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Abstract
The use of X-ray-based non-destructive testing (NDT) methods is widespread in the task of welding defect detection. Many 
scholars have turned to deep-learning computer vision models for defect detection in weld radiographic images in recent 
years. Before model training, annotating the collected image data is often necessary. We need to use annotation information 
to guide the model for effective learning. However, many researchers have been focused on developing better models or 
refining training strategies, often overlooking the quality of data annotation. This paper delved into the impact of eight types 
of low-quality annotations on the accuracy of object detection models. In comparison to accurate annotations, inaccuracies 
in the annotated locations significantly impact model performance, while errors in category annotations have a minor effect 
on model performance. Incorrect location affects both the recall and precision of the model, while incorrect categorization 
only impacts the precision of the model. Additionally, we observed that the extent of the impact of location errors is related 
to the detection accuracy of individual classes, with classes having higher original detection AP experiencing more sub-
stantial decreases in AP under location errors. Finally, we analyzed the influence of annotator habits on model performance. 
The study examines the effects of various types of low-quality annotations on model training and their impact on individual 
detection categories. Annotator habits lead to the left boundary of annotated boxes being less accurate than the right bound-
ary, resulting in a greater impact of annotations biased to the left than those biased to the right. Based on experiments and 
analysis, we proposed annotation guidelines for weld defect detection tasks: prioritize the quality of location annotations 
over category accuracy and strive to include all objects, including those with ambiguous boundaries.
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1  Introduction

Welding is a method of joining workpieces, typically involv-
ing the application of heat, pressure, or a combination of 
both, with or without the use of filler material. The welding 
process plays an indispensable role across various industries. 
However, it is essential to note that no welding technique 
can guarantee defect-free results. Defects can significantly 
impact various performance aspects of welded components, 
potentially posing safety risks. Hence, the timely and accu-
rate detection of defects in welded workpieces is paramount. 
There are various methods for defect detection, with non-
destructive testing (NDT) techniques based on radiographic 
technology being widely adopted. This approach involves 
obtaining images of weld seams through X-ray imaging 
and subsequently inspecting these images for defects. The 
traditional detection method relies on quality inspectors to 
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visually examine weld images and determine whether defects 
are present. With the continuous advancement of artificial 
intelligence (AI), detection models based on machine learn-
ing (ML) or deep learning (DL) are being developed. More 
and more scholars are applying visual models to the task of 
weld defect detection.

As early as 2000, Nacereddine Nafaâ [1] and colleagues 
applied neural networks to the task of defect detection in 
weld radiographic images. They verified the effectiveness 
of artificial neural networks (ANNs) for edge detection in 
radiographic images and employed supervised learning to 
classify defect images. On the transformed non-trained set, 
the classification accuracy reached 96%. In 2013, O. Zahran 
[2] and others enhanced images through contrast enhance-
ment and filtering, then utilized artificial neural networks to 
match features of defects in weld radiographic images for 
automated defect identification. They evaluated the method’s 
performance using 150 radiographic images, demonstrating 
the effectiveness of features extracted from the MUSIC and 
Eigenvector methods. In 2017, Boaretto [3] and colleagues 
used a multi-layer perceptron (MLP) for defect detection 
in double-wall double-image radiographic welding images, 
achieving an accuracy of 88.6% and an F-score of 87.5% 
on test data. With the development of computer vision net-
works and the explosion of deep learning, more scholars are 
exploring the application of convolutional neural networks 
(CNNs) in defect detection. In 2019, Wenhui Hou [4] and 
team employed deep convolutional neural networks to clas-
sify weld defect types. They extracted local regions from 
radiographic images as the dataset, addressing the imbalance 
through resampling, and achieved a top-performing model 
with 97.2% accuracy. Paolo Sassi [5] and others developed 
an intelligent system for detecting welding defects on a spray 
gun assembly line using a deep learning approach and trans-
fer learning, achieving an accuracy of 97.22%. In the same 
year, Yanxi Zhang [6] and team developed a deep learning 
algorithm based on convolutional neural networks for detect-
ing laser welding defects, reaching an accuracy of approxi-
mately 94% for three defect categories. Zhifen Zhang [7] 
and team implemented real-time defect detection in robot 
arc welding using convolutional neural networks, achiev-
ing an average classification accuracy of 99.38%. Compared 
to object classification tasks, object detection tasks require 
the additional challenge of providing the coordinates of the 
detected defects (usually in the form of bounding boxes). 
Dingming Yang [8] and colleagues applied the single-stage 
network YOLOv5 to steel pipe weld defect detection in 
2021, achieving a detection speed of 0.12 s per image and a 
mAP@50 of 97.8%. In 2023, Chen Ji [9] and team integrated 
the SPAM attention mechanism into the two-stage network 
Faster R-CNN, achieving a mAP of 86.3% in pipeline defect 
detection tasks. Jianyong Wang [10] and others improved the 
Faster R-CNN model by adding the FPN pyramid structure, 

