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Abstract This article deals with the optimization of process parameters for friction welding of Incoloy 800 H rod and

compares the results obtained by response surface methodology (RSM) and artificial neural network (ANN). The ex-

periments were carried out on the basis of a five-level, four-variable central composite design. The output parameters were

the tensile strength and burn-off length (BOL). They were considered as a function of four independent input variables,

namely heating pressure (HP), heating time, upsetting pressure (UP), and upsetting time. The RSM results showed that the

quadratic polynomial model depicted the interconnection between individual element and response. For optimizing the

process parameters, ANN analysis was used, and the optimal configuration of the ANN model was found to be 4–9–2. For

modeling aspect, a requisite trained multilayer perceptron neural network was rooted, and a quick propagation training

algorithm was used to train ANN. The purpose of optimization was to decide the maximum tensile strength and minimum

burn-off length of the welded joint which was done by varying the friction welding process variables. The order of

importance of input parameters for friction welding of Incoloy 800 H was HP[UP[N[BOL. After predicting the

model using RSM and ANN, a comparison was made for predicting the effectiveness of two methodologies. By analyzing

the results, it was observed that as compared to RSM, ANN model was more specific.
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1 Introduction

Incoloy 800 H is a nickel–iron–chromium alloy with high

rupture strength and good resistance to high-temperature

corrosion. Incoloy 800 H shows an excellent protection

from oxidation and carburization at high temperature be-

cause of Cr2O3 scale formation [1]. Carbon content in

Incoloy 800 H is more than the one in Incoloy 800 HT and

Incoloy 800. This extra carbon content controls the grain

size, and it in turn optimizes the rupture properties. Due to

its excellent property at high temperature, Incoloy 800 H

finds application in heat-exchanging equipments, chemical-

processing units, pressure vessels, hot ducts, fuel cladding,

and super-heaters and re-heaters in power plants [2, 3].

Heterogeneous metals are needed to be joined for various

applications. In all these applications, usage of conven-

tional process for welding is not feasible due to the de-

velopment of low-melting intermetallics and its brittle

nature [4]. As no melting occurs, the friction welding can

be regarded as a forging technique. The friction welding is

applied in the welding of various shaft and tubular parts in

industries such as automotive, aircraft, farm equipment,

and petroleum and natural gas. Melting temperature of base

metal is higher than the temperature generated in friction
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welding. For making good-quality joint, the process pa-

rameters play a vital role [5]. To obtain desired result, a

number of experiments are required for proper selection of

input parameters, which are very tiresome and time taking.

This problem can be overcome by a mathematical model

which provides interconnection between various input and

output variables. RSM and ANN techniques were used in

this work for performing the above function. We are going

for nonlinear analysis, and RSM and ANN gave very ac-

curate result for that. RSM gave more accurate result as

compared to other technique when the function was

quadratic, whereas ANN had universal approximation ca-

pability, i.e., it could be used for approximating all type of

nonlinear problems.

RSM was applied for optimizing response which was

the function of some independent variable. Box and Wilson

suggested a second-degree polynomial model for obtaining

optimal response. This model was used because it was easy

to assess and implement even when not much information

was available about the process. Artificial neural network

are computational methodologies used to estimate function

that depends on large number of inputs inspired by biolo-

gical neurons network. This model contains layer of simple

computing nodes that work as nonlinear summing devices.

Weighted connection line interconnects these nodes, and

during a training process, the weights are adjusted as data

and are presented to the network. Udaykumar et al. [6] used

the friction welding for joining duplex stainless steel and

analyzed the microstructure and mechanical properties of

the weld. They concluded that the austenite was present in

the ferrite matrix, and they also mentioned that the hard-

ness of weld was more as compared to base metal.

Elatharasan et al. [7] used RSM method for optimization of

FSW AA 6061-T6 alloy. They took revolution per minute

(RPM), transverse speed, and axial force as process pa-

rameters and tensile strength (TS) and yield strength (YS)

as response. They concluded that with the increase in RPM

and transverse speed, TS and YS increased at first and then

decreased after achieving maximum value. Ghetiya et al.

