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Abstract
Background The survival rate of patients with pancreatic cancer is low; therefore, continuous discovery and development of
novel pancreatic cancer drugs are required. Functional network analysis is an integrated bioinformatics approach based on gene,
target, and disease networks interaction, and it is extensively used in drug discovery and development.
Objective This study aimed to identify if atenolol, a selective adrenergic inhibitor, can be repurposed for the treatment of
pancreatic cancer using functional network analysis.
Methods Direct target proteins (DTPs) and indirect target proteins (ITPs) were obtained from STITCH and STRING databases,
respectively. Atenolol-mediated proteins (AMPs) were collected from DTPs and ITPs and further analyzed for gene ontology,
KEGG pathway enrichment, genetic alterations, overall survival, and molecular docking.
Results We obtained 176 AMPs that consisted of 10 DTPs and 166 ITPs. Among the AMPs involved in the pancreatic cancer
pathways, several AMPs such as MAPK1, RELA, MAPK8, STAT1, and STAT3 were identified. Genetic alterations in seven
AMPs were identified in 0.9%–16% of patients. Patients with high mRNA levels ofMAPK1, RELA, STAT3, GNB1, andMMP9
had significantly worse overall survival rates compared with patients with low expression. Molecular docking studies showed
that RELA and MMP9 are potential target candidates of atenolol in the treatment of patients with pancreatic cancer.
Conclusion In conclusion, atenolol can potentially be repurposed to target pancreatic cancer cells by modulating MMP9 and
NF-κB signaling. The results of this study need to be further validated in vitro and in vivo.
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Introduction

In 2018, pancreatic cancer was estimated to be the seventh
leading cause of cancer deaths in the world [1]. The overall
five-year survival rate for this disease is only 2%–9% [2]. The
mortality rate of pancreatic cancer is high, partly because of
inaccurate diagnosis and limited treatment options [3].
Current treatments for pancreatic cancer are surgery and adju-
vant chemotherapy [3]. However, the response of patients to
chemotherapy is low because of chemoresistance, metabolic
aberrations, invasion, and metastasis [4]. Therefore, targeted
therapies need to be developed for the effective treatment of
pancreatic cancer.

Only a few effective and safe anticancer agents have been
successfully developed worldwide. Furthermore, the research,
development, and marketing of these drugs are expensive and
time consuming [5]. Drug repurposing, which is the use of
approved drugs for new medical indications, is a strategy to
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accelerate the discovery and development of anticancer drugs.
The development of information technology and the use of big
data enable drug development to be efficient and cost-
effective [6]. The use of omics-based technology, improve-
ments in data storage, data mining, and machine learning have
provided adequate sources of information about diseases, mo-
lecular mechanisms, and drugs [7]. Functional network anal-
ysis is an integrated bioinformatics approach based on gene,
target, and disease networks interaction, and it is extensively
used in drug discovery and development [8].

Atenolol (Fig. 1a) may be develop as anticancer agent
on the basis of the drug re-purposing approach using
functional network analysis. Atenolol is a β-blocker that
inhibits β-adrenergic 1 and 2 receptors (ADRB1 and
ADRB2) [9]. Atenolol is used to control blood pressure
in patients with angina pectoris, hypertension [6], and
ischemic heart disease [10]. A previous study have shown
that atenolol is also effective as an anticancer agent

against infantile hemangioma, which is a benign vascular
tumor derived from blood vessel cell types [11]. In addi-
tion, the combination of atenolol with metformin effec-
tively eradicates breast cancer tumors and their cellular
microenvironment [12].

Activation of ADRB2 signaling promotes the progression
of pancreatic ductal carcinoma [13] and pancreatic cancer mi-
croenvironment [14], thus, blocking ADRB2 signaling is a
promising strategy for pancreatic cancer therapy. Atenolol is
known to block β-1 and β-2 adrenergic receptor [15].
Propranolol, an ADRB antagonist, was found to inhibit pan-
creatic cancer cell proliferation [16]. Nevertheless, the use of
atenolol, which has longer action and fewer side effects than
propranolol [17], for the treatment of patients with pancreatic
cancer has never been explored yet.