variable convolutional networks, and background suppres-
sion, resulting in a mAP@50 of 93.5% for five defect detec-
tion tasks, a 24.3% improvement over the original Faster 
R-CNN model.

In the realm of computer vision and object detection, 
supervised learning is the prevailing approach [11]. This 
involves creating annotated training and validation datasets 
where objects of interest are meticulously labelled. The 
quality of data annotation directly impacts the accuracy of 
object detection models—generally, lower annotation qual-
ity results in decreased model accuracy [12]. In the context 
of welding seam defect detection, it is worth noting that 
the task differs from more conventional object detection 
tasks, such as face [13] or vehicle detection [14]. Annotat-
ing objects in this domain demands annotators with a cer-
tain level of expertise. This need for expertise arises due 
to the unique characteristics of the objects of interest. In 
welding seam defect detection, the object boundaries, which 
primarily constitute defects, are often inherently ambigu-
ous. Furthermore, these defects are relatively small, making 
their annotation challenging [15]. The ambiguity in object 
boundaries, coupled with the subjective nature of human 
annotation, can lead to variations and inconsistencies in the 
annotations. These factors contribute to the low quality of 
the annotations in the welding seam defect detection data-
sets. In the field of NDT, researchers continuously explore 
detection models with higher accuracy and faster speeds. 
However, no one has investigated the impact of data annota-
tion quality on these models. We recognize that annotation 
quality directly correlates with the accuracy of detection 
models, making the establishment of a comprehensive set 
of annotation standards crucial. Therefore, we conducted a 
detailed study on how low-quality annotations can affect the 
accuracy of detection models.

2 � Methods

2.1 � Dataset

Our dataset comprises exclusively images obtained from 
the welding production line of small-diameter pipes. We 
employed an X-ray imaging technique to capture images of 
the weld seam regions on the small-diameter pipes. Spe-
cifically, during X-ray imaging, to prevent overlap of the 
circular weld seams on the images, we intentionally devi-
ated the X-ray source from the vertical direction by a certain 
angle [16]. This approach is referred to as the X-ray oblique 
radiographic imaging method, as illustrated in Fig. 1. This 
method makes the annular weld seams appear as ellipses in 
the resulting images.

Our dataset comprises 31,323 images, all grayscale 
images depicting elliptical weld seams. The dataset 
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encompasses nine distinct annotation categories, listed in 
descending order of quantity: weld, porosity, other defect, 
overlap, faulty formation, lack of fusion, penetration, under-
cut, and hollow. It is worth noting that the other defects pri-
marily include fake defects.

Our work divided the dataset into training and valida-
tion datasets following a 9:1 ratio. Figure 2 illustrates the 
data distribution of different object categories in the training 
and validation datasets. It is important to emphasize that the 
images in the training and validation datasets remain consist-
ent across all subsequent experiments.

