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Abstract
Wire-filled pulsed gas tungsten arc welding (GTAW-P) is usually used to join pipes in the horizontal position, in which uni-
form full penetration is required to guarantee a high weld quality. Based on the characteristic signals reflecting the penetra-
tion degree, the penetration control strategy of step welding is designed, and the dynamic modeling of backside molten pool 
width using the characteristic signals is conducted by back propagation (BP) neural network. The influence of step distance 
on the characteristic signals is explored. The weld is well shaped when the step distance is 3 mm. The backside weld width 
in the horizontal position can be controlled to be around the preset value with the control strategy of step welding and real-
time feedback from the prediction of BP neural network. The control system is robust, which can work well under the fit-up 
condition of variable gap or variable heat dissipation in the horizontal welding of pipe.

Keywords  Backside weld width · BP neural network · Step welding · Horizontal position · Wire-filled pulsed gas tungsten 
arc welding

1  Introduction

Pulsed gas tungsten arc welding (GTAW-P) has advantages 
of high quality and low cost, which is widely used in the 
pipe welding. In the pipe welding production, it is usually 
necessary to use wire-filled GTAW-P in the horizontal (2G) 
position, and uniform full penetration is required to obtain 
a high weld quality. Recently, the relationship between 
dynamic behavior of molten pool and penetration degree 
of stationary wire-filled GTAW-P of pipe in the horizontal 
position was studied in our previous study [1], in which the 
characteristic signals reflecting the occurrence of critical 
penetration and penetration degree were found. As per the 

proposed characteristic signals in our previous study [1], 
the weld penetration of pipe in the horizontal welding may 
be controlled.

Weld penetration control is a challenging topic in welding 
field, which can be traced to 1970s [2]. To well implement 
the feedback control of weld penetration, reliable and easy-
obtained feedback signals from the topside of weld pool are 
crucial as the weld penetration is indeed not visible from 
topside, and the backside of weld pool is usually not easily 
accessed. Thus, many sensing methods have been studied 
to get the characteristic signals from the arc/topside of weld 
pool to represent the weld penetration states, such as infrared 
technique [3–6], radiography [7], ultrasonography [8], and 
acoustic emission [9]. However, the foregoing sensing meth-
ods have their disadvantages, such as expensive equipment 
[7, 8], heterogeneous background noise [9], and radiation 
[7]. In contrast, visual method [10], which can obtain much 
intuitive information from the weld pool, and through-the-
arc [11], which takes advantages of the heat source, i.e., arc 
itself instead of additional auxiliary sensing system, draw 
more and more attentions.

Visual sensing can directly obtain the geometric shape 
information of weld pool. There are many studies on the 
control of weld shaping by using visual sensing. In Refs. [12, 
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13], a 2-input (topside weld depression and width) 2-out-
put (welding current and arc length) model of gas tungsten 
arc welding (GTAW) was established, and the weld pen-
etration was controlled by a generalized predictive control 
algorithm. Liu and Zhang [14] established the relationship 
between geometric parameters of molten pool and welding 
parameters through dynamic tests and proposed a predictive 
control algorithm based on the linear system model to con-
trol the width, length, and convexity of GTAW molten pool. 
Zhang and Zhang [15, 16] studied the adjustments of the 
welding current after the welder observed the width, length, 
and convexity of molten pool and established a linear regres-
sion model based on the data of molten pool morphology 
and welder’s adjustments. However, the decision-making 
and the adjustments of welder are nonlinear and fuzzy; the 
linear regression model is not good enough to track them. 
Liu et al. [17, 18] used the adaptive neuro-fuzzy inference 
system (ANFIS) to model the change in three-dimensional 
molten pool shape and welder’s adjustments of welding 
current. The experimental results showed that ANFIS has 
a higher prediction accuracy than the linear regression 
model. Fan et al. [19] designed a three-optical-path vision 
system, which can simultaneously obtain the images of top-
side and backside molten pool in the wire-filled GTAW-P 
of aluminum alloy, and used an edge extraction algorithm 
to obtain the geometric information of molten pool. The 
designed proportional integral derivative (PID) controller 
can control the uniformity of weld penetration [19]. Chen 
et al. [20] established a linear model predictive controller 
(MPC) to control the stationary GTAW-P and obtained a 
weld with uniform backside weld width by step welding 
[20]. However, visual sensing will make the control system 
complex, and the image quality in visual sensing is easy to 
be affected in the welding processes.