[8] used ANN for obtaining maximum tensile strength after

FSW of aluminum (Al) alloy. The input parameters con-

sidered were shoulder diameter, tool RPM, and welding

speed. Mourabet et al. [9] did a comparison between RSM

and ANN method in predicting TS of FSW AA7039 Al

alloy. They concluded that ANN was more specific as

compared to RSM. Li et al. [10] investigated the electro-

chemical degradation of BPB dye with BDD anode under a

range of major operating parameters. Nasr et al. [11] pre-

dicted the groundwater salinity (i.e., in terms of TDS)

based on alkalinity (i.e., expressed by pH) and proposed the

ANN structure for that. Lakshminarayanan et al. [12]

compared RSM and ANN method for predicting the tensile

strength of friction-stir-welded AA7039 aluminum alloy

joints. The process parameters used were welding speed,

rotational speed, and axial force. The experiments were

conducted based on three-factor, three-level, and central

composite face-centered design with full replications

technique, and the mathematical model was developed.

The results obtained through response surface methodology

were compared with those obtained through artificial neu-

ral networks. They concluded that ANN model was much

more robust and accurate in estimating the values of the

tensile strength as compared to response surface model.

Betiku et al. [13] investigated the potential of shea butter

oil (SBO) as feedstock for synthesis of biodiesel. Due to

high free fatty acid (FFA) of SBO used, response surface

methodology (RSM) was employed to model and optimize

the pretreatment step, while its conversion to biodiesel was

modeled and optimized using RSM and artificial neural

network (ANN). Coefficient of determination and absolute

average deviation were used by them for comparing the

two methods. In this work, the friction welding of Incoloy

800 HT material was performed, and the responses con-

sidered were the tensile strength and burn-off length. The

reason for choosing these two as responses instead of the

yield strength or deformation was that Incoloy 800 HT was

used for high-temperature applications such as heat ex-

changer and super-heater. In these areas, mechanical

loadings were not that much important, and so the main

consideration was the ability of material to withstand high

temperature. That is why we had concentrated more on the

tensile strength and burn-off length instead of the yield

strength or deformation.

2 Experimental

For neatness of the sample, at first, each surface was

scrubbed with acetone. On the basis of machine capacity,

the parameters for welding were chosen. Friction welding

parameters used in this work were heating pressure

(45–125 MPa), upsetting pressure (140–200 MPa), upset-

ting time (5–9 s), and heating time (4–8 s). The rotational

speed was kept constant to 1500 rpm. A parameter was

changed in each investigation from low to high level. The

specimens were polished by SiC abrasive paper. The size

of the grit used for polishing the specimen was in the range

of 180–1200. Then, 3-lm diamond pastes were used for

light polishing. For neatness, the sample was washed,

cleansed by acetone, and after that it was allowed to dry.

Electrolytic etching was performed with 10% oxalic acid at

9 V for a period of 30 s as per ASTM E3-11. Universal

testing machine with capacity of 40 ton was used for

evaluating the mechanical characteristics of the friction

weld. Before testing the sample, the flash was machined

from weld, and the size of base material used for testing
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was of gauge length 120 mm and diameter 9 mm. For each

welding experiment, three measurements were taken to

calculate the average data.

CCD matrix was used for designing the experiment. It

comprised of 30 sets of coded condition as shown in Figs. 1

and 2 [9]. It consisted of 24 designs, six center points, and

eight star points. Center point was constructed by the weld-

ing parameters of average level (0), and star point was con-

structed by the welding parameters of highest (?1) and

lowest (-1) level. With the help of 30 experimental runs,

quadratic, continuous, and interactive effects of the friction

welding parameters could be estimated. The experiment

design matrix and output responses are presented in Table 1.

3 Methodology

3.1 Response Surface Methodology

Central composite design (CCD) helps in the efficient

construction of second-order model. For assessing tuning

parameters, CCD was built by additional axial and center

points. Three-design-variable CCD is shown in Fig. 3. The

design consisted of 2 N factorial points, 2 N axial points,

and one central point as in Fig. 3. For the purpose of re-

ducing the experiments, CCD was preferred over full fac-

torial design. Time consumed for doing the experiment

depended upon the number of design variable selected.