2.2 � Simulation of low‑quality annotations

Based on the annotation scenarios and leveraging the data-
set, we simulated eight instances of low-quality annotations. 
These low-quality annotation scenarios encompass left-
shifted, right-shifted, upward-shifted, downward-shifted, 
and overestimated, underestimated, missing, and incorrect 
annotations, as depicted in Fig. 3. We categorize low-quality 

annotation situations into two types: location errors (the first 
six) and category errors (the last two).

Notably, the magnitude of annotation box shifts was set at 
20% of the original dimensions (width or height). The prob-
ability of missing and incorrect annotations was also set at 
20%. Though it is acknowledged that such significant errors 
and inaccuracies are typically not encountered in practical 
annotation processes, the 20% ratio was deemed reasonable 
to investigate the impact of various low-quality annotation 
scenarios. Importantly, these variations were applied exclu-
sively to the training dataset, ensuring that the annotations 
in the validation dataset remained consistent and accurate 
across all circumstances.

2.3 � Network

We employed the advanced YOLOv8 network as our 
experimental model in our experiments. YOLOv8, short 
for “You Only Look Once version 8,” represents the lat-
est iteration in the YOLO series. It is renowned for its 

Fig. 1   X-ray oblique radio-
graphic imaging method

Fig. 2   Data quantities for each 
category in the training and 
validation datasets
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real-time object detection capabilities and continuous 
evolution across multiple versions [17]. Building upon 
the successes of its predecessors, YOLOv8 integrates key 
architectural enhancements and advanced training strate-
gies to achieve exceptional performance in object detec-
tion tasks.

One notable feature of YOLOv8 is its anchor-free design, 
which eliminates the need to preset a series of anchor boxes, 
making it particularly advantageous for detecting small 
objects [18]. In addition to architectural improvements, 
YOLOv8 benefits from advanced training techniques, 
including data augmentation [19], transfer learning [20], 
and robust optimization strategies [21]. These techniques 
contribute to the model’s outstanding generalization and 
performance across diverse datasets and object categories.

The YOLOv8 model is available in five versions, denoted 
as n, s, m, l, and x, varying in parameter count. In our work, 
we utilized the n-version of the model. The primary hyper-
parameters were configured during the training process, as 
outlined in Table 1. It is worth noting that, to investigate the 
impact of left-shifted annotations and right-shifted anno-
tations, we turned off the random horizontal flipping data 
augmentation strategy, which is typically enabled by default 
[22].

2.4 � Loss function

The loss function in YOLOv8 comprises category classifica-
tion loss and bounding box regression loss.

For the classification loss, we utilize binary cross 
entropy (BCE) loss, which is an ordinary loss function in 
classification tasks [23].

As for the regression loss, we employ a combination of 
distribution focal loss (DFL) [24] and complete intersec-
tion over union (CIOU) loss [25].

In practice, the design of the DFL already considers the 
fuzziness and uncertainty in annotated boundaries, often 
caused by occlusions. However, in the context of welding 
seam defect detection, the fuzziness and uncertainty in 
boundary delineation primarily arise from the grayscale 
transition changes at defect boundaries. Introducing the 
DFL can mitigate the impact of boundary fuzziness.

Fig. 3   Low-quality annotation scenarios. a Accurate annotations; b 
left-shifted annotations; c right-shifted annotations; d upward-shifted 
annotations; e downward-shifted annotations; f overestimated annota-

tions; g underestimated annotations; h missing annotations; i incor-
rect annotations

Table 1   Partial hyperparameter configuration

Hyperparameter (training) Value Hyperparameter (data 
augmentation)

Value

Epochs 100 Degrees 0.0
Batch size 16 Translate 0.1
Input image size 640 Perspective 0.0
Pretrained true Flipud 0.0
Amp true Fliplr 0.0
Initial learning rate 0.01 Mosaic 1.0
Final learning rate 0.01 Close mosaic epochs 10
Box loss weight 7.5 Mixup 0.0
Cls loss weight 0.5 Copy paste 0.0
Dfl loss weight 1.5
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The CIOU loss considers three critical parameters of the 
predicted and ground truth boxes: overlap area, center point 
distance, and aspect ratio. This comprehensive loss function 
ensures that the predicted boxes align more closely with the 
ground truth.