Using functional network analysis, we explored the poten-
tial of repurposing atenolol in pancreatic cancer. Direct target
proteins (DTPs) and indirect target proteins (ITPs) were

Fig. 1 a Structure of atenolol. b Atenolol interaction with direct target proteins (DTPs). c PPI network of proteins related to atenolol-mediated proteins
(AMPs)
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obtained from the STITCH and STRING databases, respec-
tively. Atenolol-mediated proteins (AMPs) were collected
from DTPs and ITPs. AMPs were further analyzed for gene
ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment. A protein–protein
interaction (PPI) network of AMPs was constructed using
the STRING database, and hub proteins were selected based
on their degree score. Genetic alterations were analyzed using
cBioportal. Molecular docking studies were performed to
identify the potential interaction between atenolol and the tar-
get proteins.We identified a possible molecular mechanism of
atenolol using integrated bioinformatics analysis, which

suggested that RELA and MMP9 could be potential targets
of atenolol in pancreatic cancer therapy.

Material and methods

DTP acquisition

DTPs are the target protein of a compound that possesses as
agonist, antagonist, or inhibitor towards the DTPs. DTPs of
atenolol were obtained from the STITCH database (http://

Fig. 1 (continued)
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stitch.embl.de) [18]. The results were then used for
subsequent analysis.

ITP acquisition

The proteins that are interacted with the DTPs were called
Indirect target proteins (ITPs). The ITPs of each DTP were
obtained from the STRING database (https://string-db.org)
[19], with a minimum interaction score of 0.4 and maximum
number of interactors of 20. The ITPs of all DTPs were
generated after removing repetitive proteins. A total of DTPs
and ITPs were further considered as atenolol-mediated pro-
teins (AMPs).

PPI network

PPI networks were constructed with STRING-DB v11.0 [19],
with confidence scores >0.7 and visualized by Cytoscape soft-
ware [20]. Genes with a degree score of more than 10 ana-
lyzed by CytoHubba plugin were selected as hub genes [21].

GO and KEGG pathway enrichment

GO and KEGG pathway enrichment analyses were conducted
by The DAVID v6.8 [22]. p < 0.05 was selected as the cutoff
value.

Analysis of genetic alterations among hub genes

The genetic alterations in selected genes were analyzed using
cBioPortal (http://www.cbioportal.org) [23, 24]. In the present
study, the genes MAPK1, RELA, STAT3, ADCY8, GNB1,
and MMP9 were screened for genetic alterations in all
pancreatic studies available in the cBioportal database. The
pancreatic cancer study with the highest frequency of
genetic alterations was chosen for further connectivity
analysis.

Gene expression profile and Kaplan–Meier survival
analysis

Gene expression profiles and the prognostic value of the hub
genes across pancreatic adenocarcinoma samples were evalu-
ated using GEPIA [25] and Kaplan–Meier survival curves
(http://kmplot.com) [26], respectively, by log-rank test.
p < 0.05 was selected as the cutoff value.

Molecular docking

Docking simulation was conducted to predict the binding
properties of atenolol with MMP9 and IKK. All computation-
al simulations were generated on the Windows 10 Operating
System, with Intel Core i5-7th Gen as a processor and 4 GB of

