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Abstract
Weld defect detection is an important task in the welding process. Although there are many excellent weld defect detection
models, there is still much room for improvement in stability and accuracy. In this study, a lightweight deep learning model
called WeldNet is proposed to improve the existing weld defect recognition network for its poor generalization performance,
overfitting, and large memory occupation, using a design with a small number of parameters but with better performance.
We also proposed an ensemble-distillation strategy in the training process, which effectively improved the accuracy rate
and proposed an improved model ensemble scheme. The experimental results show that the final designed WeldNet model
performs well in detecting weld defects and achieves state-of-the-art performance. Its number of parameters is only 26.8% of
that of ResNet18, but the accuracy is 8.9% higher, while achieving a 24.2 ms inference time on CPU to meet the demand of
real-time operation. The study is of guiding significance for solving practical problems in weld defect detection, and provides
new ideas for the application of deep learning in industry. The code used in this article is available at https://github.com/
Wanglaoban3/WeldNet.git.

Keywords Convolutional neural networks · Weld defect · Model ensemble · Knowledge distillation

Nomenclature
TIG Tungsten inert gas
CNN Convolutional neural network
SVM Support vector machine
CPU Central processing unit
GPU Graph processing unit
FCN Fully connected network
HDR High dynamic range

1 Introduction

Welding is a technique to join two or more metal workpieces
together and is widely used in industry. There are different
types of welding such as manual welding, arc welding, laser
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welding, and plasma welding [7, 23, 34]. The classification
and selection of welding depend on factors such as material,
application scenario, and cost. Although welding is a com-
mon technology, the welding process and the generation of
welding defects are complex and diverse, and the genera-
tion of defects may lead to weak and easily fractured welded
connections, which can lead to serious accidents and seri-
ous human and material losses. Therefore, the detection and
evaluation ofwelding defects are of great importance, and the
development of a portable and rapid defect detection method
is even more important.

Welding defects are defects that may occur during the
welding process, including unfused, porosity, slag, over-
burning, cracks, and burrs [30, 31], and the presence of
these defects may lead to accidents and cause great losses.
Therefore, for welded parts, welding quality evaluation and
welding defects detection become critical.

Traditional methods of weld defect detection include
visual inspection, X-ray inspection, ultrasonic inspection,
eddy current inspection, and magnetic particle inspection [8,
24]. In industrial weld defect detection, visual inspection is
widely applied by technicians due to its low cost, high relia-
bility, and minimal need for additional equipment. However,
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visual inspection is heavily reliant on the experience of
the technicians. As work intensity increases, the efficiency
of manual inspection decreases significantly. Therefore, the
automation of weld defect detection is imperative. In 2015,
Gao et al. [9] proposed a reliance on active visual systems
to obtain the characteristics of the molten pool morphology
during the welding process, by analyzing the relationship
between the molten pool morphology and the stability of
the welding process to judge the classification of welding
defects, while Chen et al. [4] used a high-speed infrared cam-
era to photograph themolten pool during thewelding process
and analyze the thermal imaging images obtained. Huang
et al. [17] designed an eddy current orthogonal axial probe
for eddy current detection of carbon steel plate welds, and
the experiment proved that the probe can effectively detect
the effect of unevenness of the weld surface on the lifting-off
effect. Silva et al. proposed a segmented analysis of time-of-
flight diffraction ultrasound for flaw model, which is able to
identify the type of defects in the welding process by analyz-
ing ultrasonic signal fragments [27]. Du et al. [6] proposed a
fusion of background subtraction and grayscale wave analy-
sis for defect classification by analyzing weld X-ray.

Although most of the above methods achieve a better
detection effect, there are still many problems with these
methods. For example, they require specialized equipment
and skills, are difficult to implant, do not generalize well,
require a lot of time and labor costs for on-site debugging, are
not very intelligent, etc. To overcome these problems, more
and more researchers are using deep learning techniques for
welding defect detection [13, 16].

