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Abstract The forming limit diagram (FLD) is an important tool to be used when characterizing the formability of

metallic sheets used in metal forming processes. Experimental measurement and determination of the FLD is time-

consuming and therefore the analytical prediction based on theory of plasticity and instability criteria allows a direct and

efficient methodology to obtain critical values at different loading paths, thus carrying significant practical importance.

However, the accuracy of the plastic instability prediction is strongly dependent on the choice of the material constitutive

model [1–3]. Particularly for materials with hexagonal close packed (HCP) crystallographic structure, they have a very

limited number of active slip systems at room temperature and demonstrate a strong asymmetry between yielding in

tension and compression [4, 5]. Not only the magnitude of the yield locus changes, but also the shape of the yield surface is

evolving during the plastic deformation [4]. Conventional phenomenological constitutive models of plasticity fail to

capture this unconventional mechanical behavior [4, 6]. Cazacu and Plunkett [6] have proposed generic yield criteria, by

using the transformed principal stress, to account for the initial plastic anisotropy and strength differential (SD) effect

simultaneously. In this contribution, a generic FLD MATLAB script was developed based on Marciniak–Kuczynski

analytical theory and applied to predict the localized necking. The influence of asymmetrical effect on the FLD was

evaluated. Several yield functions such as von Mises, Hill, Barlat89, and Cazacu06 were incorporated into analysis. The

paper also presents and discusses the influence of different hardening laws on the formability of materials with HCP crystal

structures. The findings indicate that the plastic instability theory coupled with Cazacu model can adequately predict the

onset of localized necking for HCP materials under different strain paths.

KEY WORDS: Forming limit diagram (FLD); Marciniak–Kuczynski analysis; Plastic instability; Yield

function; Hardening law

1 Introduction

With the requirement of fuel efficiency and reduction in

CO2 emissions, light weight alloys have attracted more and

more attention in recent years. Due to their high strength-

to-weight ratio, magnesium and titanium alloys offer a

great potential to reduce weight, thus being widely used in

electronic devices, aerospace industry, etc. [7–9]. Most of

these components were produced by sheet metal forming

processes. The ability of sheet metal to deform into desired

shape without local necking or fracture is defined as

formability. Therefore, understanding and characterizing
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the formability of metal sheets is of key importance for

controlling final product quality and then evaluating the

success of the sheet forming operation.

The formability of sheet metals is commonly evaluated

using a forming limit curve (FLC), a curve defining max-

imum allowable strain levels during sheet metal forming,

which became a standard tool for assessing and repre-

senting the formability of sheet metals. The FLD is

experimentally determined by two main kinds of forming

methods under different proportional loading paths, like

out-of-plane stretching, and in-plane stretching. However,

the experimental testing and grid strain measurement pro-

cedure is costly, time-consuming and requires both expe-

rience and attention in order to determine accurate forming

limits. Therefore, analytical/theoretical methods have

already attracted more and more attention to predict the

forming limit in sheet metal forming. In decades, based on

different failure criteria, various theoretical/analytical

methods have been developed and employed by different

researchers to predict the forming limits of sheet metals,

such as the Swift diffuse necking models [10], the Hill [11]

localized necking model, the M–K inhomogeneous model

[12] and the bifurcation theory [13], perturbation theory

[14], modified maximum force criterion (MMFC) [15].

One of the most widely used approaches is the well-known

Marciniak–Kuczynski (M–K) model. The M–K model

predicts the FLD based on the assumption of an initial

defect in perpendicular direction with respect to loading

direction. The presence of such defect causes strain local-

ization leading to failure. It was shown that forming limit

curves are influenced by material work-hardening exponent

and anisotropy coefficient. Within the M–K framework, the

influence of various constitutive features on FLDs has been

explored using phenomenological plasticity models. Butuc

et al. [16] studied the forming limits diagrams for alu-

minum alloy AA6016-T4 and successfully gave good

predictions with Voce hardening law. Bong et al. [17]

performed a series of modified Marciniak test and con-

ventional ASTM standard tests to determine the FLD for

ferritic stainless steel sheets; after that a conventional M–K

model was implemented to predict and compare with the

FLD determined experimentally. Results shown that the

FLD calculated with this modified model was in good

agreement with the measured data for both thin and thick

steel sheets. However, most of these researches [2, 3] were

used to study the formability of materials with bcc or fcc

crystal structure, such as aluminum alloy, steel. However,

hexagonal closed packed (HCP) crystallographic structure

demonstrates its different mechanical behaviors from other

metals with fcc and bcc structures. At room temperature,

the activation of twinning plays an important role to

accommodate the deformation. The polar nature of defor-

mation twinning promotes a strong asymmetry between

yielding in tension and compression, usually known as

strength differential effect (SD). Naka et al. [18] adopted

Barlat yield criterion to capture the effect of strain rate,

temperature and sheet thickness on yield locus of AZ31

magnesium alloy sheets. Cazacu et al. [6] introduced a

macroscopic orthotropic yield criterion for HCP materials

and described very well the yield asymmetry between

tension and compression and anisotropy.