RAM. PDB ID 4H3X contained a non-selective MMP
hydroxamic acid derivative representing the model of a com-
pound bound to the catalytic site of MMP9, while PDB ID
2OVX embedded barbiturate inhibitor RO-206-0222,
depicting the model of a compound bound to MMP9 with
the inactive E402Q mutant [27, 28]. The model of IKK was
represented by the non-canonical NFκB pathway IKKα
(5EBZ) and canonical NFκB pathway IKKβ (4KIK) on the
basis of the presence of the known inhibitors, including IKK
inhibitor XII and staurosporine, respectively [29, 30]. MOE-
Dock program on MOE 2010 (licensed from the Faculty of
Pharmacy, UGM) was used for docking simulation, RMSD
calculation, and visualization of the binding interaction. The
structure of atenolol was drawn in ChemDraw software and
subjected to a conformational search that was minimized in
MOE using the energy minimization module. The calculation
allowed an induced fit using the rigid backbone for the con-
formation of the template protein with Amber10: EHT force
field, triangle matcher as placement, and GBVI/WSA dG
(kcal/mol) as the scoring function. The default settings were
used in each application unless any further explanation was
available. The results of the analysis were used to identify the
conformation that produced the lowest energy state when
atenolol was bound to the target protein.

Results and discussion

DTP and ITP acquisition

This study explored the potential of repurposing atenolol for
the treatment of pancreatic cancer. We searched the DTPs of
atenolol in the STITCH database, which identified 10DTPs of
atenolol (Table 1). The interactions between atenolol and
DTPs were also analyzed (Fig. 1b).

Table 1 Direct protein targets (DTPs) of atenolol

No Protein symbol Protein name

1 UPP2 Uridine phosphorylase 2

2 BACE1 Beta-secretase 1

3 MAPT Microtubule-associated protein tau

4 ADCY10 Adenylate cyclase type 10

5 LTF Lactotransferrin

6 KIAA1149 Beta-secretase 1

7 IL6 Interleukin-6

8 REN Renin

9 ADRB2 Beta-2 adrenergic receptor

10 ADRB1 Beta-1 adrenergic receptor
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PPI networks

We then generated DTP-related proteins using the
STRING database, and the results are summarized in
Supplementary Table 1. Using STITCH and STRING,
we retrieved 176 AMPs that consisted of 10 DTPs and
166 ITPs (Supplementary Table 1). The AMPs were then
constructed into a PPI network, which consisted of 173
nodes, 1470 edges, an average node degree of 17, and a
high confidence interaction (Fig. 2)change to Fig. 1c.
Furthermore, hub proteins were selected from the PPI net-
work based on a specific degree score (Table 2).

Among the hub proteins, ADRB2 was the only DTP with
the highest degree score of 40. This result indicated that the
biological effect of atenolol was strongly correlated with
ADRB2. GO analysis showed that AMPs were involved in
the adenylate cyclase-activating G protein-coupled receptor
signaling pathway, peptidyl-threonine phosphorylation, and
negative regulation of apoptosis. The β-2 adrenergic receptor
is a member of GPCR, which is involved in prostate cancer
progression [31]. The AMPs are located in the cytosol, extra-
cellular matrix, and cytoplasm. Matrix metalloproteinases
(MMPs) are key extracellular matrix enzymes and targets for
anticancer drugs [32]. Moreover, the AMPs play a molecular
function in modulating MAP kinase activity and DNA bind-
ing. Activation of the MAPK signaling pathway plays an im-
portant role in human pancreatic cancer [33].

GO and KEGG pathway enrichment analysis

GO analysis of AMPs was classified into three groups, name-
ly, biological process, cellular component, and molecular
function (Supplementary Table 2). Pathway enrichment by
KEGG of the AMPs (Supplementary Table 3) showed the
regulation of ∼94 pathways. Many of the proteins, such as
MAPK1, RELA, MAPK8, STAT1, and STAT3, were found
to be involved in pancreatic cancer. Hub protein selection
based on degree score showed that ADRB2 was the only
DTP with a high degree score. These findings highlight the
potential importance of ADRB2 in pancreatic cancer
progression.