The molten pool always oscillates in the welding pro-
cess, which is closely related to the volume of molten pool 
and weld penetration states [21–24], and the oscillation of 
molten pool will directly affect the arc length/voltage. There-
fore, the information of molten pool oscillation and weld 
penetration degree may be extracted from the arc voltage 
signal. Wang et al. [25] studied the relationship between 
the oscillation frequency of molten pool and the backside 
molten pool width in the stationary GTAW welding, and 
successfully realized the real-time control of backside weld 
width by step welding. Yang and He [26] superimposed a 
constant-frequency sine wave on the DC current to make 
the molten pool oscillate. When the natural oscillation fre-
quency of molten pool is consistent with the frequency of 
sine wave, the molten pool resonates that can be reflected 
in the arc voltage signal, which is used for continuous weld 
penetration control in the autogenous GTAW welding [26]. 
Wang et al. [27] photographed the weld pool surface of 
pulsed gas metal arc welding (GMAW-P) with a high-speed 

camera and collected the arc voltage signal at the same time. 
It was found that the change in weld pool surface height dur-
ing the peak current period was related to the penetration 
degree, and the weld pool surface height directly affected the 
arc length/voltage, so the fluctuation of arc voltage during 
the peak current period (ΔU) can be used to predict penetra-
tion degree and can be well characterized by a linear model 
[27]. Based on this, Wang et al. [28] used an adaptive inter-
val model control algorithm to control the weld penetration 
in GMAW-P. The controller took ΔU as the input and the 
base current duration (tb) as the output to control the weld 
penetration in GMAW-P, in which process the controlled 
weld penetration was uniform [28]. Zou et al. [29] found 
that using the quotient of ΔU and the average voltage ( U ) 
during the peak current period as the characteristic signal to 
characterize the penetration degree has a higher accuracy. 
An adaptive predictive control algorithm based on Hammer-
stein model was designed to control the penetration degree 
[29]. It provides an idea for multi-information fusion sens-
ing. Cao et al. [30] fused the ΔU and U , performed Kalman 
filtering to obtain the characteristic signal ΔUkf representing 
the penetration degree, and used the second-order nonlinear 
autoregressive moving average model with exogenous inputs 
(NARMAX) to describe the relationship between ΔUkf and 
base current (Ib). The controller had a good performance 
[30]. Similar to gas metal arc welding, some researchers 
studied the arc voltage sensing in GTAW. Li et al. [31] found 
that in GTAW-P, the surface of molten pool first expands 
to the direction of tungsten (i.e., the height of molten pool 
surface increases) and will be far away from the tungsten 
when critical penetration occurs. Therefore, the change in 
arc length caused by the change in the molten pool surface 
will lead to the change in arc voltage. Based on this, Li and 
Zhang [32] designed a predictive control algorithm, which 
can effectively drive the arc voltage to track the set value. 
At the same time, the welder’s operation error can be com-
pensated by adjusting the welding current in real time to 
avoid welding defects. The control system could obtain a 
weld with uniform weld penetration [32]. Cheng et al. [33] 
analyzed the stationary GTAW-P process and found the 
similar molten pool behaviors as those in Ref. [31]. When 
full penetration occurs, the arc voltage first decreases and 
then increases. By detecting the minimum arc voltage, the 
weld penetration was well controlled as per step welding 
[33]. Zhang et al. [34] studied the stationary GTAW-P and 
found that when critical penetration occurs, the oscillation 
amplitude of the molten pool surface during the peak current 
period will increase, resulting that the fluctuation of arc volt-
age during the peak current period rises significantly, and 
this characteristic signal can be used for weld penetration 
control. In summary, the arc voltage and its change, involved 
in time and frequency domain, were used to characterize and 
to control the weld penetration in the pulsed GTAW/GMAW 
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welding, which has showed its advantage over the vision 
sensing, because they are easier to obtain and to process at 
the manufacturing sites. Therefore, it is a promising way to 
control the weld penetration.

However, most researches focused on the flat (1G) weld-
ing position. A few of researches focused on other positions; 
for example, Rider [35] estimated the weld penetration depth 
for different positions by sensing the heat input to obtain 
the weld pool volume and sensing the topside weld width 
using a linear array of silicon photodiodes as the sensor, and 
controlled it in real time; in Refs. [31, 32], the weld penetra-
tion for all-position (5G) welding of pipe was controlled by 
using the arc voltage; in Ref. [36], a pipe inner inspection 
robot equipped with CMOS sensor and laser scanner was 
developed to monitor and to control the weld penetration of 
the nuclear steel pipe (5G position). In the horizontal weld-
ing position, the gravity is counteracted by the support and 
friction of the groove (or the workpiece), etc. Its weld pool 
oscillation will be affected by the arc; thus, our previous 
study [1] did a research on the molten pool behaviors in the 
horizontal welding and found that the characteristic signal 
ΔU* (i.e., the change in average peak voltage) can reflect 
the occurrence of critical penetration, and the characteristic 
signals Ub (i.e., the average base voltage) and ΔUb (i.e., the 
fluctuation of base voltage) can reflect the backside molten 
pool width of stationary wire-filled GTAW-P of pipe in the 
horizontal position.

