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Abstract
A five-element medium-entropy filler alloy with composition of Ti-(18 ~ 24)Mn-(12 ~ 18)Fe-(3 ~ 8)Ni-(3 ~ 8)Zr (wt.%) was 
proposed for vacuum brazing of TiAl-based alloy. The filler alloy was mainly composed of Ti-based solid solution and 
Ti-(Fe, Mn) compound dissolved with elements of Ni and Zr. The filler alloy ingot was ground into powder and then the 
filler powder was preset into the V-shaped groove butt joint with a gap of 50 μm. The Ti-Mn-Fe-Ni-Zr brazing alloy showed 
the liquidus temperature of 1060.1 °C, and also presented excellent wettability on TiAl substrate at 1110 °C for 10 min. The 
brazed joint mainly consisted of γ-TiAl, α2-Ti3Al, and residual brazing filler reaction phase. The brazing condition of 1210 
°C/45 min exhibited the maximum joint thickness of 308 μm and the maximum area percentage of γ-TiAl phase of 33.77%, 
with almost elimination of residual brazing filler reaction phase within the joint, and meanwhile offered the maximum room-
temperature tensile strength of 418 MPa, 70.85% of the base alloy. The joint fracture showed a mixed mode of intergranular 
and transgranular fracture.
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1 Introduction

For the purpose of energy savings and emission reductions, 
developing high-performance materials in terms of thermo-
mechanical properties is needed for air-transport industry 

[1]. TiAl-based alloys are considered to be really attractive 
for high-temperature applications owing to their low 
density, high specific modulus, and mechanical strength 
[2], acceptable creep behavior and good oxidation resistance 
[3]. From the perspective of weight reduction, TiAl-based 
alloys are superior to Ni-based superalloys [4]. However, 
one challenge is that TiAl-based alloys are subjected to the 
poor weldability and machinability, which is not beneficial 
to practical application [5].

Appropriate joining technologies for TiAl-based alloys 
are urgently required to expand their applications, including 
the joining of different TiAl components and the repair of 
TiAl castings. Brazing technique has been proved effective 
as a unique joining process for releasing the residual stress 
and avoiding cracks to a certain extent [6]. Recently, 
progress in brazing process such as friction stir vibration 
brazing (FSVB) provides a new insight to enhance the 
metallurgy reaction between the brazing seam and the base 
metal [7]. In general, a sound brazing joint could be achieved 
by design of the filler alloy with suitable composition [8], 
optimizing brazing parameter [9] as well as controlling 
brazing process [10].

Although Ag-based brazing filler alloy could 
braze TiAl alloy successfully, the joint suffers from 
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insufficient bonding strength. For instance, within TiAl 
intermetallic joints brazed with BAg-8 [11], the formation 
and excessive growth of brittle Al-Cu-Ti reaction layer 
would deteriorate the joint properties, especially at high 
temperatures. Compared with Ag-based brazing alloy, 
Ti-based brazing alloy used to join TiAl-based alloy could 
represent high bonding strength. For example, the joint 
brazed by Ti-Zr-Cu-Ni-Co [12] filler showed a relatively 
high tensile strength at room temperature, which was 
up to 316 MPa. But brittle phases at the joint interface 
suppressed the improvement of joint strength.

For solving the joining challenges of the advanced 
TiAl material, it is of great importance to search for new 
joining filler alloys [13]. In our previous studies, brazing 
filler alloys of Ti-Zr-Fe [14, 15], Ti-Ni-Nb-Zr [16, 17], 
and Ti-Zr-Cu-Ni [18] were proposed for TiAl brazing. 
However, the concentration of Zr element within the 
brazing fillers should be strictly limited to 8 ~ 11 wt.% 
[19] for sufficient diffusion. Differently, Fe element was 
demonstrated not only possessing excellent diffusion rate 
but also accelerating self-diffusion rate in α-Ti [20]. More 
importantly, certain amounts of Fe [21] and Mn [22] were 
added in TiAl alloy for solid solution strengthening, based 
on the Ti-Mn-Fe ternary system [23]. To decrease the 
melting point of the filler alloy, another Ni-Zr binary 
alloy with a certain percentage was added based on 
Ni-Zr [24] binary eutectic compositions. With the design 
concept of multi-principal element alloys (MPEAs) [25, 
26], in this paper, a 5-element medium-entropy brazing 
filler alloy with Ti-Mn-Fe-Ni-Zr composition system was 
thus designed for TiAl joining.