Analysis of genetic alterations among hub proteins

Seven AMPs were analyzed using cBioportal to explore their
genomic alterations in pancreatic cancer. These AMPs
consisted of three genes involved in the pancreatic cancer
pathway (MAPK1, RELA, and STAT3), three genes with the
highest degree scores (ADCY8, GNB1, and MMP9), and
ADRB2, which is the only DTP with a high degree score.
Among ten pancreatic cancer studies, the highest frequency
of genetic alterations (40%) was found in a study by
Witkiewicz et al. (2015) [34], Fig. 3should be Fig. 2a), which
was selected for further analysis. Oncoprint analysis showed
genetic alterations in seven AMPs ranging from 0.9% to 16%

Table 2 Top 20 hub proteins
based on degree score No Protein symbol Protein name Degree score

1 APP Amyloid-beta A4 protein 56

2 ADCY8 Adenylate cyclase type 8 53

3 ADCY2 Adenylate cyclase type 2 51

4 ADCY5 Adenylate cyclase type 5 48

5 ADCY9 Adenylate cyclase type 9 48

6 ADCY6 Adenylate cyclase type 6 48

7 GNB1 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 45

8 GNB3 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-3 42

9 AGT Angiotensinogen 40

10 ADRB2 Beta-2 adrenergic receptor 40

11 EDN1 Endothelin-1 39

12 GNG2 Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2 39

13 IL6 Interleukin-6 38

14 CXCL8 Interleukin-8 38

15 POMC Pro-opiomelanocortin 37

16 MAPK1 Mitogen-activated protein kinase 1 37

17 AVP Vasopressin-neurophysin 2-copeptin 37

18 INS Insulin 36

19 MMP9 Matrix metalloproteinase-9 35

20 GCG Glucagon 35
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(Fig. 4change to Fig. 2b). Furthermore, amplification was the
most common gene alteration.

This result was supported by previous studies on ADCY8,
GNB1, MMP9, and RELA genetic alterations in cancer pro-
gression. For example, a mutation in ADCY8 is associated
with decreased expression of tumoral PD-L1 in lung squa-
mous cell carcinoma [35]. An activating mutation in GNB1
is associated with resistance to tyrosine kinase inhibitors in
ETV6-ABL1-positive leukemia cells [36]. Genetic polymor-
phisms in MMP9 are associated with breast cancer risk in the
Chinese Han population [37]. In addition, high expression of
RELA is associated with the activation of NF-κB signaling
and poor prognosis in patients with pancreatic cancer [38].

MAPK1 is a member of theMAPK family, which regulates
various cellular processes, such as proliferation, differentia-
tion, invasion, and metastasis [39]. Pancreatic cancer is char-
acterized by constitutive activation of the MAPK1 pathway
[40]. Moreover, increased MAPK1 activation is found in pa-
tients with pancreatic ductal adenocarcinoma with liver me-
tastasis [41]. Thus, targeting MAPK1 may be a strategic way
to treat pancreatic cancer.

Signal transducer and activator of transcription 3 (STAT3)
is a member of the STAT family, which is activated by phos-
phorylation, regulates transcriptional activity, and is involved
in various human tumors [42]. Activation of the STAT3 sig-
naling pathway enhances the migration and invasion of
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Fig. 2 a Overview of the changes in MAPK1, RELA, STAT3, ADCY8,
GNB1, ADRB2, and MMP9 in genomic datasets from nine studies of
pancreatic cancer. b Summary of the alterations in MAPK1, RELA,
STAT3, ADCY8, GNB1, ADRB2, and MMP9 across pancreatic cancer

samples (based on a study by Witkiewicz et al., 2015). c Gene network
and d drug–gene network connected toMAPK1, RELA, STAT3, ADCY8,
GNB1, andMMP9 across pancreatic cancer samples (based on a study by
Witkiewicz et al., 2015)
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pancreatic ductal adenocarcinoma cells [43]. Furthermore,
suppression of STAT3 by emodin increases the sensitivity of
human pancreatic cancer cells to EGFR inhibitors, such as
erlotinib, gefitinib, afatinib, and cetuximab [44].