Design of experiment (DoE) was used for selecting the

response which was to be assessed. Nearly every criterion

was associated with mathematical modeling for achieving

optimality in design. The mathematical model used was

polynomial with indefinite structure, and so for each

problem, the corresponding experiment was needed to be

designed. All the experimental inputs were entered, and

using a single block process was continued. The standard

column was arranged in an ascending order, and select type

column was arranged in space-point-type configuration for

the further requirements. After completion of all the se-

quential operations, the response pertaining to each and

every experimental input was entered so as to analyze the

result in a proper manner. This was to be carried out

properly as all the further processes were based on the

responses entered. Analysis of the responses was done in-

dividually. Through transform option, design expert pro-

vided a complete array of response conversions. At this

point, it fitted the linear, two-factor interaction (2FI),

quadratic, and cubic polynomials to the response. For

producing analysis of variance, ANOVA tab was selected.

Tables 2 and 3 show the ANOVA for the tensile strength

and burn-off length.

Central composite design was adopted in RSM for op-

timizing process parameters using the given inputs ob-

tained from the experiments that were carried out on the

Incoloy 800 H in working condition. Thus, the process was

optimized, and the optimized value for the process was

found out along with the maximization of the tensile

strength and minimization of burn-off length.

3.2 Artificial Neural Network

Learning of the data involves proper settlements of the

learning configurations involving the following adjust-

ments: (1) selection of learning algorithm, (2) selection of

connection type, (3) proper setting up of a learning pa-

rameters viz. learning rate, momentum and screen update

rate, (4) selection of stopping criteria, and (5) in the final

stage of learning algorithm, normalization of values be-

tween -1 and ?1.

Graphical variations of the responses on the basis of

learning algorithms are shown in Fig. 4. The basic idea ofFig. 1 Welding parameters used from experiment No. 1 to No. 30

Fig. 2 Values of the tensile strength and burn-off length from

experiment No. 1 to No. 30
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the ANN methodology was the optimization of the process

parameters used in friction welding using the given inputs

obtained from the experiments carried out on the Incoloy

800 H in a working condition. Thus, the process was op-

timized, and the optimized value for the process was found

out along with the maximization of the tensile strength and

the minimization of the burn-off length.

4 Results and Discussion

4.1 Response Surface Method

RSM was employed to develop the method for optimizing

and predicting the tensile strength and burn-off length in

friction welding of Incoloy 800 H under central compositeFig. 3 Central composite design

Table 1 Experimental design matrix and output responses

No. Heating pressure

(MPa)

Heating time

(s)

Upsetting pressure

(MPa)

Upsetting time

(s)

Tensile strength

(MPa)

Burn-off length

(mm)

1 75 5 150 6 727.53 6.4

2 105 5 150 6 703.78 5.2

3 75 7 150 6 753.60 4.5

4 105 7 150 6 743.49 6.2

5 75 5 180 6 768.08 4.7

6 105 5 180 6 796.08 5.8

7 75 7 180 6 788.82 5.5

8 105 7 180 6 748.20 6.7

9 75 5 150 8 766.58 3.5

10 105 5 150 8 746.10 4.3

11 75 7 150 8 814.70 3.9

12 105 7 150 8 703.14 7.3

13 75 5 180 8 785.25 3.2

14 105 5 180 8 782.44 5.2

15 75 7 180 8 771.59 5.5

16 105 7 180 8 754.15 6.6

17 60 6 165 7 783.40 2.9

18 120 6 165 7 759.52 6.8

19 90 4 165 7 791.03 3.9

20 90 8 165 7 750.84 6.3

21 90 6 135 7 746.27 3.5

22 90 6 195 7 789.38 6.1

23 90 6 165 5 753.09 4.5

24 90 6 165 9 765.55 5

25 90 6 165 7 745.39 5.4

26 90 6 165 7 748.4 5.6

27 90 6 165 7 743.2 5.4

28 90 6 165 7 748.6 5.5

29 90 6 165 7 745.1 5.3

30 90 6 165 7 747.7 5.6

K. Anand et al.: Acta Metall. Sin. (Engl. Lett.), 2015, 28(7), 892–902 895

123



design of experiment. The equation below explains the

relationship of the four independent variables, i.e., HP, HT,

UP, and UT and output variables, i.e., tensile strength (TS)

and burn-off length (BOL) of welded joints. Heating

pressure had maximum effect on the tensile strength

because it was responsible for the amount of heat generated

at the joining surfaces, i.e., if less heating pressure was

applied, then adhesion would not be proper which would

further decrease the tensile strength, and similarly if heat-

ing pressure was more, then sufficient adhesion could be

Table 2 ANOVA for tensile strength (response 1)