The joining of TiAl alloy was attempted by using the 
newly developed 5-element medium-entropy brazing filler 
alloy, and the aim of this study was to verify the feasibility 
of using the new system filler alloy to achieve high joint 
strength. The detailed compositions and phases across 
the brazed joint were analyzed. Additionally, interfacial 
microstructures and mechanical properties of the brazed 
joint were investigated. Room-temperature tensile test 
was performed to evaluate the joint performance, and the 
joining mechanism was discussed.

2  Experimental procedures

The nominal composition of TiAl intermetallic was Ti-
46Al-(3 ~ 4)Nb-(2 ~ 3)(Cr, Ta, B) (at.%), which was fabricated 
by vacuum arc remelting and thermo-mechanical treatment. 
The Ti-(18 ~ 24)Mn-(12 ~ 18)Fe-(3 ~ 8)Ni-(3 ~ 8)Zr (wt.%) 
filler alloy ingot was fabricated by arc melting technique in 
high purity argon gas atmosphere. The cast ingot was broken 
down into pieces and subsequently ground into powder. Then, 
the particles were preset into the 90° V-shaped groove butt joint 
with a narrow assembly gap of 50 μm, as shown in Fig. 1a.

The TiAl alloy was cut into specimens with the size of 
9 mm × 11 mm × 18 mm. Prior to brazing experiment, the 
sample surfaces to be joined were polished by SiC grit paper 
and then ultrasonically cleaned for 15 min in ethyl alcohol 
solutions. The brazing experiments were carried out in a 
vacuum brazing furnace, with a high vacuum of 5 ×  10−3 Pa 
to 9 ×  10−3 Pa. The brazing temperature varied from 1140 to 
1210 °C, which was higher than the liquidus temperature of 
filler alloy. On this basis, not only the weak brazing parame-
ters of 1140 °C/20 min but also the strong brazing parameters 
such as 1180 °C/75 min or 1210 °C/45 min were chosen. 
Meanwhile, three different dwell times of 20 min, 45 min, 
and 75 min were selected. Based on the geometric dimen-
sions for plates in Fig. 1b, joint specimens with a joining area 
of (1.0 ~ 1.5) mm × 2.5 mm were prepared for tensile test.

Differential scanning calorimetry (DSC) with a heat rate of 10 
°C/min was performed to determine the thermal behavior of Ti-
Mn-Fe-Ni-Zr system brazing alloy. The average contact angle on 
the TiAl alloy after heating at 1110 °C for 10 min in vacuum was 
calculated from the four measured value of the sample cross-sec-
tion in vertical direction. Scanning electron microscope (SEM) 
equipped with an energy-dispersive X-ray spectrometer (EDS) 
attachment was used to observe joint microstructure. By means 
of phase extraction software, area percentage of γ-TiAl phases 
within the joint was measured. The average value was calculated 
by at least three different zones from the joint cross-section. Joint 
tensile strength was measured by a universal testing machine with 
a loading speed of 0.5 mm/min at room temperature, and the 
reported tensile strength was the average value of at least three 
measurements for the same brazing condition.

Fig. 1  Schematic of assembly 
specimens (a) and geometric 
dimensions (b)
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3  Results and discussion

3.1  Characteristics of Ti‑Mn‑Fe‑Ni‑Zr 
medium‑entropy filler alloy

Figure 2a shows that the cast filler ingot and Fig. 2b shows 
the backscattered electron image of the 5-element medium-
entropy filler alloy, and three main phases could be observed. 
Based on the EDS analysis results in Table 1, the filler was 
mainly composed of Ti-(Fe, Mn) compound dissolved with 
2 ~ 4 at.% Ni and Zr (microzone “1”), and Ti-(Fe, Mn) com-
pound and Ti-rich phases dissolved with 2 ~ 8 at.% Ni and Zr 
(microzone “2” and “3”), as well as Ti-rich phases dissolved 
with Mn, Fe, Ni, and Zr (microzone “4” and “5”) (Table 2).