ADCY8 encodes adenylate cyclase, an enzyme that cata-
lyzes cyclic AMP formation from ATP. ADCY8 is expressed
in pancreatic β-cells and plays an important role in insulin
secretion [45]. Another study revealed that genetic polymor-
phism of ADCY8 is associated with glioma risk in female
patients with type I neurofibromatosis [46]. In addition,
ADCY8 has been shown to play a role as a tumor suppressor
gene in cervical cancer in which promoter methylation of
ADCY8 is correlated with poor prognosis in patients [47].

Guanine nucleotide-binding protein beta 1 (GNB1) or the
β subunit of heterotrimeric G proteins is a regulator of
neurodevelopment [48]. GNB1 regulates the mTOR-induced
antiapoptotic pathway in human breast cancer [49].
Furthermore, the downregulation of GNB1 is associated with
poor prognosis in patients with clear cell renal cell carcinoma
and is related to the VEGF signaling pathway [50]. Therefore,
targeted therapy against GNB1 may be a promising candidate
in pancreatic cancer treatment.

ADRB2 encodes the β-2 adrenergic receptor (also
known as ADRB2), a member of the G protein-coupled
receptor family, which regulates the cardiovascular sys-
tem [51]. To date, the role of ADRB2 in carcinogenesis

is not well understood. Adrenergic signaling plays an
important role in tumor development [52]. The ADRB2
blocker propranolol inhibits migration in MDA-MB 231
breast cancer cells [53]. Another study showed that
blocking of ADRB2 reduces pancreatic nerve growth
factor expression, which accelerates tumor development
in mice [54]. Thus, the study of ADRB2 as a target of
atenolol in pancreatic cancer cells is an interesting topic.

Mutual exclusivity analysis showed that only three
gene pairs (RELA-MMP9, RELA-STAT3, and GNB1-
MMP9) exhibited significant (p < 0.05) co-occurrence in
pancreatic samples from the UTSW study (Table 3).
Subsequently, we explored the interactive relationship
between seven selected genes and altered genes in the
UTSW study. The results showed that a network
con t a i n ed s i x que r y and 45 ne i ghbo r g en e s
(Fig. 5Achange to Fig. 2c). To reduce network complex-
ity, we filtered out neighbor genes with 25% alterations.
The results showed that only HRAS with the highest
alterations remained among neighbor genes (Fig. 5B).
Moreover, ADRB2, MAPK1, and MMP9 were the main
targets of most cancer drugs, which indicated the poten-
tial of those proteins to be a potential atenolol target in
pancreatic cancer treatment.

The co-occurrence ofMMP9, RELA, and three other genes
revealed an essential role of MMP9 and RELA in the

Fig. 2 (continued)
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mechanisms involved in atenolol treatment. MMPs play an
important role in cancer initiation, tumor growth, and metas-
tasis [55]. A previous study showed that the expression of
MMP9 is increased and associated with vascular invasion,
lymph node invasion, liver metastases, and TNM stage in
patients with pancreatic cancer [56]. The results of this study
highlighted the potency of atenolol as an inhibitor of MMP9
in pancreatic cancer cells. These results were supported by a
recent study, which demonstrated that inhibition of MMP9
with an antibody leads to increased tumor-associated IL-28
and decreased stromal markers and vimentin, thereby enhanc-
ing the efficacy of chemotherapy in pancreatic cancer [57].

Gene expression profile and Kaplan–Meier survival
analysis

We explored the gene expression level of seven AMPs among
patients with pancreatic adenocarcinoma using the KMPlotter
database. The expression of MAPK1, RELA, STAT3, GNB1,
andMMP9 was significantly higher in pancreatic cancer sam-
ples than in normal samples (Fig. 6change to Fig. 3a).
Additionally, ADRB2 levels were higher in pancreatic cancer
samples than in normal samples. There was no difference in
the level of ADCY8 between normal and pancreatic cancer
samples. A Kaplan–Meier plot for the overall survival of

RELAMAPK1

MMP9 GNB1

ADCY8STAT3

ADRB2

a

Fig. 3 a Gene expression profile of MAPK1, RELA, STAT3, ADCY8,
GNB1, and MMP9 across pancreatic adenocarcinoma (analyzed by
GEPIA). b Kaplan–Meier survival related to the expression of MAPK1,