In the present work, a penetration control strategy based 
on the characteristic signals from our previous study [1], 
which can avoid the complexity of visual sensing, is pro-
posed in Section 2. As per step welding that is usually 
employed in the condition with the characteristic signal 
sensed from the stationary welding, a weld penetration con-
trol system is established. Back propagation (BP) neural 
network is used to model the relationship between charac-
teristic electrical signals and backside molten pool width 
(Section 3), so as to realize the real-time feedback control of 
full penetration of pipe in the horizontal position (Section 4). 
The conclusions are given in Section 5.

2 � Experimental design and control strategy

Characteristic signals ΔU*, Ub , and ΔUb proposed in previ-
ous study [1] were collected from the stationary welding, 
which may fail when continuous welding is conducted. For 
example, ΔU* and ΔUb will be affected by the change in 
weld pool shape and constriction of the pool by the work-
piece, etc. which are seriously influenced by the welding 
process parameters/conditions and its resultant tempera-
ture distribution. Therefore, stationary welding condition 
was kept in the present work, and the step welding method, 
which usually handles such case, is employed to be used to 

control the weld penetration of pipe in real time. However, 
in the typical stationary welding of the step welding process, 
the partial substitution of workpiece by the previous weld-
ing point with a high temperature may fail the characteristic 
signals, which needs to be well investigated. Figure 1 is the 
schematic diagram of the weld penetration control system. 
After the wire feeding of the stationary welding is finished, 
the critical penetration is first judged according to ΔU*. As 
there is an abrupt change in average peak voltage when criti-
cal penetration occurs, ΔU* is over the threshold (approxi-
mately 1 V) only in the critical penetration moment, i.e., 
detecting the moment with “ΔU* > threshold” can be used 
for the judgement of critical penetration. And then the back-
side molten pool width D̂3 is calculated in real time accord-
ing to Ub and ΔUb by using the BP neural network, whose 
structure, parameters, and the corresponding effect are inves-
tigated later. When D̂3 reaches the set backside molten pool 
width D3

*, the controller will output a step signal by the data 
acquisition card to control the rotation of pipe and wire feed-
ing to start a new stationary welding process at next weld-
ing point. The weld pool grows gradually as the heat input 
accumulates; therefore, when the arc is moved away from the 
present welding point by the step signal, the weld pool will 
solidify with the dimension D̂3 or a little bit larger than that 
due to the thermal lag. The thermal lag should be assessed. 
If a large dimensional error is induced by the thermal lag, 
a predictive controller may be required, else the controller 
only needs to output the step signal in time. A continuous 
full-penetrated weld can be obtained by controlling the full 
penetration for each point and by overlapping the resulted 
full-penetrated welding points.

The step welding experiment system for the weld penetra-
tion control of wire-filled GTAW-P of pipe in the horizontal 
position is shown in Fig. 2. The welding torch was kept station-
arily, and the pipe was placed vertically on the three-jaw chuck 
(Model: K11/100), which was connected with the stepper 
motor (Model: 86) to realize the rotation of pipe. The stepper 
motor was controlled by the pulse signals from programmable 
logic controller (PLC, Model: S7-200) to achieve the move-
ment from one welding point to the next one. The switches 
of PLC and wire feeder were connected to the normally 
open (NO) ports and COM ports of the two relays (Model: 
JQC-3FF-S-Z), respectively. The wire feeding time (for one 
welding point in the step welding) was 1 s when the arc started, 

Fig. 1   Schematic diagram of the weld penetration control system



1796	 Welding in the World (2023) 67:1793–1807

1 3

Fi
g.

 2
  

Ex
pe

rim
en

ta
l s

ys
te

m



1797Welding in the World (2023) 67:1793–1807	

1 3

which was controlled by a timer. The relays were triggered by 
the analog voltage signals outputted by the data acquisition 
card (Model: NI PCI-6221). Simulink Desktop Real-Time 
toolbox in MATLAB was employed to design the controller, 
which can drive the data acquisition card to acquire and output 
analog signals and digital signals. Hall sensors CHB-500SG 
and CHV-25P/50 were used to measure welding current and 
arc voltage signals, respectively.