The Ti-Mn-Fe alloy system exhibits good compatibility 
within the three elements and there is a eutectic composi-
tion of Ti-(19 ~ 25)Mn-(14 ~ 20)Fe (wt.%), with the liquidus 
temperature of about 1139°C [27] in this ternary alloy sys-
tem. In the meantime, Ni-Zr binary eutectic composition 

of Ni-46.9Zr (wt.%) was also added as an effective melting 
point depressant with the liquidus temperature of 1061°C 
[24]. On this basis, it can be deduced that there might exist a 
5-element eutectic composition of Ti-(18 ~ 24)Mn-(12 ~ 18)
Fe-(3 ~ 8)Ni-(3 ~ 8)Zr (wt.%) with lower melting point.

According to DSC analysis results in Fig. 2c, the melting 
range of the filler alloy was 1005.3 ~ 1060.1 °C. Due to the 
fact that the liquidus temperature is lower than some reported 
Ti-based brazing filler alloy, such as Ti-Ni-Nb [28, 29] eutectic 
braze alloy and Ti-Fe-Mn [27] eutectic braze alloy, the brazing 
experiment could be performed at a lower brazing temperature, 
which might be beneficial to control the interface reaction [30].

Figure 3 presents the wettability experiment results of the 
novel filler on TiAl alloy at 1110 °C for 10 min. As shown 
in Fig. 3, the filler melted and reacted with the base metal. 
The contact angle on the TiAl alloy was measured as 30°. 
The maximum reaction layer thickness of the Ti-Mn-Fe-Ni-
Zr braze alloy in the TiAl alloy was about 95 ~ 105 μm in 
Fig. 3b-c, which was close to that of the Fe-Ni-Co-Cr-Si-B 
[31] filler alloy with 110 μm at 1180 °C for 10 min. This 
illustrated that a stronger reaction and sufficient spreading 
behavior of filler still occurred with the TiAl substrate.

From the thermodynamic point of view, the empirical 
parameters, including four main parameters, were cal-
culated for the Ti-Mn-Fe-Ni-Zr braze alloy to predict the 
phase formation in high-entropy alloys (HEAs) [32–34], as 
shown in Table 2. Among the four parameters, the mixing 

Fig. 2  Cast ingot (a), backscattered electron image (a) and DSC results (b) of Ti-Mn-Fe-Ni-Zr medium-entropy filler alloy

Table 1  EDS analysis results 
for microzones marked in Fig. 2

Microzones Element (at.%) Deduced phases

Ti Mn Fe Ni Zr

1 47.61 29.47 16.70 2.88 3.34 Ti-(Fe, Mn) compound dissolved with Ni and Zr
2 56.48 23.67 14.99 2.53 2.33 Ti-(Fe, Mn) compound + Ti-rich phases
3 57.28 19.16 12.94 5.47 5.15 Ti-(Fe, Mn) compound + Ti-rich phases
4 61.64 13.54 15.21 7.17 2.44 Ti-rich phases dissolved with Mn, Fe, Ni and Zr
5 71.32 14.07 10.33 2.86 1.42 Ti-rich phases dissolved with Mn, Fe, Ni and Zr

Table 2  Calculation results of empirical parameters for the Ti-Mn-
Fe-Ni-Zr braze alloy

Alloy T
m
/K ΔH

mix
/

kJ·mol−1
ΔS

mix

/J·K−1·mol−1
Ω � %

Ti-Mn-Fe-
Ni-Zr

1834  − 17.55 9.42 0.98 6.72
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entropy ( ΔS
mix

 ) of 9.42 J·K−1·mol−1, the mixing enthalpy 
( ΔH

mix
 ) of − 17.55 kJ·mol−1, the parameter ( Ω ) of 0.98, 

and the atomic size difference ( � ) of 6.72% were pre-
sented. Then, due to the ΔS

mix
 being between 1.0 R and 1.5 

R (8.314 ~ 12.471 J·K−1·mol−1), the Ti-Mn-Fe-Ni-Zr filler 
metal should be classified as medium-entropy alloy [35].