RELA, STAT3, ADCY8, GNB1, and MMP9 across pancreatic adenocar-
cinoma (analyzed by KM Plotter)
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patients with pancreatic cancer was obtained based on the low
and high expression levels of each gene. Patients with high
mRNA expression of MAPK1 (p = 0.0084), RELA (p =
0.062), STAT3 (p = 0.22), GNB1 (p = 0.0071), and MMP9
(p = 0.046) had significantly worse overall survival rates than
those in the low expression level group (Fig. 7change to Fig.
3b). Moreover, patients with increased mRNA levels of
ADCY8 (p = 0.032) and ADRB2 (p = 0.055) had better overall
survival rates than those in the low expression level group.

Molecular docking

The inhibition of RELA/NFκB signaling and MMPs can be
used as a treatment strategy for pancreatic cancer cell therapy.
In this study, we performed molecular docking analysis to
predict the possible atenolol-mediated inhibition of regulatory
proteins in pancreatic cancer cells. Docking simulation and
ligand–protein binding visualization were generated by
Molecular Operating Environment (MOE) software. The

RELAMAPK1

MMP9 

GNB1ADCY8

STAT3

ADRB2 

b

Fig. 3 (continued)
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protein targets of IKK and MMP9 were selected from KEGG
pathway enrichment analysis, the top 50 genes with the
highest degree score, the Kaplan–Meier plot, and networks
of atenolol-associated genes in pancreatic cancer. We used
two PDB IDs for each protein to validate the binding proper-
ties of atenolol. Our molecular docking study using a 4H3X
model found that atenolol exhibited a lower docking score
than a hydroxamic acid derivative, indicating potent binding
affinity (Table 4). The visualization of the binding interaction
data revealed that the hydrophilic amide group of atenolol
formed an H-bond with His236, rather than forming a direct
metal bond with Zn2+ and an H-bond with Leu188, which was
observed with the hydroxamic acid derivative (Fig. 8)change
to Fig. 4. Using a 2OVX model, atenolol had a comparable
docking score with RO-206-0222. The comparable binding
affinity was mediated by forming an H-bond between the
hydroxyl group and Arg424 and an Arene-H bond between
the Cα atom of Atenolol and His401. These bonds were sta-
bilized by another Arene-H bond with Leu418, Arg424, and

Tyr423, resulting in the hydrophobic binding properties of
RO-206-0222 (Fig. 8change to Fig. 4).

Given the instability of full-lengthMMP9, every molecular
docking approach requires several types of crystal structure
models to validate the binding properties of a certain com-
pound [28]. In our study, we used two different PDB IDs
representing the wild type and mutant catalytic sites in
MMP9 for validation. Our analysis of the wild-type catalytic
site in MMP9 revealed that the hydrophilic amide group of
atenolol contributed to the H-bond binding with His236 and
one of three histidine residues coordinated with the catalytic
ion Zn2+ responsible for substrate proteolysis in the active
enzyme [58]. The interruption of the catalytic ion Zn2+ also
appeared between Cα of atenolol and His401 with the E402Q
mutant, highlighting the importance of the hydrophilic amide
group on the binding interaction. In addition, a similar hydro-
phobic binding pattern was observed with the strong MMP9
inhibitor RO-206-0222, suggesting the strong inhibitory ac-
tivity of atenolol on the MMP9-E402Q mutant [28]. Atenolol

LIGAND NATIVE ATENOLOL

MMP9
(PDB ID: 
4H3X)

MMP9
(PDB ID: 
2OVX)

IKKα
(PDB ID: 
5EBZ)

IKKβ
(PDB ID: 
4KIK)

Fig. 4 Visualization of ligand
interactions with MMP9, IKKα,
and IKKβ using MOE
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bound to the catalytic site of MMP9 by interrupting the ion
Zn2+ catalytic site and was predicted to possess strong inhib-
itory activity.