Deep learning techniques are a neural network-based
machine learning method with a high level of automation
and the ability to process complex data, and they excel in
image and video processing. Convolutional neural network
is a commonly used neural network structure in deep learn-
ing, which is mainly used in computer vision fields such
as image recognition classification and target detection. It
achieves feature extraction, abstraction, and classification of
images through multiple layers of computation and learning
such as convolutional layer, pooling layer, and fully con-
nected layer, and relies on the backpropagation algorithm
[25] to update the parameters in the model. Common CNN
models include AlexNet, VGG, ResNet, and MobileNet [11,
14, 18, 28], all of which are widely used for various vision
tasks including defect detection. Compared to relying on
traditional image processing, where features are extracted
manually for image preprocessing and then entered into
SVM classification, deep learning-based models can achieve
better performance by simple training without human inter-
vention and without complex tuning of parameters. Bacioiu
et al. [2, 3] proposed a series of CNN models for TIG weld-
ing of SS304 and aluminum 5083 materials, respectively,
which are capable of classifying images by simply inputting

images taken by industrial cameras of the weld seams dur-
ing the welding process. On their publicly available SS304
dataset, a maximum accuracy of 71% was achieved for a
six-class defect classification task. Ma et al. [22] developed
a CNN network for detecting and classifying defects gener-
ated during fusion welding of galvanized steel sheets, and he
achieved 100% recognition accuracy using AlexNet, VGG
networks combined with data enhancement and migration
learning. Golodov [10], Yu [35], and others also achieved
automatic classification and recognition of defective parts
by optimizing existing CNNs for weld image segmentation.
Xia et al. [33] designed aCNNmodel for defect classification
during TIG welding, which was optimized for the interpre-
tation of the CNN model. In addition to classification using
images alone, a multi-sensor combined with a deep learning
approach has also been used to accomplish defect classifica-
tion. Li et al. [21] designed a triple pseudo-twin network by
simultaneously inputting images, sound, and current–voltage
signals of the molten pool during the welding process and
using the network to automatically fuse the information col-
lected by different sensors to finally output the classification
results.

Although the remarkable performance achieved by these
deep learning-based weld defect detection models, they still
encounter some common issues. Firstly, the models are sus-
ceptible to overfitting. Due to the typically small scale of
the weld defect dataset, deep learning models trained on
it tend to overfit, resulting in low robustness. Secondly,
the speed of model inference needs improvement. Most
existing models heavily rely on specific GPU devices for
real-time operation due to their large parameter sizes and
computational complexity. However, such specialized GPU
equipment is often unavailable in practical industrial envi-
ronments where CPUs or other devices are more commonly
utilized. The former issue presents a prevalent challenge in
the industrial application of deep learning models, as spe-
cific production environments make it difficult to collect
data on a large scale, leading to neural networks that are
prone to overfitting and have poor generalization perfor-
mance. Model ensemble serves as a common approach to
mitigate overfitting. For instance, in the study conducted
by [5], multiple feature extractors were employed for fea-
ture extraction, and the features from various branches were
weighted to enrich the feature information, thereby enhanc-
ing the model’s robustness. Similar approaches can be found
in [20, 26]. However, this practice often results in a sig-
nificant increase in model parameters and computational
requirements. Therefore, inspired by these algorithms [5, 12],
we have designed a training strategy that combines model
ensemble and distillation. This strategy involves training
multiplemodels together during training and thenperforming
knowledge distillation after the completion of multi-model
training.As a result,we obtain a compact neural networkwith
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high performance.Additionally,wepropose a focal ensemble
optimization strategy in this process to enhance the effec-
tiveness of model ensembling. To improve model inference
speed, we have also developed a lightweight deep neural net-
work named WeldNet. In order to validate the effectiveness
of our algorithms and models, extensive experiments were
conducted on publicly available datasets. The experimen-
tal results demonstrate that our proposed model achieves a
smaller number of parameters and higher performance at a
faster speed compared to state-of-the-art methods. The con-
tributions of this paper are as follows:

(1) We design a lightweight network calledWeldNet, which
exhibits superior performance and faster inference speed
in the field ofweld defect recognition compared tomain-
stream models.

(2) We propose a novel model training method for weld
defect recognitionmodels, called the ensemble-distillation
strategy, which significantly improves model perfor-
mancewithout introducing anyadditional computational
overhead duringmodel deployment. This approach allows
for more efficient operation of the model during deploy-
ment while achieving remarkable performance enhance-
ments.

(3) Our proposed model exhibits significantly higher accu-
racy and faster inference speed compared to other
models in performance comparisons on public datasets.
Furthermore, it is capable of real-time execution onCPU
devices, which holds great significance for the future
development of weld defect recognition models.

Our steps are as follows: first, we introduce the imple-
mentation algorithms and ideas involved in Section2, design
the relevant experiments and reveal the specific experimen-
tal details in Section3, analyze the experimental results and
discuss them in Section4, and conclude in the last section.