3.2  Microstructural analysis of the brazed joints

Several choices of brazing parameters were made to join 
TiAl alloy at 1140 °C/20  min, 1180 °C/45  min, 1180 
°C/75 min, and 1210 °C/45 min, respectively. The backscat-
tered electron images of the TiAl joints brazed by the four 
different brazing parameters are shown in Fig. 4. The EDS 
analysis results for the typical microzones marked in Fig. 4 
are displayed in Table 3.

As the typical interfacial microstructure of TiAl joint at 
1140 °C/20 min, the thickness of the brazed joint reached 
171 μm in Fig. 4a. The white phase (microzone “3”) in the 
center of the brazing seam exhibited as almost continuous 
layer, with a thickness of 29 μm. Obviously, the quantities 
of gray phase (microzone “2”) were far more than that of 
the white phase in the brazing seam. Since the composition 
of white phase in the brazed joint was close to that of the 
braze alloy, it could be identified as the residual brazing 
filler reaction phase. Based on the Ti-Al binary alloy phase 
diagram [36–38], the gray phase in the brazing seam show-
ing a similar Ti/Al ratio to that of the parent metal might be 
regarded as the γ-TiAl + α2-Ti3Al phase [39, 40].

From the EDS analysis results shown in Table 3, except 
for the residual brazing filler reaction phase, generally Ti 
element concentration within the brazing seam was compa-
rable to that of the parent material. Al element significantly 
diffused from the TiAl base metal to the brazing seam, with 
the concentration high up to 32.40 ~ 36.30 at.%. For micro-
zones “3”, “6,” and “9” in the central part of the joint, their 
compositions were characterized by 29.65 ~ 31.58 at.% Ti, 
34.30 ~ 40.93 at.% Al, 7.13 ~ 10.40 at.% Fe, 6.55 ~ 9.55 at.% 

Mn, 4.58 ~ 5.65 at.% Ni, and 5.07 ~ 6.02 at.% Zr, and thus 
they should be regarded as residual brazing filler reaction 
phase, and this was agreement with the area distribution map 
of elements in Fig. 5. Therefore, for eliminating the residual 
brazing filler reaction phase within joint, higher brazing tem-
perature or longer dwell time is needed.

In comparison, the joint thickness was significantly 
increased to 258 μm and the thickness of the residual braz-
ing filler reaction phase (microzone “6” in Fig. 4b) was 
sharply decreased to 14 μm by the brazing parameter of 
1180 °C/45 min, as shown in Fig. 4b. But the residual braz-
ing filler reaction phase still remained continuous. Interest-
ingly, in this case, the dark lath-like phase (microzone “5”) 
appeared in the brazing seam. According to the Ti-Al binary 
alloy phase diagram [36–38], it is reasonable to deduce the 
dark phase to be γ-TiAl phase [39, 40].

The Al element concentration in the brazing seam was 
increased to 33.45 ~ 44.12 at.%, indicating the enhanced 
diffusion of Al element by the brazing parameter of 1180 
°C/45 min. However, the expected sufficient diffusion of ele-
ments Fe, Mn, Ni, and Zr had not been accomplished due 
to the presence of the residual brazing filler reaction phase. 
For eliminating the residual brazing filler reaction phase, it 
is necessary to further prolong the dwell time or increase the 
brazing temperature.

On the one hand, with prolonging the dwell time to 
75 min at the brazing temperature of 1180°C, the joint 
thickness was slightly increased to 278 μm and the thick-
ness of the residual brazing filler reaction phase (micro-
zone “9”) was decreased to only 6 μm, as shown in Fig. 4c. 
More importantly, the residual brazing filler reaction phase 
became discontinuous. It appeared that the lath-like γ-TiAl 
partially began to aggregate in the joint. Compared with 
the joint brazed at 1180 °C/45 min, the concentration of Al 
element was between 33.60 ~ 45.20 at.%. Although amount 
of the residual brazing filler reaction phase disappeared by 
prolonging the dwell time, it was still necessary to further 
increase the brazing temperature for completely eliminating 
the residual brazing filler reaction phase.