The molecular docking study of the ATP-binding site of
IKKα and IKKβ demonstrated that atenolol had comparable
binding affinity with IKK inhibitor XII but lower binding
affinity than staurosporine (Table 4). The three H-bonds rep-
resented by the binding between the amide group with Glu19,
hydroxyl group with Thr23, and ether group with Gly22 con-
tributed to the comparable binding affinity of atenolol with
IKKα (Fig. 8)should be Fig. 4. The low affinity of atenolol
compared with that of staurosporine and IKKβwas caused by
a reduced number of amino acid bindings, which only formed
one H-bond between the amide group and Asp166 and one
Arene-H bond between benzene and Val29. Meanwhile, the
staurosporine interaction possessed three H-bonds with a short
distance and four Arene-H bonds (Fig. 8)should be Fig. 4. In
summary, atenolol interacted with MMP9 on its wild type or
E402Q mutant catalytic site and with IKK through the ATP-
binding site.

NF-κB is a transcription factor that contributes to cancer
development [59]. RELA (also known as p65) is a subunit of
the NF-κB transcription factor complex, together with p50
[60]. Activation of NF-κB signaling leads to phosphorylation
of IkBα and subsequent translocation of the p65/p50 complex
into the nucleus [61]. NF-κB signaling contributes to

Table 3 Mutual exclusivity analysis of selected genes in pancreatic
cancer study

A B Log2 odds ratio p Value Tendency

RELA MMP9 >3 <0.001 Co-occurrence

RELA STAT3 >3 0.013 Co-occurrence

GNB1 MMP9 2.426 0.017 Co-occurrence

MAPK1 STAT3 >3 0.061 Co-occurrence

RELA ADCY8 <-3 0.14 Mutual exclusivity

MAPK1 RELA 1.769 0.185 Co-occurrence

STAT3 GNB1 1.791 0.191 Co-occurrence

MAPK1 MMP9 1.447 0.243 Co-occurrence

MAPK1 GNB1 1.174 0.303 Co-occurrence

STAT3 ADCY8 <-3 0.352 Mutual exclusivity

ADCY8 GNB1 0.515 0.426 Co-occurrence

RELA GNB1 0.539 0.467 Co-occurrence

STAT3 MMP9 0.601 0.542 Co-occurrence

MAPK1 ADCY8 −0.398 0.637 Mutual exclusivity

ADCY8 MMP9 −0.026 0.672 Mutual exclusivity

ADCY8 ADRB2 <-3 0.844 Mutual exclusivity

GNB1 ADRB2 <-3 0.862 Mutual exclusivity

MMP9 ADRB2 <-3 0.881 Mutual exclusivity

RELA ADRB2 <-3 0.899 Mutual exclusivity

MAPK1 ADRB2 <-3 0.927 Mutual exclusivity

STAT3 ADRB2 <-3 0.945 Mutual exclusivity

Table 4 Molecular docking results of atenolol against the protein targets MMP9, IKKα, and IKKβ

Protein Ligand native Atenolol

Docking score
(kcal/mol)

RMSD
(Å)

Ligand
atom

Amino
acid

Binding
type

Distance Docking score
(kcal/mol)

RMSD
(Å)

Ligand
atom

Amino
acid

Binding
type

Distance

MMP9 (PDB
ID: 4H3X)

−9.60 0.945 O Leu188 H-bond 2.67 −11.99 1.904 O His236 H-bond 2.91
O Zn2+ Metal

Cont-
act

1.01

MMP9 (PDB
ID: 2OVX)

−11.63 0.626 O Leu188 H-bond 1.54 −11.45 1.771 H Arg424 H-bond 1.84
H Ala189 H-bond 1.49 H His401 Arene-H
O Gln402 H-bond 1.75 C Leu418 Arene-H
C Gly186 Arene-H C Arg424 Arene-H
C Leu188 Arene-H C Tyr423 Arene-H
C Leu418 Arene-H
C Arg424 Arene-H
C Tyr423 Arene-H