2 Methodology

This section first introduces the dataset in this paper, followed
by a description of the algorithms and principles used.

2.1 Dataset

This paper uses the TIG Al5083 weld defect public dataset
by Bacioiu et al. [2] in 2019. The dataset was obtained by
tracking the TIG Al5083 welding process using an HDR
camera facing directly towards the weld pool to acquire real-
time images. During the data collection process, weld pool
images depicting “good welds” were initially captured. Sub-
sequently, welding parameters were systematically adjusted

to generate various defect types, introducing diversity in
defects. For instance, in a series of welding experiments,
the welding current was progressively reduced until a “lack
of fusion” was achieved. Finally, the collected dataset was
divided into training and testing sets at a ratio of 4:1. It is
important to note that while both the training and testing sets
contain the same types of defects, they originate from weld-
ingprocesseswith different parameter combinations to assess
the model’s robustness and generalization capabilities com-
prehensively. The dataset comprises six categories, namely
“good welds,” “Burn through,” “Contamination,” “Lack of
fusion,” “Misalignment,” and “Lack of penetration,” totaling
33,254 images, with the specific number of images per cate-
gory detailed in Table 1. Some samples are shown in Fig. 1.
The dataset is currently available at https://www.kaggle.com/
datasets/danielbacioiu/tig-aluminium-5083.

2.2 Convolutional neural networks (CNN)

In recent years, due to the continuous development of artifi-
cial intelligence technology,CNN iswidely used in the image
field as a neural network with excellent performance. For
example, it was featured in the early handwritten digit recog-
nition [19] and the ImageNet competition [18] in 2012. The
main features of CNN are its ability to automatically learn
useful features from the original data and its good hierarchi-
cal structure to extract higher-level features layer by layer.
The most important ones in CNN are convolutional layer
and pooling layer. Convolutional layer can effectively extract
local features in images, and pooling layer can reduce the
number of fused features and computation, highlight impor-
tant features while filtering minor features, and increase the
overall generalization ability of themodel, by setting a convo-
lution kernel of fixed size and using the convolution kernel to
slide over the image to calculate the product sum of the con-
volution kernel and the corresponding region, where stride
represents the step size of each convolution kernel move.

In image classification, CNN and FCN (fully connected
networks) are usually used in combination. After a large

Table 1 Number of categories in the training and test sets

Label Number of samples
Train Test

Good weld 8758 2189

Burn through 1783 351

Contamination 6325 2078

Lack of fusion 4028 1007

Misalignment 2953 729

Lack of penetration 2819 234

Total 26,666 6588
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Fig. 1 Samples of six-classes
defect

number of convolution and pooling layers, the size of the
feature map gradually becomes smaller from the original
map. It is transformed into vector form by the flatten opera-
tion, and finally, the probability of each class is output after
one or more fully connected layers. FCN uses the input vec-
tor to multiply with the weight matrix, adds a bias term,
and finally outputs a result through the activation function.
The calculation formula is as follows: y = f (wx + b).
Take the example of an in the figure (bias omitted): an =
(wn1x1 + wn2x2 + wn3x3 + wn4x4) + b.

The parameter updating process of the neural network can
be expressed as Eq.1.

wi j = wi j − α
∂L(w)

∂wi j
(1)

where wi j denotes the weight connecting the i th neuron to
the j th neuron, L(w) is the loss function, and α is the learn-
ing rate, which indicates the step size of each update. ∂L(w)

∂wi j

denotes the partial derivative of the loss function with respect
towi j , i.e., the rate of change of the loss functionwith respect
to wi j under the current parameters. In backpropagation, the
partial derivatives of each parameter can be calculated by the
chain rule, and then updated in this way when updating the
parameters. In this way, the above process is repeated until
the loss function converges, and a better network parameter
is obtained.

Figure2 shows a classical CNN called ResNet18, which
consists of several convolutional and pooling layers and a
fully connected layer. An input RGB image of size 224×224
is continuously convolved and pooled to obtain a 512×1×1
feature map, and finally, a flatten operation and a fully
connected layer are used to obtain the probability of each cat-
egory. In the convolutional layer, the parameter after conv is
the number of output channels, k represents the convolutional
kernel size, and s represents stride. Here, the padding param-
eter setting is omitted, and the padding of each convolutional
layer is k/2 and rounded down. The batch normalization layer
and activation function layers are omitted after each con-
volutional layer. AdapativeAvgpool is an adaptive average
pooling layer that converts the input feature map to the target
size; here, we change 7×7 after the pooling layer to 1×1.