Fig. 3  Wettability of Ti-Mn-Fe-Ni-Zr filler alloy on TiAl at 1110 °C for 10 min: wetting morphology (a), contact angle from the cross-section of 
A-A (b) and B-B (c)
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On the other hand, with increasing the brazing tempera-
ture to 1210 °C, the joint thickness was evidently increased 
to 308 μm and the size of the lath-like γ-TiAl phase gradu-
ally became larger (Fig. 4d). Significantly, this brazing tem-
perature increase almost eliminated the residual brazing 
filler reaction phase, which might bring potential benefits 
to the joint strength.

Under the brazing condition of 1210 °C/45 min, the 
content of the main elements Ti and Al in the brazing 
seam (microzones “12” and “13” in Fig. 4d) was close 
to that of the base metal (microzones “7” and “8” in 
Fig. 4c). As shown in Fig. 6, the elements Ti, Fe, Mn, 
Ni, and Zr exhibited homogeneous distribution. It seemed 
that sufficient diffusion within the joint occurred and the 

Fig. 4  Backscattered electron 
images of the TiAl joints brazed 
at 1140 °C/20 min (a), 1180 
°C/45 min (b), 1180 °C/75 min 
(c), and 1210 °C/45 min (d), 
respectively

Table 3  EDS analysis results for the microzones marked in Fig. 4

Microzones Element (at.%) Deduced phases

Ti Al Fe Mn Ni Nb Zr Cr Ta

1 56.53 36.30 0.39 0.95 0.26 4.07 0.19 1.03 0.20 γ-TiAl + α2-Ti3Al
2 53.92 32.40 3.47 4.18 0.50 3.05 0.75 1.49 0.30 γ-TiAl + α2-Ti3Al
3 31.50 34.30 10.40 9.55 4.83 1.46 6.52 1.43 0.00 Residual brazing filler reaction phase
4 54.37 33.45 2.87 3.94 0.32 2.73 0.62 1.55 0.15 γ-TiAl + α2-Ti3Al
5 48.62 44.12 1.29 1.59 0.27 2.77 0.73 0.52 0.09 γ-TiAl
6 29.65 40.93 7.13 7.22 5.65 2.06 5.41 1.82 0.13 Residual brazing filler reaction phase
7 53.24 33.50 1.88 2.18 0.62 4.34 0.09 3.77 0.40 γ-TiAl + α2-Ti3Al
8 46.90 46.80 0.13 0.05 0.07 4.36 0.24 1.31 0.10 γ-TiAl
9 31.58 39.40 7.77 6.55 4.58 2.81 5.07 2.22 0.10 Residual brazing filler reaction phase
10 54.24 33.60 2.73 3.54 0.55 2.89 0.47 1.77 0.20 γ-TiAl + α2-Ti3Al
11 47.56 45.20 1.13 1.32 0.23 2.90 0.71 0.75 0.20 γ-TiAl dissolved with of Fe-Mn-Nb elements
12 52.45 34.00 3.24 3.91 0.74 3.02 0.40 2.07 0.17 γ-TiAl + α2-Ti3Al
13 47.98 45.34 0.86 1.45 0.27 2.96 0.36 0.60 0.18 γ-TiAl dissolved with of Fe-Mn-Nb elements
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overall composition of the joint was characterized by 
47.98 ~ 52.45 at.% Ti, 34.00 ~ 45.34 at.% Al, 0.86 ~ 3.24 
at.% Fe, 1.45 ~ 3.91 at.% Mn, 0.27 ~ 0.74 at.% Ni, and 
0.36 ~ 0.40 at.% Zr. In other words, a sound brazing joint 
can be obtained with the composition close to that of the 
base metal.