Source S.S DOF M.S F Value p value

Model 14,841.44 14 1060.10 4.39 0.0037 Significant

A-heating pressure 2532.38 1 2532.38 10.48 0.0055

B-heating time 256.96 1 256.96 1.06 0.3188

C-upsetting pressure 4317.75 1 4317.75 17.86 0.0007

D-upsetting time 592.92 1 592.92 2.45 0.1381

AB 1613.83 1 1613.83 6.68 0.0208

AC 1106.06 1 1106.06 4.58 0.0493

AD 699.73 1 699.73 2.89 0.1095

BC 1225.53 1 1225.53 5.07 0.0398

BD 355.61 1 355.61 1.47 0.2439

CD 754.46 1 754.46 3.12 0.0976

A2 676.74 1 676.74 2.80 0.1150

B2 641.45 1 641.45 2.65 0.1241

C2 451.77 1 451.77 1.87 0.1917

D2 102.40 1 102.40 0.42 0.5250

Residual 3625.58 15 241.71

Lack of fit 3602.10 10 360.21 76.71 \0.0001 Significant

Pure error 23.48 5 4.70

Cor total 18,467.02 29

Table 3 ANOVA for burn-off length (response 2)

Source S.S DOF M.S F value p value

Model 29.41 14 2.10 4.04 0.0055 Significant

A-heating pressure 13.35 1 13.35 25.69 0.0001

B-heating time 6.72 1 6.72 12.93 0.0026

C-upsetting pressure 2.10 1 2.10 4.04 0.0627

D-upsetting time 0.84 1 0.84 1.62 0.2220

AB 1.38 1 1.38 2.66 0.1239

AC 0.031 1 0.031 0.059 0.8115

AD 1.27 1 1.27 2.44 0.1394

BC 0.53 1 0.53 1.01 0.3305

BD 2.48 1 2.48 4.77 0.0452

CD 0.076 1 0.076 0.15 0.7082

A2 0.21 1 0.21 0.39 0.5393

B2 0.016 1 0.016 0.030 0.8641

C2 0.27 1 0.27 0.52 0.4832

D2 0.34 1 0.34 0.66 0.4307

Residual 7.79 15 0.52

Lack of fit 7.72 10 0.77 52.64 0.0002 Significant

Pure error 0.073 5 0.015

Cor total 37.21 29
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obtained which would increase the tensile strength. From

Fig. 5, we can conclude that predicted values of both the

tensile strength and the burn-off length were in good

agreement with observed values. By going through the

contour plots (Figs. 6, 7), the highest value of TS for the

friction-welded Incoloy 800 H was 788.975 MPa, and the

minimum value of burn-off length was 3.442 mm. From

Fig. 7, it was clear that with the increase in upsetting time,

tensile strength first decreased and after that it increased to

peak value and afterward it again started declining,

whereas with the rise in heating time, tensile strength went

toward maxima and then it started to decline. This hap-

pened because sufficient heat could not be generated with

shorter heating time, whereas long heating time resulted in

the formation of intermetallics layer. High heating pressure

and moderate upsetting pressure generated sufficient heat

as a result of which strong adhesive bonding took place

between faying surfaces. Upsetting time did not play major

role in deciding burn-off length, whereas with an increase

in heating pressure and heating time, burn-off length in-

creased. The reason for the increase in burn-off length was

the ease of material to be deformed because of the

generation of high temperature. Upsetting pressure also

affected burn-off length, and this occurred due to the

forging action taking place in upsetting stage. The optimal

values of various process parameters obtained by RSM

method were heating pressure 75 MPa, heating time 5 s,

upsetting pressure 180 MPa, and upsetting time 8 s. The

equation obtained through design expert 9 for RSM method

was given below for both tensile strength and burn-off

length. The equation obtained was a quadratic one.