In YOLOv8, the total loss of the model is obtained by 
weighting and summing the individual component losses.

2.5 � Metrics

In our work, we utilized mean average precision (mAP) and 
average precision (AP) to evaluate model performance.

The mAP is a valuable metric, considering the mod-
el’s performance across various categories and providing 
an overall performance assessment. Higher mAP values 
typically indicate superior performance in multi-category 
object detection. The AP is a commonly used metric for 
evaluating the performance of object detection models. AP 
is primarily employed to measure the accuracy of a model 
across specific object categories. In object detection tasks, 
it is customary to report both category-specific AP and the 
overall mAP to understand the model’s capabilities com-
prehensively. The calculation process for mAP and AP is 
as follows:

1. Prediction result sorting and filtering: Firstly, the mod-
el’s detection results are sorted in descending order for 
each object category based on confidence scores. This 
means predictions with higher confidence scores are 
placed at the front. Non-maximum suppression (NMS) 
removes overlapping and lower-scoring prediction boxes, 
retaining only the highest-scoring detection boxes [26].
2. True positives (TP) and false positives (FP): Each 
detection result is categorized as either a TP or an FP 
based on its match with the ground truth labels, as shown 
in Table 2. If a model’s detection result has an intersec-
tion over union (IOU) with the ground truth labels greater 
than a predetermined IOU threshold (typically 0.5) and 
has a confidence score high enough to meet a set thresh-
old (typically 0.5), it is considered a TP. Otherwise, it is 
considered an FP. The calculation of IOU is illustrated in 
Fig. 4 and expressed by Formula 1, where S represents 
the area.

3. Precision-recall curve: Next, based on different confi-
dence thresholds, the precision and recall are calculated for 
each threshold. Precision indicates how many of the model’s 
predictions are correct, while recall indicates how many true 
objects the model successfully detects. The formulas for cal-
culating precision and recall are provided in Eq. 2 [27].

4. Calculating AP and mAP: AP is the area under the 
precision-recall curve, as shown in Fig. 5. Typically, AP 
is computed by integrating the precision-recall curve. The 
specific calculation method may vary depending on different 
standards, but a common approach is calculating the sum of 
the areas of all small rectangles under the curve. Each small 
rectangle’s height is the difference between two adjacent 
recall values, and its width corresponds to the associated 
precision value. For multi-category detection tasks, AP is 
calculated for each category. Then the mean of these AP 
values is computed to obtain mAP, as shown in Eq. 3, where 

(1)

IOU =
S(box1 ∩ box2)

S(box1 ∪ box2)
=

S(box1 ∩ box2)

S(box1) + S(box2) − S(box1 ∩ box2)

(2)precision =
TP

TP + FP
, recall =

TP

TP + FN

Table 2   The explanation of TP, FP, FN, and TN

Ground truth

Positive Negative

Predict Positive TP FP
Negative FN TN

Fig. 4   Explanation of IOU calculation

Fig. 5   Explanation of AP calculation
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k represents the number of categories, and APi represents the 
AP for the category i.

It is worth noting that AP and mAP are often labelled 
with the IOU threshold used. mAP@50 and mAP@50:5:95 
are two commonly used mAP metrics. The former indicates 
that the IOU threshold for determining a positive sample is 
0.5. The latter involves setting this threshold to a range of 
values, such as 0.5, 0.55, 0.6, …, 0.95 (with a step of 0.05), 
calculating the corresponding mAP for each threshold, and 
then averaging them.