2.3 WeldNet

The style of WeldNet proposed in this paper is slightly sim-
ilar to ResNet, which is also a neural network composed
of CNN+FCN, but the modules in it are optimized. The
details are shown in Fig. 3. To ensure fairness in subsequent
experimental comparisons, the model and ResNet18 have an
equivalent number of model layers and similar channel con-
figurations. Differing from ResNet18, the model employs
consecutive convolutional layers with a stride of 2 in the
first three layers to reduce the size of feature maps, thereby
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Fig. 2 ResNet18

decreasing computational complexity. Additionally, the spe-
cially designed WeldBlock replaces the BasicBlock in the
model. Within the WeldBlock, the input feature map under-
goes two branches: one consisting of a 3 × 3 convolutional
layer followed by a 1 × 1 convolutional layer and the other
comprising a 3×3 average pooling layer followed by a 1×1
convolutional layer,with the results of the twobranches being
added together. In the pooling branch, the input features first
pass through a 3×3 average pooling layer and then through a
1×1 convolutional layer. In comparison to the BasicBlock in
ResNet18, the 3×3 average pooling layer in the WeldBlock
lacks learnable parameters and provides feature maps with a
larger receptive field for the 1×1 convolutional layer, result-
ing in fewer parameters and a reduced risk of overfitting.
Furthermore, this approach mitigates the issue of detail loss
during the convolution process when the stride of the 1×1
convolution layer is set to 2. The 32 after the first convolu-
tional layer represents the number of output 32 channels. The
e parameter inWeldBlock is a scaling factor that controls the
module in which the output channel of the convolution layer
is the input channel × e, and s stands for stride.

2.4 Ensemble-distillation strategy

Model ensemble is a common means to improve model sta-
bility and generalization performance. The principle is to use
the same dataset to train multiple models simultaneously and

average the output results to obtain the final result [15]. Since
each model is initialized with different parameters, the order
of each sample in the traversed dataset is different, and the
form of each data augmentation is different, making each
model trained have different degrees of generalization, and
also avoiding the problem of unstable training process due to
model initialization and dataset order in the process of train-
ing a single model. Combining the outputs of all models on
average usually results in better performance than a single
model [32]. The principle is shown in Fig. 4.

However, the use of model ensemble results in a signif-
icant increase in inference time and memory consumption,
which is not conducive to practical weld defect assessment
in real-world environments. Therefore, we propose the uti-
lization of knowledge distillation to reduce the model size.
Knowledge distillation is a technique for transferring knowl-
edge from a large neural network to a small neural network.
Unlike model compression, the goal of knowledge distilla-
tion is not to reduce the size and computational burden of a
model, but to transfer knowledge from a large neural network
(called teacher network) to a small neural network (called
student network), thereby improving the accuracy, general-
ization, and robustness of the student model [1]. Usually, a
teacher network is first trained on the dataset until conver-
gence, then the teacher network is used to predict values for
each sample as labels for the training of the student network
instead of the real labels produced in the dataset, and finally,

Fig. 3 WeldNet (ours)
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Fig. 4 Model ensemble

the student network is trained so that the student network
learns the knowledge of the teacher network while avoid-
ing the high memory and computing power overhead of the
teacher network [29]. The principle is shown in Fig. 5.

In this study, we propose a novel training method for weld
defect detection models, which involves first training multi-
ple singlemodels and then using the trainedmodels as teacher
networks for knowledge distillation. This method effectively
improves model performance without increasing additional
parameters or computational costs. For specific implementa-
tion details, please refer to Algorithm 1.

Algorithm 1 Framework of ensemble-distillation strategy
for our system.
Input: m1,m2, ...,mn : number of n singlemodel as teachermodel;ms :

student model; k: training iterations; Fe: model ensemble function;
L: loss function;

Output: Training set x , lt
1: for i = 1 to n do � train each teacher model
2: for j = 1 to k do
3: yp ← mi (x)
4: ls ← L(yp, yt )
5: Update Parameters mi
6: end for
7: end for
8: for j=1 to k do � train student model
9: y(1)

p , y(2)
p , ..., y(n)

p ← {m1,m2, ...,mn}(x)
10: ye ← Fe(y

(1)
p , y(2)

p , ..., y(n)
p ) � get model ensemble pesudo

label
11: ys ← ms(x)
12: ls ← L(ys , ye)
13: Update Parameters ms
14: end for
15: return ms