Burn-off length; L ¼33:53333þ 0:16194 � HP
þ 5:69583 � HTþ 0:042778 � UP
þ 3:43333 � UTþ 0:019583 � HP
� HTþ 1:94444E � 004ð Þ � HP � UP
þ 0:018750 � HP � UT
þ 0:012083 � HT � UPþ 0:39375

� HT � UT þ 4:58333E � 003ð Þ
� UP � UTþ �3:84259E � 003ð Þ
� UP � UTþ �4:39815E � 004ð Þ
� HP � HP� 0:023958 � HT � HT
þ �4:39815E � 004ð Þ � UP � UP
� 0:1146 � UT � UT:

Fig. 4 Variation of responses on the basis of learning algorithm: a tensile strength, b burn-off length

Fig. 5 Variation between the predicted and the actual values: a tensile strength, b burn-off length
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Fig. 6 Variation of response taking two parameters into account: a burn-off length, b tensile strength

Fig. 7 Graphical variation of response with UT a, UP b, HT c, and HP d
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TS ¼ 189:05708� 3:65239 � HPþ 128:22667 � HT
� 1:67864 � UP þ 121:42042 � UT� 0:66954 � HP � HT
þ 0:036953 � HP � UP� 0:44088 � HP � UT� 0:58346

� HT � UP� 4:71438 � HT � UT� 0:45779 � UP � UT
þ 0:022076 � HT � HTþ 4:83594 � HT � HT
þ 0:0118037 � UP � UPþ 1:93219 � UT � UT:

The prediction of the optimized result was given through

the numerical solution as in Table 3. Figure 5 shows the

variation between predicted value and actual value, and it

can be seen from Fig. 5 that the variation is within the

limit. Figure 8 shows overlay plot for tensile strength and

burn-off length. Overlay plot was used for finding the area

(range of heating time and heating pressure) which gave

the best possible value for each of the responses (i.e., the

tensile strength and burn-off length). The value for the

tensile strength was 788.975, and for burn-off length was

3.44167. Figure 6 shows the effect of heating pressure and

heating time on the response, thus providing the optimal

values of both the responses viz. the tensile strength and

burn-off length.

4.2 Artificial Neural Network

The RMSE values were normalized and then graphically

shown (Fig. 9). The value of N was found which gave the

lowest root-mean-square value. It turned out to 9 for the

given case. Importance of parameters chart (Fig. 10) shows

the weight age each input parameter had on the outputs

namely, tensile strength. The optimal values of various

process parameters obtained by ANN method were heating

pressure 96 MPa, heating time 6.5 s, upsetting pressure

162 MPa, and upsetting time 7.1 s. The optimal values of

Fig. 8 Graphical solution E with number of neurons

Fig. 9 Variation of RMSE with number of neurons

Fig. 10 Importance of parameters

Fig. 11 Comparison of RSM and ANN and actual result: a tensile strength, b burn-off length

K. Anand et al.: Acta Metall. Sin. (Engl. Lett.), 2015, 28(7), 892–902 899

123



Table 4 Numerical solution

Factor Name Level Low level High level Std. Dev. Coding

A Heating pressure 75 75 105 0 Actual

B Heating time 5 5 7 0 Actual

C Upsetting pressure 180 150 180 0 Actual

D Upsetting time 8 6 8 0 Actual

Response Predicted

mean

Predicted

median

Observed Std. Dev. SE Mean CI for 95%

CI low

Mean 95%

CI high

99% of

95% TI low

Population

95% TI low

Tensile strength 788.975 788.975 – 15.5469 11.8741 763.665 814.284 710.6 867.349

Burn-off length 3.44167 3.44167 – 0.720841 0.550551 2.26819 4.61514 -0.19221 7.07554

Table 5 Training and testing of observed and calculated data values

HP (MPa) HT (s) UP (MPa) UT (s) Obs. TS (MPa) Cal. TS (MPa) Error TS Obs. BOL (mm) Cal. BOL (mm) Error BOL