3 � Results and discussion

3.1 � Impact of low‑quality annotations on model 
performance

The influence of eight low-quality annotations on the model 
mAP is illustrated in Fig. 6. Through analysis, it becomes 
evident that left-shifted annotations, right-shifted anno-
tations, upward-shifted annotations, downward-shifted 

(3)mAP =

∑k

i=1
APi

k

annotations, overestimated annotations, and underestimated 
annotations significantly impact model performance. Con-
versely, missing and incorrect annotations have a relatively 
minor impact, with missing annotations showing the least 
influence, almost negligible.

These eight types of low-quality annotations can be cat-
egorized into two groups: location errors (the first six) and 
category errors (the last two), representing inaccuracies in 
the annotation location and annotation category, respec-
tively. Figure 6 demonstrates that the impact of location 
errors far outweighs category errors.

Furthermore, we conducted tests to evaluate the AP of the 
model under these eight low-quality annotation conditions 
for single-class predictions, as shown in Fig. 7. Single-class 
predictions exclusively predict the location of objects in the 
image without predicting their categories.

In the case of single-class prediction, the impact of low-
quality annotations follows a consistent pattern with regular 
predictions, where the influence of location errors is signifi-
cantly more significant than that of category errors.

To provide a more accurate analysis of the impact of 
low-quality annotations on the model’s decision-making 
process, we also compared the mean recall and mean pre-
cision of the model under various annotation scenarios, as 
shown in Fig. 8.

Fig. 6   Model mAP under vari-
ous annotation scenarios

Fig. 7   Model single-class 
prediction AP under various 
annotation scenarios
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It can be observed that location errors not only reduce the 
model’s precision but also lower the recall, with both metrics 
showing a similar reduction magnitude. On the other hand, 
category errors mainly affect the model’s precision, while 
recall remains unaffected.

To provide deeper insights, we selected the 6th feature 
layer of the model’s backbone and generated grad-CAMs for 
one defective instance, as depicted in Fig. 9 [28].

Through the grad-CAMs, it is evident that location 
errors impact the model’s feature extraction capability sig-
nificantly, whereas category errors have a relatively minor 
effect. When the annotation locations are inaccurate, the 

training data provides erroneous object location information 
to the network. This leads to the network learning only par-
tial features during learning object features and introduces 
substantial background information. This severely hampers 
the network’s feature extraction ability. In cases of category 
errors, where the object location information provided to 
the network is accurate, the network can effectively learn 
object features, and its feature extraction capability remains 
unaltered, except during the classification phase. More spe-
cifically, inaccurate location affects both the calculation of 
classification and regression losses in the network, while 
inaccurate categorization only impacts the calculation of 

Fig. 8   Model mean recall and 
precision under various annota-
tion scenarios

Fig. 9   Grad-CAMs for various annotation scenarios (6th feature 
layer). a Original image; b accurate annotations; c left-shifted anno-
tations; d right-shifted annotations; e upward-shifted annotations; f 

downward-shifted annotations; g overestimated annotations; h under-
estimated annotations; i missing annotations; j incorrect annotations
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classification loss. Therefore, location errors’ impact is more 
significant than category errors.

In summary, the eight types of low-quality annotations, 
ranked by their impact from most to least significant, are 
as follows: left-shifted annotations, upward-shifted anno-
tations, downward-shifted annotations, right-shifted anno-
tations, underestimated annotations, overestimated anno-
tations, incorrect annotations, and missing annotations. 
Notably, upward-shifted and downward-shifted annotations 
result in similar decreases in model performance, as do 
right-shifted annotations and underestimation.

3.2 � The impact of low‑quality annotations 
on model AP for different categories

The influence of eight low-quality annotations on the AP 
for each category is illustrated in Fig. 10. To provide a more 
intuitive representation of the relationship between model 
AP and categories, we have plotted the decrease in AP for 

each category under various low-quality annotation scenar-
ios against the original AP, as shown in Fig. 11.

Evidently, for annotations with inaccurate locations, the 
reduction in AP is approximately linearly proportional to the 
original AP. In other words, as the original detection AP for 
one category increases, the AP reduction under low-quality 
annotation conditions also increases. On the other hand, for 
annotations with incorrect categories, the reduction in AP 
is independent of the original AP and remains relatively 
constant.