In this study, a generic MATLAB script was developed

within the M–K theory framework. The influence of

asymmetrical effect on the strain path and formability is

discussed. Moreover, the initial imperfection, different

hardening laws and yield criteria are also being

investigated.

2 Theoretical Modeling and Formability
Prediction

2.1 Description of the Marciniak–Kuczinsky (M–K)

Model

The Marciniak–Kuczinsky (M–K) analysis in the frame-

work of heterogeneous materials introduced by Marciniak

and Kuczynski [12] has become one of the most common

theoretical approaches for calculating the FLC of sheet

materials.

Sheet materials are initially inhomogeneous due to the

presence of micro-voids or the roughness at the surface of

the sheet. Marciniak and Kuczynski modeled this material

inhomogeneity in a sheet as a geometric band with a

slightly reduced thickness compared to the rest of the sheet.

According to this hypothesis, non-defective zone (region a)

and groove zone (region b) are the two regions of the sheet

metal should be distinguished, as shown in Fig. 1. The ratio

f is used to describe the amplitude of the imperfection. The

initial value of the geometrical defect is characterized by

the ratio f0 ¼ tb0=ta0 where ta0 and tb0 are the initial thickness

in the homogeneous region and in the groove, respectively.

This initial inhomogeneity grows continuously with plastic

Fig. 1 Schematic diagram of M–K analysis [19]
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straining to form eventually a localized neck. The x, y and

z axes correspond to rolling, transverse and normal direc-

tions of the sheet, whereas 1 and 2 represent the principal

stress and strain directions in the homogeneous region. The

set of axis bound to the groove system is represented by n,

t and z axes where ‘t’ is the transverse one. This two-zone

material is subjected to constant incremental plastic

deformation, the plastic flow occurs in both regions, but the

evolution of the strain rates is different in the two zones.

The homogeneous region is subjected to proportional

strains; meanwhile, the deformation in groove region is

close to plane strain. When the flow localization occurs in

the groove at a critical strain in homogeneous region, the

limiting strain of the sheet is reached.

Throughout this section, the sheet metal is considered to

behave as an orthotropic membrane under the plane stress

conditions; thus, the stress component in the third direction

is vanished. The constraints written are valid both for

region a and region b. We also assume that the sheet metal

is subjected to loads which do not produce tangential

stresses and strains in the plastic orthotropic frame:

ra12 ¼ 0; ea12 ¼ 0: ð1Þ

2.1.1 Computation of Stress and Strain in Homogeneous

Region a

The mechanical response of the sheet metal will be

described by a rigid-plastic model. Hence total strains and

total strain increments are equal to the corresponding

plastic strains and plastic strain increments, respectively.

Given the strain history from the previous step, the effec-

tive strain increment at current step, strain path (stress

path), stress, strain, strain increment in region a can be

calculated. The main ingredient of the constitutive model is

the yield function:

raeq ra1; r
a
2

� �
� Y �eað Þ ¼ 0; ð2Þ

where Y represents the equivalent stress and is calculated

from the hardening law.

The plastic strain increments in the rolling and trans-

verse directions can be computed by the associated flow

rule

Dea ¼ Dc
oraeq
ora

; ð3Þ

also, by using of the rotation matrix, strain increment

tensor is obtained at the groove system of coordinates. Due

to the incompressibility constraints, the strain increments

though the thickness can be calculated by

Dea3 ¼ �Dea1 � Dea2: ð4Þ

The stress ratio a is defined as

a ¼ r22
r11

: ð5Þ

Given the effective strain, it can be coupled with the

yield function to calculate the stress tensor under

prescribed stress path in the orthotropic referential frame

of anisotropy as

r11 ¼ f að ÞY �eað Þ
r22 ¼ ar11

�
: ð6Þ

The strain rate ratio b is given by

b ¼ _e22
_e11

: ð7Þ

For a given yield function, it is essential to know the

correlation between stress ratio a and the strain rate ratio b.
Considering that the principal anisotropy axes of

orthotropic symmetry are coincident with the principal

axes of stress in the homogeneous region a, according to

the associated flow rule, the strain ratio can be calculated

by

b ¼ _e22
_e11

¼
oraeq

.
or22

oraeq

.
or11

: ð8Þ

2.1.2 Computation of the Stress and Strain in Groove

Region b

After all the stress component, strain components, and

strain increment component in homogeneous region a are

obtained, all the stress, strain variables in the grooved

region b can be calculated according to the requirement of

force equilibrium and geometry compatibility between

homogeneous region and groove region.