The effect of brazing parameter on the area percentage 
of γ-TiAl phase within the brazed joint, the thickness of 
residual brazing filler reaction phase, and the joint thickness 
is shown together in Fig. 7. On the whole, when the brazing 
parameter becomes stronger, the joint thickness and the 
area percentage of γ-TiAl phase wthin the joint increased, 
and the thickness of residual brazing filler reaction phase 
decreased. Individually, the new formation of γ-TiAl phase 
was observed at 1180 °C/45 min and the residual brazing 
filler reaction phase within the joint almost disappeared at 
1210 °C/45 min. Figure 7 also signified that the brazing 

condition of 1210 °C/45 min caused the maximum joint 
thickness of 308 μm and the maximum area percentage of 
γ-TiAl phase of 33.77%, as well as the almost elimination 
of the residual brazing filler reaction phase.

From the perspective of diffusion mechanism, the 
diffusivity of alloying elements Fe, Mn, and Ni followed 
the interstitial diffusion mechanism in α-Ti, which belonged 
to the faster diffusion elements. On the contrary, Zr element 
exhibited slow diffusion rate due to its vacancy mechanism 
[41]. For the brazing parameter of 1140 °C/20  min or 
1180 °C/45 min, the residual brazing filler reaction phase 
remained in the central part of the joint due to its too weak 
high-temperature diffusion. On the brazing condition of 
1210 °C/45 min, it was believed that the sufficient diffusion 
within the joint occurred. Moreover, the Zr element 
concentration of 3 ~ 8 wt.% in the brazing alloy was quite 
low. As a result, the joint composition of 0.86 ~ 3.24 at.% Fe, 

Fig. 5  Backscattered electron images of magnified morphology for the joint brazed at 1140 °C/20 min (a), and area distribution map of elements 
Ti (b), Al (c), Fe (d), Mn (e), Ni (f), Zr (g)
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1.45 ~ 3.91 at.% Mn, 0.27 ~ 0.74 at.% Ni, and 0.36 ~ 0.40 at.% 
Zr exhibited homogeneous distribution and residual brazing 
filler reaction phase was almost eliminated after the brazing, 
and this undoubtedly improved the joint strength.

3.3  Mechanical properties of the brazed joints

The effect of brazing parameter on the tensile strength of the 
brazed joint at room temperature is shown in Fig. 8. With 
enhancing the brazing parameter, the tensile strength first 
dramatically increased to 367 MPa at 1180 °C/45 min from 
194 MPa at 1140 °C/20 min. Obviously, the diffusion was not 
sufficient at 1140 °C/20 min, resulting in the thick residual 
brazing filler reaction phase and the weak joint. The improve-
ment of the tensile strength might be attributed to the strong 
diffusion behavior of elements and the partial dissolving of the 

Fig. 6  Backscattered electron images of magnified morphology for the joint brazed at 1210 °C/45 min (a), and area distribution map of elements 
Ti (b), Al (c), Fe (d), Mn (e), Ni (f), Zr (g)

Fig. 7  Effect of brazing parameter on the area percentage of γ-TiAl, 
the thickness of residual brazing filler reaction phase, and the joint 
thickness
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residual brazing filler reaction phase, as well as the formation 
of γ-TiAl within the brazed joint. However, the decrease of 
the tensile strength to 228 MPa under the brazing condition of 
1180 °C/75 min was also noticeable, and this might be associ-
ated with the microstructure of γ-TiAl phases within the braz-
ing seam and the interface between the brazing seam and the 
base metal, as shown in Fig. 4c. Finally, the maximum tensile 
strength of 418 MPa was achieved with the joining parameter 
of 1210 °C/45 min, which was caused by the almost com-
plete elimination of the residual brazing filler reaction phase 

and the homogeneous distribution of the main element in the 
brazing alloy throughout the whole joint, as shown in Fig. 6. 
Compared with the tensile strength 590 MPa of the parent 
material, the brazing condition of 1210 °C/45 min offered the 
highest strength coefficient of 70.85%.