2.5 Focal ensemble

Among the existing model ensemble techniques, we think it
is too simple and brutal to directly add up the predicted values
of each model. Considering the model prediction, when the
confidence level of amodel prediction is high,we should trust
the prediction of that model more. Therefore, we proposed a

new combination to amplify the high confidence prediction
values, which we call focal ensemble, which is calculated as
Eq.2.

y = 1

N
(

N∑

i=1

yki )
1
k (2)

where y represents the final predicted value, yi represents the
individual model predicted value, N represents the number
of models, and k represents the exponential weighting factor
of ensemble.

3 Experiment design and details

In this section, we describe the details of model training,
model evaluation criteria, and the selection of hyperparame-
ters in the experiments.

3.1 Design of experiment

To verify the effectiveness of the proposed WeldNet opti-
mization strategy, the performancemetrics of each individual
model were first compared. Subsequently, to demonstrate the
effectiveness of the proposed model ensemble strategy, com-
parative experiments were conducted between single models
and various ensemble strategies. Finally, the model ensem-
bles and knowledge-distilled models were compared with
each individual model for the final assessment. All models
are thoroughly trained on the TIG Al5083 training set until
convergence, tested after each training epoch, and the best
performance metric on the test set is taken as the final result.

Note that since the dataset is a single-channel grayscale
map and the final output is a 6 classification probability, we
set the first convolutional layer input channel of the above
CNN model to 1 and the last fully connected layer output
channel to 6. During the training process, we designed a
combination of data augmentation means for this dataset,
including rotation, random horizontal and random crop, ran-
dom brightness, and contrast adjustment. For the training set,

Fig. 5 Knowledge distillation
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the images were first randomly cropped to 600×731, ran-
domly rotated by −30 to 30◦, randomly flipped horizontally,
and randomly adjusted brightness and contrast, and finally,
the images were scaled down to 400×487 size and input
into our model. For the test set, we only scaled the image
to 400×487 and input it into the model. Figure6 shows our
means of data augmentation.

We choose cross entropy loss for the loss function of the
training model classification, which is calculated as Eq.3.

L(θ) = − 1

N

N∑

i=1

C∑

c=1

yic log(pic) (3)

where θ denotes all parameters involved in the calculation,
N denotes the total number of samples, C denotes the total
number of categories, yic denotes the true label of the i-
th sample belonging to the c-th category, and pic denotes
the prediction probability of the model for the i-th sample
belonging to the c-th category.

3.2 Experiment details

The hyperparameters involved in the experiments are the
learning rate of the optimizer and the number of models in
the model ensemble. We empirically set the SGD optimizer

learning rate to 0.01, and the learning rate becomes 0.001
after running 15 epochs, and the momentum parameter is set
to 0.9, while five models are trained simultaneously in the
model ensemble for a total of 25 epochs, the weight k in Eq.2
is set to 2. The language environment we use is Python, and
we use the PyTorch library for all model training and testing,
and the hardware we use is i7-11700k and rtx-3080ti.

3.3 Performancemetric

Theweld defect classification in this paper is an imagemulti-
classification task, so in this paper, accuracy, precision, recall,
and F1-score are used as evaluation metrics for model per-
formance, and the formula is calculated as Eqs. 4, 5, 6, and 7.

Accuracy = 1

n

N∑

i=1

T Pi (4)

Precision = 1

N

N∑

i=1

T Pi
T Pi + FPi

(5)

Recall = 1

N

N∑

i=1

T Pi
T Pi + FNi

(6)

Fig. 6 Data augmentation
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F1 − score = 1

N

N∑

i=1

2 × Precisioni × Recalli
Precisioni + Recalli

(7)

where n denotes the total number of samples, N denotes the
total number of classes, T Pi represents the total number of
samples in which themodel correctly predicts the i−th class
as that class, FPi represents the total number of samples in
which the model incorrectly predicts another class as i − th
class, and FN represents the number of samples in which
the model incorrectly predicts the i − th as another class.

Furthermore, to effectively assess the operational speed
of the new model, we employed model inference time as the
metric for evaluating its speed performance. This refers to
the duration required for the model to process an image. It
is important to note that all speed testing experiments were
carried out using an Intel i7 11700k processor (CPU).

4 Results and discussion

In this section, we first compare the performance of different
models, followed by a detailed discussion.