The force equilibrium condition, indicating equivalence

of force perpendicular to the necking band in homogeneous

region a and groove region b conforms to:

rannta ¼ rbnntb; ð9Þ

rantt
a ¼ rbntt

b; ð10Þ

where rnn and rnt are components of stress tensor in the

groove reference frame, while ta and tb are the sheet

thickness outside and the inside the groove, respectively,

given by

ta ¼ ta0 exp ea3
� �

; ð11Þ

tb ¼ tb0 exp eb3
� �

: ð12Þ

Imperfection factor f is characterized by the ratio tb/ta

and is expressed as a function of the initial defect and strain

difference through the thickness between these two

regions:
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f ¼ f0 exp eb3 � ea3
� �

; ð13Þ

where f0 is the initial imperfection factor, which has an

important influence on the predicted limit strains.

The geometry compatibility requirements assume that

the elongation in the direction of the necking band is

identical in both regions:

Deatt ¼ Debtt: ð14Þ

Moreover, the deformation in the groove region should

also meet the requirement of yield function as follows

rbeq rb11; r
b
22; r

b
12

� �
� Y �eb

� �
¼ 0: ð15Þ

Generally, the imperfection band can be randomly

oriented in the sheet metal and this orientation can be

specified with the angle h between the groove axis and the

direction of the second principal stress (Fig. 1). The

rotation of the groove was considered in this work using

the following empirical formula proposed by Sing and Rao

[20]:

tan hþ Dhð Þ ¼ tan hð Þ 1þ Dea1
1þ Dea2

; ð16Þ

where Dea1 and Dea2 are the major and minor principal

strains in the nominal area of the sheet, respectively.

Equation (16) implies that the orientation of the

imperfection band will vary during deformation due to the

in-plane plastic strains, and angle h can be updated at each

plastic strain increment.

For any constant value of stress ratio a, by changing

angle h, between 0� and 90�, minimum value of major

localization strain is found. This minimum value and its

corresponding minor strain are defined as point in the FLD.

2.1.3 Necking Criteria

Due to the initially slightly smaller thickness of the groove

compared to the homogeneous region, the strain will

become more and more concentrated within the groove. In

order to predict the onset of necking, the sheet is subjected

to a uniform stress state. As plastic deformation progresses,

the difference in strain rate between the two regions will

intensify and eventually the strains will localize in the

imperfection region. M–K necking criteria in this paper

assumes that the plastic flow localization occurs when the

equivalent strain increment in imperfect region b becomes

more than ten times greater than in homogeneous zone a

D�eb [ 10D�ea
� �

. When this necking condition is reached,

the computation terminates and the corresponding strains

ea1; e
a
2

� �
and stresses ra1; r

a
2

� �
accumulated at that moment

in the homogeneous zone represent the limit strains and

limit stresses, respectively.

2.2 Yield Function

Plasticity theory deals with yielding of materials under

complex stress states. It is used to decide whether or not a

material will yield under a stress state and determine the

shape change that will occur during yielding. Many phe-

nomenological plastic models for materials have been

proposed [21, 22]. The major yield functions used in this

paper are the follows.

2.2.1 von Mises Yield Criterion

The von Mises stress is often used in determining whether

an isotropic and ductile metal will yield when subjected to

a complex loading condition [23]. The von Mises yield

criterion is expressed as:

2.2.2 Hill Yield Criterion

Because of its simplicity and good accuracy, Hill’s [24]

yield criterion has been widely used to predict the

behavior of orthotropic steel sheets. This quadratic yield

function only requires a limited number of mechanical

properties to determine the shape of the yield locus: under

plane stress conditions, only three parameters are suffi-

cient, namely the plastic anisotropy coefficients in the

rolling (R0), diagonal (R45) and transverse (R90)

directions.