Due to the sufficient diffusion between the brazing seam 
and the base metal, the Ni concentration within the joint 
was decreased to the low value of 0.27 ~ 0.74 at.%, and this 
was favorable to suppress the formation of brittle Ti-Ni 
intermetallic compounds. Moreover, the dissolved elements 
of 0.86 ~ 3.24 at.% Fe, 1.45 ~ 3.91 at.% Mn, and 0.36 ~ 0.40 
at.% Zr should play an important role of solid solution 
strengthening, and thus had a beneficial effect on the joint 
strength [14, 21, 22]. However, it seems that the composi-
tion of the brazing filler alloy still needs to be optimized 
in future for further improvement of the joint strength [16, 
19, 28, 42].

The fracture location and the fracture path are shown in 
Fig. 9. The cracks initiated and propagated at the center of 
the joint brazed at 1140 °C/20 min and 1180 °C/45 min, 
indicating that the continuous residual brazing filler reac-
tion phase in the center of the joint caused the formation of 
cracks. In other words, the residual brazing filler reaction 
phase was the main factor to the lower strength of the brazed 
joint. On the contrary, for the joint brazed at 1180 °C/75 min 
and 1210 °C/45 min, the cracks initiated and propagated at 
the interface between the brazing seam and the base metal. 
Due to the fact that the discontinuous residual brazing filler 
reaction phase in the joint brazed at 1180 °C/75 min was 

Fig. 8  Effect of brazing parameter on the tensile strength and the 
joint strength coefficient at room temperature

Fig. 9  Fracture paths of the joints brazed at 1140 °C/20 min (a), 1180 °C/45 min (b), 1180 °C/75 min (c), 1210 °C/45 min (d), and the magni-
fied morphology of the red dash rectangle zone (e)
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thin and remained in small amount (shown in Fig. 9c), the 
tensile test specimen fractured at the interface. In this case, 
the detrimental effect of the residual brazing filler reaction 
phase on joint strength might be weakened.

Different from the joint brazed at 1180 °C/75 min, the 
fracture interface obtained by the brazing parameter of 1210 
°C/45 min displayed far less smoothness and contained 
a small quantity of base metal, as shown in Fig. 9d. The 
roughened interface might be attributed to the stronger 
dissolution of TiAl and the more sufficient interdiffusion 
between the TiAl base metal and the brazing seam. Indeed, 
the adhered TiAl base metal at the fracture interface inferred 
that a strong metallurgical bonding between the brazing 
seam and the base metal had been formed and the strength 
of the brazing seam was comparable to that of base metal. 
The mixed fracture path passing through the base alloy and 
the brazing seam is shown in Fig. 9e. The fracture behavior 
exhibited a mixed-mode of intergranular and transgranular 
fracture. This fracture mode should be favorable to the 
improvement of the joint strength.

4  Conclusions

The main conclusions of the present study can be sum-
marized as follows:

1 The Ti-(18 ~ 24)Mn-(12 ~ 18)Fe-(3 ~ 8)Ni-(3 ~ 8)Zr 
(wt.%) medium-entropy filler alloy was proposed for 
TiAl joining, and the joints brazed at 1210 °C/45 min 
exhibited the maximum room-temperature tensile 
strength of 418 MPa, the highest joint strength coef-
ficient of 70.85%.

2 The brazed joint was composed of γ-TiAl, α2-Ti3Al, and 
residual brazing filler reaction phase. Under the braz-
ing condition of 1210 °C/45 min, a sound joint was 
achieved with a desirable composition characterized by 
0.86 ~ 3.24 at.% Fe, 1.45 ~ 3.91 at.% Mn, 0.27 ~ 0.74 at.% 
Ni, and 0.36 ~ 0.40 at.% Zr.

3 The joint brazed at 1210 °C/45 min offered the maximum 
joint thickness of 308 μm and the maximum area percent-
age of γ-TiAl phase of 33.77%, as well as the almost com-
plete elimination of residual brazing filler reaction phase.

4 Under the brazing condition of 1140 °C/20 min and 1180 
°C/45 min, the joint fractured along the residual braz-
ing filler reaction phase in the center of the brazed joint. 
Differently, the joint brazed at 1180 °C/75 min and 1210 
°C/45 min fractured at the interface between the brazing 
seam and the base metal, and the joint fracture showed a 
mixed-mode of intergranular and transgranular fracture.
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