Training data

105 5 150 6 703.78 705.2276 -1.4476 5.2 5.199837 0.000163

75 7 150 6 753.6 753.70141 -0.10141 4.5 4.4997583 0.000242

105 7 150 6 743.49 743.44485 0.04515 6.2 6.1969736 0.003026

75 5 180 6 768.08 768.09791 -0.01791 4.7 4.7001832 -0.00018

75 7 180 6 788.82 788.89611 -0.07611 5.5 5.4967858 0.003214

105 7 180 6 748.2 748.14881 0.05119 6.7 6.7043847 -0.00438

75 5 150 8 766.58 766.53417 0.04583 3.5 3.4969953 0.003005

105 5 150 8 746.1 746.03261 0.06739 4.3 4.2974884 0.002512

105 7 150 8 703.14 704.27852 -1.13852 7.3 7.2623413 0.037659

75 5 180 8 785.25 785.22967 0.02033 3.2 3.1993729 0.000627

105 5 180 8 782.44 782.47494 -0.03494 5.2 5.2018448 -0.00184

75 7 180 8 771.59 771.57432 0.01568 5.5 5.4986131 0.001387

60 6 165 7 783.4 783.37469 0.02531 2.9 2.972253 -0.07225

120 6 165 7 759.52 759.49861 0.02139 6.8 6.8055277 -0.00553

90 4 165 7 791.03 791.03473 -0.00473 3.9 3.8972178 0.002782

90 8 165 7 750.84 750.83974 0.00026 6.3 6.3025748 -0.00257

90 6 195 7 789.38 789.41401 -0.03401 6.1 6.0990602 0.00094

90 6 165 5 753.09 753.06673 0.02327 4.5 4.4996877 0.000312

90 6 165 9 765.55 765.59917 -0.04917 5 5.0002768 -0.00028

90 6 165 7 745.39 745.99812 -0.60812 5.4 5.4405624 -0.04056

90 6 165 7 743.2 745.99812 -2.79812 5.4 5.4405624 -0.04056

90 6 165 7 748.6 745.99812 2.60188 5.5 5.4405624 0.059438

90 6 165 7 745.1 745.99812 -0.89812 5.3 5.4405624 -0.14056

90 6 165 7 747.7 745.99812 1.70188 5.6 5.4405624 0.159438

Testing data

75 5 150 6 727.53 731.1514 -3.6214 6.4 3.4094221 2.990578

105 5 180 6 796.08 791.12307 4.95693 5.8 6.4807053 -0.68071

75 7 150 8 814.7 815.39644 -0.69644 3.9 5.4126274 -1.51263

105 7 180 8 754.15 756.03171 -1.88171 6.6 6.9428238 -0.34282

90 6 135 7 746.27 748.47371 -2.20371 3.5 5.6243483 -2.12435

90 6 165 7 748.4 745.99812 2.40188 5.6 5.4405624 0.159438
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the responses, i.e., tensile strength and burn-off length were

811.8774 MPa and 3.90442 mm, respectively.

4.3 Comparison of RSM and ANN Models

In this work, a comparison of the capabilities of both the

techniques (ANN and RSM) was made, and the estimation

was examined. To accomplish this task, ANN and RSM

techniques were used for predicting responses at ex-

perimental points (central composite design matrix). Then,

the actual values were compared with anticipated values

gathered from RSM and ANN. For comparison of ANN

and RSM, root-mean-squared error (RMSE) and absolute

average deviation (AAD) were used. The actual and pre-

dicted values for the central composite design matrix are

presented in Fig. 11. The root-mean-squared error for de-

sign matrix by RSM and ANN for the tensile strength was

2.167 and 0.98031, respectively, and for the case of burn-

off length, it was 0.122 and 0.05054, respectively. Fig-

ure 11 shows the comparison between actual and predicted

values (RSM and ANN) of tensile strength and burn-off

length.