2req ¼ F r22 � r33ð Þ2þG r33 � r11ð Þ2þH r11 � r22ð Þ2
h

þ2Lr223 þ 2Mr213 þ 2Nr212
�1=2

; ð18Þ

where F, G, H, L, M, N are material parameters. In the case

of isotropy

L ¼ M ¼ N ¼ 3F ¼ 3G ¼ 3H: ð19Þ

req ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r11 � r22ð Þ2þ r22 � r33ð Þ2þ r11 � r33ð Þ2þ6 r212 þ r223 þ r213

� �

2

s

: ð17Þ
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This criterion is restricted to materials with orthotropic

physical symmetry, i.e., to those with three mutually

orthogonal symmetry planes. These can generally be

inferred from the symmetry of the strain path employed

to produce the anisotropy. The constants can be calculated

with three tensile tests.

2.2.3 Barlat Yield Criterion

Barlat and Lian [25] proposed a non-quadratic yield

function to model the behavior of orthotropic metallic

sheets (typically rolled materials) under plane stress.

Unlike the above mentioned yield criteria, this model is

restricted to plane stress conditions. The corresponding

yield function, written at the outset exclusively in terms of

in-plane components of the stress tensor, reads

2rM
eq ¼ a K1 þ K2j jMþ a K1 � K2j jMþ c 2K2j jM; ð20Þ

where K1, K2 is described as

K1 ¼
rxx þ hryy

2
; K2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rxx � hryy

2

� �2

þb2r2xy

s

:

ð21Þ

The formulation is expressed in an x, y, z coordinate

system, not necessary coincident with the principal

directions. The included constants a, h and b are

calculated from relations based on the measured r values

at rolling, transverse and 45� orientations.

2.3 Cazacu06 Yield Criterion [6]

To extend isotropic yield function to orthotropic, a 4th

order linear transformation is operated on the stress devi-

ator S to obtain the transformed tensor R, which can be

defined as

R ¼ LS, ð22Þ

where L is a 4th order tensor, which includes nine

independent anisotropy coefficients, It is worth noting

that although the transformed tensor is not deviatoric, the

orthotropic criterion is insensitive to hydrostatic pressure

and thus the condition of plastic incompressibility is

satisfied. It can be written as 6 9 6 matrix format as

R11

R22

R33

R12

R23

R13

2

6666664

3

7777775

¼

L11 L12 L13 0 0 0

L12 L22 L23 0 0 0

L13 L23 L33 0 0 0

0 0 0 L44 0 0

0 0 0 0 L55 0

0 0 0 0 0 L66

2

6666664

3

7777775

S11
S22
S33
S12
S23
S13

2

6666664

3

7777775

:

ð23Þ

The orthotropic criterion is of the form

req ¼ R1j j � kR1ð Þaþ R2j j � kR2ð Þaþ R3j j � kR3ð Þa½ �1=a;
ð24Þ

where R1; R2; R3 are the principal values of R. In order to

ensure the convexity of the yield surface, the introduced

parameter k should be constrained in the range of k [ [-1,

1]. If the transformed matrix L is equal to identity matrix,

the proposed formulation can be reduced to the classical

von Mises yield criterion.

Since the effective stress req is the first-order homoge-

neous function in stresses, from the work equivalence

principle it follows that the law of evolution for the

effective plastic strain (associated with req) reduces to

_�e
p ¼ _c.

2.4 Hardening Law

During the plastic deformation process, the shape of the

material changes and shows increased amount of strength

properties, hence called as strain hardening. Each material

is completely defined macroscopically by its yield surface

and its work-hardening law Y �eð Þ, which in present work

takes two forms:

2.4.1 Swift Law [10]

The strain hardening of the material was defined using a

power law function that considers the strain rate sensitivity

of the material:

Y ¼ K �eþ e0ð Þn; ð25Þ

where e0 is the initial uniform strain applied to the sheet, n

is the strain hardening coefficient, Y and �e are the effective
stress and strain, respectively.

2.4.2 Você Law [26]

The hardening equation corresponding to Você law takes

the form

Y ¼ A þ B 1� e�C�e
� �

; ð26Þ

where A, B, C are the material parameters identified by the

related tensile test; �e denotes the equivalent plastic strain.

Each material constant in the above hardening law can

be calibrated by fitting experimental stress/strain data. A

comparison between the two identified hardening laws is

plotted in Fig. 2. In this figure, it can be seen that the very

good correlation between the two methods and the
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experimental values for an equivalent strain value is

between 0 and 10%. For larger values of the equivalent

strain, a clear difference appears between the Swift law and

the Você law. In the following section, the influence of the

choice of the hardening law on the evaluation of the

forming limit curves will be discussed.

