1655.837 100.00 90.899 0
NA-9 419.479 2.00 7.95 3.772 -0.924 1225.935 100.00 90.626 -1
NA-10 457.439 1.00 8.00 3.775 -0.321 1847.212 100.00 105.445 -1
NA-11 286.24 3.00 4.50 1.013 -1.842 57.423 64.364 121.917 -2
NA-12 420.467 3.00 6.75 3.514 -1.348 294.852 91.724 125.029 -2
NA-13 326.348 0.00 4.75 3.488 -0.196 2998.546 100.00 62.463 0
NA-14 369.373 1.00 6.75 3.189 -1.023 760.284 100.00 100.546 -2
NA-15 335.362 1.00 5.50 3.337 -0.476 1648.862 100.00 71.078 0
NA-16 347.327 2.00 8.50 1.541 -0.969 367.094 81.874 130.822 -1
NA-17 368.385 0.00 6.75 3.027 -0.954 835.846 96.972 91.305 -1
NA-18 372.382 2.25 4.25 4.085 -1.111 94.254 86.197 101.67 -2
NA-19 378.337 1.00 7.75 2.299 -1.973 16.646 62.263 133.141 -2
NA-20 350.37 1.00 5.25 3.562 -1.351 61.441 79.809 93.901 -2
NA-21 394.337 1.00 8.50 2.004 -2.149 14.147 59.275 143.487 -2
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Molecular dynamics studies

Molecular dynamics simulations were performed for 
the most active candidate on each target receptor (NA-
1, NA-10, and NA-18). During MD simulation, all sys-
tems are checked for structural and movements stabilities 
inside the active site, Fig. 9. After simulations, average 
of important parameters, for checking system stabili-
ties during 100 nanoseconds are summarized in Table 8. 
H-bond interactions, explained what residues from recep-
tors interact with ligands and which one has the most 
important role, Table 9. Results of energy minimization, 
total production run steps for three complexes (7BKG/ 
NA-1, 4ZT1/ NA-10, 4F5B/ NA-18) and finally RMSD 
plots for most important hydrogen bonding for ensuring 
stability and working reliability, after simulation of 100 
ns, were shown in Figs. 10 and 11, respectively.

Conclusions

This study aimed to identify new scaffolds with anti-
gastric cancer properties against three protein receptors 
7BKG, 4F5B, and 4ZT1. For this purpose, pharmaco-
phoric hypotheses and 3D-QSAR models were gener-
ated, using these models, virtual screening was done 
to discover these new scaffolds. Fifty compounds with 
anti-gastric cancer properties were used to develop 
3D pharmacophore models. Based on three of the best 

Fig. 9   Ligands movement from 0-ns to 100-ns. a  7BKG/ NA-1, 
b 4ZT1/ NA-10, c 4F5B/ NA-18.

Table 8   Average parameters 
between proteins and ligands 
after simulation of 100 ns

Complex Temperature (K) Pressure (bar) Potential (kJ/mol) RMSD (Å)

7BKG_ NA-1 299.978 1.050 -429,254 0.17
4ZT1_ NA-10 299.994 1.202 -1,341,200 0.36
4FB5_ NA-18 299.984 1.187 -241,695 0.19

Table 9   Hydrogen bonding between proteins and ligands after simu-
lation of 100 ns

Complex Donor residue Acceptor residue

7BKG_ NA-1 LEU164 : OH LIG : N1
TYR204 : O LIG : O4
SER201 : OG LIG : O5
ASN90 : ND2 LIG : O3
ASN249 : ND2 LIG : O5
SER201 : OG LIG : O6
ASN90 : ND2 LIG : C12

4ZT1_ NA-10 LIG404 : N1 LEU21 : O
SER8 : N LIG404 : O5
THR97 : OG1 LIG404 : O2
GLN23 : N LIG404 : O7
LIG404 : N1 GLN23 : O
LYS25 : N LIG404 : O7
ASN27 : ND2 LIG404 : O1
PRO5 : N LIG404 : O2
GLN23 : NE2 LIG404 : C15
ASN27 : ND2 LIG404 : C23
LIG404 : N1 ASN27 : OD1
LYS25 : NZ LIG404 : C24

4FB5_ NA-18 LEU206 : N LIG : O4
THR182 : OG1 LIG : O1
ARG220 : NH1 LIG : O5
THR218 : OG1 LIG : O5
ARG208 : NH2 LIG : O4
ARG208 : NH1 LIG : O4
ARG220 : NH2 LIG : O5
HIS204 : ND1 LIG : O2
HIS204 : CD2 LIG : O2
TYR233 : OH LIG : O5
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pharmacophore models, virtual screening and finally 
3D-QSAR models were performed and the biologi-
cal activity of hit compounds was approximately pre-
dicted. All the selected compounds from this stage had 
a molecular weight of less than 500 g/mol and a fit-
ness score above 1.8 and matched more than 4 sites with 
pharmacophore models. Then the molecular docking of 
these compounds with three receptors 7BKG, 4F5B, and 
4ZT1 was done with HTVS and XP methods. Finally, 21 
compounds with high docking scores were selected, and 
ADME properties were calculated for them. Molecular 
dynamics simulations were performed for top-scoring 
ligand with their receptors (NA-1, NA-10, and NA-18). 
The results of our study showed that three pharmaco-
phore models can determine the characteristics of gas-
tric cancer inhibitors and show the relationship between 
the structure and activity of these compounds using 
3D-QSAR models.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s40199-​023-​00480-0.
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