4.1 Single model

The results of single-model training are shown in Figs. 7
and 8. Figure7 shows that when single-model training, the
more the number of model parameters, the worse the perfor-
mance tends to be instead, which is contrary to our previous
knowledge. In Fig. 8, we find that the loss of the model on
the training set rapidly decreases and converges to 0 while
the loss and accuracy on the test set start to oscillate dur-
ing training. This indicates that the model quickly learns
the classification task on the training set, but as the train-
ing loss gets smaller, the model starts to overfit and the

Fig. 7 Accuracy and number of parameters of different models on sin-
gle model training

Fig. 8 Accuracy and loss during WeldNet training on single model
training

performance instead decreases slightly and gradually stabi-
lizes. At the same time, we found that models with more
number of parameters are more prone to overfitting, and
models with moderate parameters perform better with the
number of parameters instead. Our carefully designedWeld-
Net is able to outperform ResNet18 and other networks. The
detailed experimental results are shown in Table 2.

4.2 Model ensemble

The results of model ensemble training are shown in Figs. 9
and 10. When using multiple models integrated training, it
can be found that multiple models, due to different initializa-
tion during training, different order of datasets, and different
data enhancement methods, combine them together to signif-
icantly improve generalization ability and stability, and have
a good response to the overfitting that occurs during single
model training, improving the performance very consider-
ably. This inspires us to improve model performance in weld
defect recognition tasks not only by modifying the struc-
ture and parameters of the model, but also by optimizing the
existing training methods, which can significantly improve
the model performance. All of our proposed focal ensemble
results are better than the existing mean ensemble, which
proves that focal ensemble is effective (Table 3).

4.3 Knowledge distillation

We understand from the above experiments that model
ensemble can improve model performance, but it also
inevitably increases computing time and memory consump-
tion, so we use knowledge distillation to let the labels
generated in model ensemble be learned by a single model.
We used the WeldNet network trained in the focal ensemble
approach as the teacher network, a single WeldNet as the
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Table 2 Accuracy and number
of parameters of different
models. Bolded values represent
the best results

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) Parameters(107)

MobileNet v3 small 78.2 69.3 73.2 69.7 0.13

MobileNet v3 large 78.7 69.8 73.7 70.2 0.42

ResNet18 79.3 70.4 74.4 70.8 1.12

ResNet34 76.5 67.9 71.9 68.4 2.13

Inception v3 74.6 66.0 69.8 66.4 2.18

ResNet50 76.6 68.0 71.9 68.4 2.35

WeldNet (ours) 83.5 75.1 78.4 74.9 0.30

student network, and the loss function selected as CE Loss,
and finally obtained a WeldNet with an accuracy of 88.2%,
which is only 0.9% lower than that of the teacher network.

The experimental results show that the model accuracy
hardly decreases when the number of model parameters is
reduced to a single model size due to knowledge distillation,
confirming that the distilled student network is effectively
learning the knowledge of the teacher network. Through
Table 4, we can find that themodel accuracy can be improved
significantly by designing an efficient lightweight network
WeldNet, combined with the training strategy of ensemble
distillation. Compared with a single ResNet18 model, our
WeldNet+FE+KD accuracy is 8.9% higher, and the number
of participants is only 26.8% of it.

4.4 Discussion

In a single-model experiment, we observed that models with
a large number of parameters tended to exhibit relatively poor
performance, contrary to the common belief in deep learning.
Typically, a larger number of parameters in a model signifies
stronger fitting ability and often leads to better performance.
However, this notion is based on the availability of abun-
dant and diverse datasets. When dataset size is limited and

Fig. 9 Comparison of different training methods

sample diversity is restricted, as in the case of the weld defect
recognition dataset discussed in this paper, models with a
larger number of parameters are more prone to overfitting,
resulting in faster convergence during training but poorer per-
formance during testing. The optimally designed WeldNet
demonstrated the best performance among single models,
validating the effectiveness of the proposed improvements. A
comparisonwith the similarly small-parameterMobileNet v3
indicated that model overfitting is not only related to model
parameter count but also to model structure.

In the experiments involving model ensembling, our pro-
posed multi-model ensembling strategy significantly impro-
ved model performance, demonstrating that model ensem-
bling is an effective approach for enhancing model robust-
ness, especially in scenarios where single models are prone
to overfitting. During single-model training, susceptibility to
noise can lead to considerable fluctuations, whereas training
and prediction using ensembled models effectively reduce
the impact of such bias and noise, resulting in overall higher
performance. In our proposed focal ensemble, adjusting
the exponential weighting coefficients enables models with
better performance to make a greater contribution, further
reducing the influence of noise and improving overall pre-
diction results.