IKKα (PDB ID:
5EBZ)

−10.92 0.828 H Glu96 H-bond 1.71 −10.88 0.924 O Thr23 H-bond 2.01
O Cys98 H-bond 1.49 H Thr23 H-bond 2.05
O Asp102 H-bond 2.22 O Gly22 H-bond 2.31
C Asp102 Arene-H H Glu19 H-bond 2.11
C Ile164 Arene-H
C Leu21 Arene-H

IKKβ (PDB ID:
4KIK)

−14.07 0.399 H Glu149 H-bond 1.52 −10.17 0.733 O Asp166 H-bond 1.97
H Glu97 H-bond 1.80 C Val29 Arene-H
H Cys99 H-bond 1.61
C Val152 Arene-H
C Ile165 Arene-H
C Val29 Arene-H
C Leu21 Arene-H
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pancreatic cancer development. Furthermore, high expression
of RELA is associated with the activation of NF-κB signaling
and poor prognosis in patients with pancreatic cancer [38].
Activation of NF-κB/p65 signaling stimulates anti-apoptotic
responses in pancreatic cancer cells [62]. The inhibition of
NF-kB signaling induces apoptosis [63] and inhibits angio-
genesis in pancreatic cancer cells [64]. Taken together,
targeting NF-κB/RELA may be a promising strategy in pan-
creatic cancer therapy.

IKK is a component of NF-κB signaling proteins and a
multiprotein complex consisting of two kinase subunits. The
first is IKKα, which is responsible for adaptive immunity, and
the second is IKKβ, which is essential for innate immunity
and inflammation [65]. Our molecular docking data on IKKα
demonstrated the important role of the hydroxyl and ether
groups beside the amide group in forming an H-bond. The
hydroxyl group interacted with Thr23, the target binding site
of Akt for phosphorylation, whereas the ether group bound to
Gly22, an important residue on the glycine-rich loop [66]. The
amide group and the benzene ring were two important func-
tional groups for atenolol binding to IKKβ. Although the
binding affinity of atenolol was lower than that of
staurosporine, the interaction of the amide group from ateno-
lol with Asp166 was similar to compound NSC-719177, a
strong IKKβ inhibitor that is effective at low concentrations
[67]. The hydrophobic binding between the benzene ring with
Val29 was also similar to the other selective IKKβ kinase
i n h i b i t o r s , s u c h a s 4 - p h e n y l - 7 - a z a i n d o l e s ,
thiophenecarboxamide, and 2-amino-3-cyano-4-alkyl-6-(2-
hydroxyphenyl) pyridine derivatives [68–70]. This study
highlighted the key structure of atenolol responsible for its
interaction with the ATP-binding site of IKK. The findings
suggested that atenolol possibly inhibited its activity through
the canonical or non-canonical pathway of NF-kB signaling.

The results of this study highlighted the potential of ateno-
lol for pancreatic cancer therapy. RELA and MMP9 are po-
tential target candidates of atenolol in the treatment of patients
with pancreatic cancer. These target candidates greatly com-
plement other genomics data and provide essential informa-
tion for further research on atenolol, as well as the develop-
ment of pancreatic cancer drugs. This study used bioinformat-
ics approaches, and the results must be further validated
in vitro and in vivo. In addition, the potential drug repurposing
of atenolol for use in other types of cancer should be explored.

Conclusion

In conclusion, we performed functional network analysis
using the databases STITCH; STRING; Database for
Annotation, Visualization and Integrated Discovery
(DAVID); cBioportal; and KMPlotter to investigate the po-
tential of atenolol for drug repurposing in pancreatic cancer. A

molecular docking study revealed that atenolol may inhibit
MMP9 and NF-κB signaling in pancreatic cancer cells.
Therefore, atenolol has the potential to be repurposed in pan-
creatic cancer therapy by targeting MMP9 and NF-κB signal-
ing. The results of this study need to be further validated
in vitro and in vivo.
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