3.3 � The impact of annotation habits on model 
performance

We also observed an interesting phenomenon where 
the impact of left-shifted annotations was significantly 
more significant than that of right-shifted annotations. 
We hypothesize that this is due to the annotation hab-
its of the annotators. As shown in Fig. 12, when people 

Fig. 10   AP for different categories under various annotation scenarios

Fig. 11   Relationship between 
AP reduction and original 
annotation AP under various 
annotation scenarios
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annotate rectangular boxes, they often start by clicking 
the rectangle’s top-left corner and then click the bottom-
right corner to define the entire rectangle. It means that 
annotators, without horizontal and vertical lines as refer-
ences when clicking the first point, subconsciously click 
in the upper-left region of the true object box to ensure 
that the rectangle fully encloses the object. However, 
when clicking the second point, there are horizontal and 
vertical lines as references, enabling annotators to mark 
the lower and right boundaries of the object accurately. 
In summary, the annotators’ habits influence the annota-
tion boxes, resulting in lower annotation quality for the 
upper and left boundaries compared to the lower and 
right boundaries.

In the weld defect detection task, most object categories 
have an aspect ratio (width-to-height ratio) less than 1. 
This implies that during the training process, the model 
has a lower tolerance for deviations in the left–right direc-
tion than in the up-down direction. This is why the impact 
of upward-shifted annotations and downward-shifted 
annotations remains similar.

We horizontally flipped all training data to validate the 
above hypotheses and then applied left and right shifts to 
the annotations. We continued investigating the impact of 
left-shifted and right-shifted annotations on model perfor-
mance, as shown in Fig. 13.

After applying the annotations to the flipped data-
set, it can be observed that the impact of right-shifted 

Fig. 12   Typical annotation 
habits of annotators. The red 
point represents the first anno-
tated point, the yellow point 
represents the second annotated 
point, the white dashed rectan-
gle represents the annotated 
bounding box, and the red 
dashed rectangle represents the 
actual defect boundary box

Fig. 13   Model mAP of left-
shifted and right-shifted annota-
tions on original and horizon-
tally flipped datasets
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annotations is more significant than that of left-shifted 
annotations. This suggests that the original annotations’ 
left boundary relative to the right boundary needs to be 
more accurate, likely due to the annotation habits of 
annotators.

4 � Conclusion

In our study on the weld detection task, we investigated 
the impact of eight low-quality annotation scenarios on 
computer vision models. The specific conclusions are as 
follows:

1.	 Inaccurate location of annotations has a more signifi-
cant impact on the model than inaccurate categoriza-
tion. When ranking the eight low-quality annotation 
scenarios based on their impact on the model’s mAP, 
the order of impact is as follows: left-shifted annota-
tions, upward-shifted annotations, downward-shifted 
annotations, right-shifted annotations, underestimated 
annotations, overestimated annotations, incorrect anno-
tations, and missing annotations. Notably, upward-
shifted and downward-shifted annotations lead to a 
similar decrease in model performance, while right-
shifted and underestimated annotations also result in a 
similar decrease.

2.	 Inaccurate location affects both the recall and preci-
sion of the model, while inaccurate categorization only 
impacts the precision of the model.

3.	 For scenarios with inaccurate location of annotations, 
the decrease in AP is approximately linearly correlated 
with the original AP. However, for scenarios with inac-
curate categorization of annotations, the decrease in AP 
is unrelated to the original AP.

4.	 Human annotation habits contribute to the inaccuracy 
of the left boundaries of annotation boxes relative to 
the right boundaries, causing a more significant impact 
from left-shifted annotations than right-shifted annota-
tions.

In summary, we recommend that annotators prioritize 
the quality of annotation location over category accuracy. 
Additionally, annotations should strive to encompass all 
object information, including ambiguous boundaries, to 
the greatest extent possible.
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