4.4 Confirmation Test

By performing all the required operations, the optimal

solution for that particular model was obtained. Further the

process was confirmed for its optimal solutions with the

help of the confirmation test. After finding the optimum

settings based on the used models, the next step was to

Table 6 CCD matrix of four variables and the experimentally obtained tensile strength and burn-off length by RSM model predicted and ANN

model predicted

HP

(MPa)

HT

(s)

UP

(MPa)

UT

(s)

Actual tensile

strength

(MPa)

Actual

burn-off

length (mm)

Predicted tensile strength (MPa) Predicted burn-off length (mm)

RSM ANN RSM ANN

105 7 150 8 703.14 7.3 726.1391667 704.27852 6.6125 7.2623413

105 5 150 6 703.78 5.2 724.8175 705.2276 5.279166667 5.199837

75 5 150 6 727.53 6.4 728.6779167 731.1514 5.025 3.4094221

90 6 165 7 743.2 5.4 746.3983333 745.99812 5.466666667 5.4405624

105 7 150 6 743.49 6.2 725.1195833 743.44485 5.775 6.1969736

90 6 165 7 745.1 5.3 746.3983333 745.99812 5.466666667 5.4405624

90 6 165 7 745.39 5.4 746.3983333 745.99812 5.466666667 5.4405624

105 5 150 8 746.1 4.3 744.6945833 746.03261 4.541666667 4.2974884

90 6 135 7 746.27 3.5 735.80625 748.47371 4.479166667 5.6243483

90 6 165 7 747.7 5.6 746.3983333 745.99812 5.466666667 5.4405624

105 7 180 6 748.2 6.7 764.8041667 748.14881 6.679166667 6.7043847

90 6 165 7 748.4 5.6 746.3983333 745.99812 5.466666667 5.4405624

90 6 165 7 748.6 5.5 746.3983333 745.99812 5.466666667 5.4405624

90 6 165 7 749.3 5.5 759.1979167 750.83974 6.429166667 6.3025748

90 8 165 7 750.84 6.3 744.18625 753.06673 5.395833333 4.4996877

90 6 165 5 753.09 4.5 769.1525 753.70141 4.345833333 4.4997583

75 7 150 6 753.6 4.5 738.35625 756.03171 7.791666667 6.9428238

105 7 180 8 754.15 6.6 745.7229167 759.49861 6.6125 6.8055277

120 6 165 7 759.52 6.8 764.0679167 765.59917 4.645833333 5.0002768

90 6 165 9 765.55 5 775.0075 766.53417 3.1625 3.4969953

75 5 150 8 766.58 3.5 770.1125 768.09791 5.029166667 4.7001832

75 5 180 6 768.08 4.7 775.5841667 771.57432 5.0625 5.4986131

75 7 180 8 771.59 5.5 791.9191667 782.47494 4.995833333 5.2018448

105 5 180 8 782.44 5.2 786.81125 783.37469 3.629166667 2.972253

60 6 165 7 783.4 2.9 788.9745833 785.22967 3.441666667 3.1993729

75 5 180 8 785.25 3.2 775.5795833 788.89611 5.075 5.4967858

75 7 180 6 788.82 5.5 789.4579167 789.41401 5.6625 6.0990602

90 6 195 7 789.38 6.1 772.28625 791.03473 4.3125 3.8972178

90 4 165 7 791.03 3.9 799.5095833 791.12307 5.458333333 6.4807053

105 5 180 6 796.08 5.8 796.6245833 815.39644 4.058333333 5.4126274
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conform that they actually work. The confirmation ex-

periment with triplicate set was conducted at the above

specified optimum process conditions predicted by the

model. In case of RSM models, the prediction interval

narrowed down as the value of N (the number of confir-

matory tests) increased.

The experiment was repeated in triplicate using the

predicted optimal conditions determined by artificial

neural network method. Predicted values and the values

obtained by experiment were close enough; hence, the

model was validated (Table 4). Thus, the model was

useful to predict the optimal solution of the process

(Tables 5, 6).

5 Conclusions

This work describes the use of central composite design

matrix for conducting experiments on the friction weld-

ing of Incoloy 800 H. Two models were developed for

predicting the responses viz. the tensile strength and

burn-off length using RSM and ANN. First, RSM was

applied for optimizing and predicting the responses.

Then, the independent variables, namely HP, HT, UP,

and UT, were fed as inputs to an ANN, while the output

of the network was the tensile strength and burn-off

length. Quick propagation algorithm was used for making

different combination of input–output pattern which

further trained a multilayer feed-forward network. At last

for analyzing which method was more specific, the re-

sults obtained by RSM and ANN model were compared.

Comparing prediction capabilities of both methodologies,

we inferred that ANN gave solutions closer to the actual

value as compared to RSM.
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