3 Results and Discussion

The aim of this section is to investigate the formability of

the rolled magnesium alloy sheets AZ31, to compare the

predicted and experimental results and to study several

influencing effects on the forming limit curve. The

mechanical properties associated with selected magnesium

alloys are listed in Table 1, and material constants

describing the yield functions are shown in Table 2.

3.1 Relationship Between Strain Rate Ratio b

and Stress Ratio a

Figure 3 shows the strain rate ratio b evolution with stress

ratio a under different asymmetrical conditions. When

k = 0, the yield locus demonstrates elliptical shape. When

increasing the magnitude of absolute k value, the asym-

metrical effects increase, the yield surface showing ten-

dency to triangular like shape. From Fig. 3, it can be seen

that when the stress ratio increases, the strain ratio also

increases; however, they have not a linear relationship,

particularly when stress ratio is greater than zero. The

asymmetrical effect has a great influence on the correlation

between strain ratio and stress ratio.

In order to further investigate the ratio of first principal

stress component with respect to equivalent plastic stress,

Fig. 4 plots the evolution of function f(a) (Eq. 6) at dif-

ferent asymmetrical effect condition. When the k value

changes, not only the maximum value of function f(a)
changes, but also the position of stress ratio, where the

function f(a) reach its maximum value, alters.

Figure 5 shows the function g evolution. The function

g is the ratio of first principal strain component with respect

to effective strain. According to the principle of work

equivalence for proportional straining, the function g can

be computed by

g ¼ f að Þ 1þ ab að Þð Þ: ð27Þ

From the Fig. 5, it can be seen that when k is negative,

there is a minimum g value in the whole range of stress

ratio. In contrast, when k is positive, the g value shows

influence of stress ratio up to a critical value. After this

critical value, the g value has a steeply increase.

Fig. 2 Tensile stress–strain response

Table 1 Material parameters of AZ31B

Modulus E (GPa) Poisson’s ratio m Y ¼ K �eþ e0ð Þn
Y ¼ A þ B 1� e�C�eð Þ

K e0 n A B C

45 0.35 406.8 0.0078 0.187 195.78 117.57 18.46

Table 2 AZ31B coefficients corresponding to the yield surface evolution

�e L11 L22 L33 L12 L13 L23 L44 k

0.01 1.3386 1.3028 0.7254 0.2097 -0.3170 -0.2595 1.1262 0.8988

0.02 1.3382 1.3024 0.6851 0.2114 -0.3012 -0.2522 1.1260 0.9899

0.05 1.3669 1.2640 0.7453 0.1279 -0.2824 -0.2327 1.2265 0.6481

0.1 0.8363 1.2747 0.3461 0.2766 -0.2072 0.4730 1.1108 -0.0069

0.15 0.9259 1.2302 0.11 0.2902 -0.13 0.5734 1.0953 -0.1305
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3.2 FLC Prediction and Effects of the Main Models’

Parameters

Within the M–K framework, the influence of various

constitutive features on FLDs has been explored using

phenomenological plasticity models. It is now well known

that the FLD is very sensitive to effects of yield surface

vertices, anisotropy, and the material rate sensitivity.

Research has shown that the calculated forming limit

strains using M–K analysis depends sensitively on several

factors, such as the material anisotropy, the material

hardening, the material texture and microstructure and the

strain paths. This subsection presents the M–K model used

to predict FLCs and some results for different descriptions

of the mechanical behavior of the metallic sheet. We

analyze the influences on the limits strain of the asym-

metrical effect, the initial imperfection intensity, the yield

criterion and the hardening to determine M–K

performance.

3.2.1 Influence of Asymmetrical Effect

In the Sect. 3.1, it was already observed that the asym-

metrical effect has great influence on the strain ratio evo-

lution, f(a) and g functions with stress ratio. It is essential

to study the influence of asymmetrical effect on the FLD

and forming limit stress diagram (FLSD).

Figures 6 and 7 show the calculated FLD and FLSD,

respectively, at different k values, it can be seen that the

FLD under different asymmetrical conditions is remark-

ably different. Compared with the right side of FLD, the

forming limit strain distributes in a narrower zone. For

FLSD, as the absolute value of k increases, the first prin-

cipal stress decreases.

3.2.2 Influence of Initial Imperfection Factor

The M–K approach predicts the FLD based on the growth

of an initial imperfection. However, the strength of the

imperfection cannot be directly measured by physical

experiments.