Fig. 10 Accuracy and loss during WeldNet focal ensemble training
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Table 3 Effect of different
training methods on model
accuracy, precision, recall, and
F1-score. Bolded values
represent the best results

Method Accuracy (%) Precision (%) Recall (%) F1-score (%)

Single model 83.5 75.1 78.4 74.9

Mean ensemble 87.6 81.2 82.6 79.2

Focal ensemble (ours) 89.1 83.8 84.6 81.8

Although model ensembling effectively enhances model
performance, it noticeably reduces operational speed, as
evidenced by the comparison between WeldNet+FE and
WeldNet+FE+KD in Table 4. Therefore, by employing
the proposed model ensembling and knowledge distillation
strategies, single models can possess the knowledge and
detection capabilities of multiple models in situations with
lower parameter counts. Furthermore, from Table 4, it can be
observed that most models run slowly on the CPU platform
and fail to meet the speed requirements in industrial settings,
especially in the absence of specific running devices such
as GPU devices. Therefore, it is evident that the majority
of existing models heavily rely on computational resources
for their operations. In industrial inspection scenarios, there
are also many tasks where models suffer from overfitting.
The proposed WeldNet demonstrates certain advantages in
addressing these challenges, suggesting potential extensions
of WeldNet to a broader range of tasks in the future.

5 Conclusion

In this paper,wedesignedWeldNet, a customized lightweight
detection network designed specifically for identifying defects
in welding operations. This network demonstrates improved
robustness on a small-scale dataset. Additionally, to enhance
the generalization performance of the model while maintain-
ing lowcomputational andparameter complexity,wepropose
an ensemble-distillation training method that effectively
combines multiple models without introducing additional
computational burden during model deployment. This inno-
vative technique not only surpasses the performance of
existingmodels significantly but also addresses the challenge

of model dependence on specific equipment in weld defect
detection. Experimental results on the TIG AL5083 dataset
confirm the superior detection accuracy of our approach
compared to all existing networks. Compared to the single
ResNet18 model, our WeldNet+FE+KD achieves an accu-
racy increase of 8.9%, precision increase of 11.8%, recall
increase of 8.8%, and F1-score increase of 10.8%. Addition-
ally, the parameter count of our model is only 26.8% of the
ResNet18 model. These findings hold immense significance
for future research and exploration in this field.

Although our proposed network has achieved relatively
high performance and can be practically deployed in indus-
trial scenarios, there are still certain limitations that need
to be addressed. One such limitation is its heavy reliance
on a large number of manually annotated labels for train-
ing. This dependency on labeled data poses challenges in
terms of scalability and cost-effectiveness. To overcome this
bottleneck, future research directions will focus on explor-
ing semi-supervised or unsupervised learning approaches
to further optimize the weld defect detection model. These
approaches aim to leverage unlabeled data or utilize lim-
ited labeled data more efficiently, reducing the reliance on
extensivemanual annotation. In addition, themodel proposed
in this paper has only been tested for defect identifica-
tion in TIG welding scenarios. Due to limitations such as
experimental equipment and time, we have not conducted
verification experiments in a wider range of welding sce-
narios. In the future, we plan to extend defect identification
to include a broader range of welding processes. By adopt-
ing these methodologies, we aim to improve the scalability,
generalization, and cost-efficiency of the model, making
it more practical and applicable in real-world industrial
settings.

Table 4 Accuracy and the number of parameters of the models obtained by different training methods

Method Accuracy (%) Precision (%) Recall (%) F1-score (%) Parameters (107) Inference time (ms)

MobileNet v3 small 78.2 69.3 73.2 69.7 0.13 27.4

MobileNet v3 large 78.7 69.8 73.7 70.2 0.42 80.6

ResNet18 79.3 70.4 74.4 70.8 1.12 59.9

WeldNet 83.5 75.1 78.4 74.9 0.30 24.2

WeldNet+FE 89.1 83.8 84.6 81.8 1.49 75.8

WeldNet+FE+KD (ours) 88.2 82.2 83.2 80.0 0.30 24.2

FE represents focal ensemble, and K E represents knowledge distillation. Bolded values represent the best results
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