Figures 8 and 9 show the influence of the initial thick-

ness ratio f0 on FLD and FLSD, respectively. Regular

shapes of forming limit curve are found from this figure.

They demonstrate that with decreasing groove depth (f0
approaching 1), the level of FLD and FLSD is shifted to the

upper values. This parameter extremely affects the FLD

and FLSD, particularly initial imperfection factors

f0[ 0.98. It is also seen that shallow initial grooves are

sufficient to cause localization in the M–K model. Gener-

ally, the value of the initial imperfection factor f0 is chosen

to make the best fit between the predicted and the

Fig. 3 The function b(a) with different k values

Fig. 4 The function f(a) corresponding to the calculated FLD with

different k values

Fig. 5 The function g(a) corresponding to the calculated FLD with

different k values
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experimental results and denotes the level of sheet forma-

bility. Hence, to characterize the practical formability of a

given sheet, an appropriate value of f0 should be identified.

3.2.3 Influence of Hardening Law

The prediction of forming limits using the MK analysis is

based on the classical continuum plasticity theory in which

a yield function describes the onset of plastic deformation

in stress space and a strain hardening law defines the

evolution of the yield locus as plastic deformation pro-

gresses. Since both these elements have a profound influ-

ence on the prediction of the plastic behavior of metallic

materials, it is essential that the prediction of forming

limits be based upon the most representative yield criteria

and hardening laws. Isotropic hardening is the simplest and

most widely used strain hardening rule, and it is well suited

to predict the outcome of metal forming processes

involving monotonic loading. Therefore, it has been always

been used in the MK analysis.

The influence of hardening law is pointed out in Fig. 10

by using two different hardening laws, namely Swift

hardening model and Você equation, whereas the same

yield function (Cazacu06) is selected to describe the yield

locus. Experimental determined FLD of magnesium alloy

at room temperature was extracted from Mariusz Boba

research work [27]. The analysis with the Você hardening

model shows a less steep curve in the left side of FLD.

These results show that the forming limit diagrams

obtained using Swift hardening law is always higher that

those obtained using Você hardening law. The predicted

forming limit strain with Você hardening law is in a good

agreement with experimental results.

Fig. 6 Influence of the asymmetrical effect on FLD

Fig. 7 Influence of the asymmetrical effect on FLSD

Fig. 8 Influence of the initial imperfection f0 on FLD

Fig. 9 Influence of the initial imperfection f0 on FLSD
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3.2.4 Influence of Yield Criterion

Sheet metal exhibits a highly anisotropic material behavior

due to cold rolling. Thus, the description of the yield cri-

terion is of major importance to the accuracy of forming

limit prediction by M–K model where localized necking

occurs when the strain path has transformed from biaxial

stretching to plane strain.

In order to study the influence of yield criterion, four

kinds of yield criteria, von Mises, Hill, Barlat89, Caza-

cu06(CPB06) were implemented into M–K model to cal-

culate theoretical forming limit strain and forming limit

stress. Você hardening law has been used. The initial

imperfection f0 is equal to 0.98. Figures 11 and 12 show

the comparison of FLD and FLSD calculated with these

four different yield criteria. From these calculated FLCs, it

is seen that the shape of the yield locus has not a clear

distinct influence on the left side of the forming limit

diagram, although for FLSD a great difference of forming

limit stress is obtained from different yield criteria. Such

higher influence on FLSD when using different yield cri-

teria means that, for magnesium behavior, different yield

criteria represent very different yield locus surfaces, which

in turn will correspond to very different stresses and very

different forming limits for stress. As for the lower influ-

ence in FLD, this means that different yield criteria, for

magnesium behavior, have not so much difference in strain

space behavior and evolution, therefore being strain a

variable with less sensitivity to yield criteria in this kind of

analysis.

4 Conclusions

In the present study, a generic MATLAB script based on

the M–K model has been developed to calculate the lim-

iting strains and forming limit stress in sheet metal form-

ing. The effects of initial imperfection intensity and

orientation, the asymmetrical effect, the hardening law and

the yield locus on the FLD have been accounted for in the

M–K analysis. It can generally be concluded that the cal-

culation of the FLD and FLSD is strongly influenced by the

selected hardening law, the initial imperfection and the

constitutive description. Asymmetrical effect has also a

great influence on the mechanical behavior and formabil-

ity. The predicted FLDs have been compared with exper-

imental data and the agreements between the predicted and

measured FLDs show a very efficient developed tool, in

which the characteristic shapes of the experimental FLDs

are very well matched.
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