The Fronius MagicWave 4000 welding machine was used 
as the power supply, and the peak current, base current, pulse 
frequency, and duty cycle were fixed at 150 A, 12 A, 5 Hz, 
and 50%, respectively. The workpiece and tungsten electrode 
were connected to the positive and negative poles of the power 
supply, respectively. The wire feeder was WF-3 produced by 
CK Worldwide Company, and the wire feed speed was 80 cm/
min. The base metal were pipes of Q235B mild steel with a 
diameter of 100 mm and with a wall thickness of 2 mm. The 
welding wire was MG50-6 with a diameter of 1.2 mm. The 
chemical composition of base metal and filler wire is shown 
in Table 1. The diameter of tungsten electrode was 2.4 mm. 
The tungsten electrode was perpendicularly placed to the pipe, 
and the distance between the tungsten electrode and workpiece 
was kept at 4 mm. The filler wire was fed from the side and 
had an angle of approximately 90° with the electrode. The 
distance between filler wire and workpiece was 0.5 mm to 
ensure that the droplets are transferred in the stable bridging 
transfer mode. Argon with a purity of 99.99% was selected as 
the shielding gas, and its flow rate was 10 L/min.

To better describe the weld shaping with regard to the 
circumferential position, the start point of the stepping weld-
ing is defined the position of 0 o’clock, while the opposite 
side of the pipe is defined as the position of 6 o’clock. The 
torch will return to the position of 0 o’clock when the step-
ping welding ends.

3 � Prediction model of backside weld width

The backside weld pool width has a relationship with Ub and 
ΔUb between the weld pool states of critical penetration and 
over penetration, as reported in our previous study [1]. They 
presented as approximately linear relationships, but the rela-
tionships were statistical. During the modeling work, the sig-
nal was filtered before it was used. Therefore, they are not strict 
linear relationships for static model, let alone the dynamic one. 
As well known, the actual welding process is nonlinear, time-
varying, coupled with multiple factors, and with time delay, 

etc.; thus, neural network is preferred to model the backside 
weld width in real time.

BP neural network has a strong nonlinear mapping and 
generalization ability and is widely used in engineering. In 
this paper, a BP neural network will be used to establish the 
model of backside molten pool width using the characteristic 
signals.

3.1 � Samples selection

In order to improve the model accuracy of the BP neural 
network, it must be trained with sufficient training data. Ub , 
ΔUb, and the corresponding backside molten pool width 
D3 were collected synchronously, as described in Ref. 
[1], by using the Hall voltage sensor and high-speed cam-
era (Model: Photron FASTCAM Super 10KC) during the 
stationary welding process, which were then used as sam-
pling data. Fifteen groups of stationary welding tests were 
conducted under the conditions in Section 2, and in each 
group, 20 sets of data from different sampling points were 
extracted. Then, 300 sets of sampling data were obtained, 
among which 250 sets of data were randomly selected as 
training samples, and the remaining 50 sets of data were 
used as validation samples.

Preliminary statistical analyses on the relationship 
between the input ( Ub and ΔUb) and output (D3) were dis-
cussed in our previous study [1], which indicated that Ub 
increased almost linearly with the increase in D3, while ΔUb 
also showed an increasing trend. Due to the thermal inertia 
in the welding process, the backside molten pool width cor-
responding to the characteristic signals has a hysteresis. The 
input layer of the neural network includes the average base 
voltage during the present current period (Ub(t)) , the average 
base voltage during the previous current period (Ub(t − 1)) , 
the fluctuation of base voltage during the present current 
period (ΔUb(t)), and the fluctuation of base voltage during 
the previous current period (ΔUb(t−1)). The output layer of 
the neural network is the backside molten pool width ( ̂D3 ). 
The neural network model is constructed according to the 
above-mentioned inputs and output, as shown in Fig. 3.

3.2 � Parameter determination for BP neural network

The neural network model used in this paper has three layers. 
The number of nodes in the hidden layer, activation function, 
and training parameters need to be further determined.

Table 1   Chemical composition 
of the base material and filler 
wire (wt.%)

Elements C Mn P S Si Cu Fe

Q235B
MG50-6

0.18
0.07

0.50
1.27

 ≤ 0.045
0.015

 ≤ 0.045
0.014

 ≤ 0.30
0.76

-
0.15

Balance
Balance



1798	 Welding in the World (2023) 67:1793–1807

1 3

3.2.1 � Number of nodes in the hidden layer

Setting an appropriate number of nodes in the hidden layer 
is important for the performance of BP neural network. For 
obtaining the optimal number of nodes in the hidden layer, 
the following formulae [37] can be referred to:

where n1 is the number of nodes in the hidden layer, n is the 
number of nodes in the input layer, m is the number of nodes 
in the output layer, and a is a constant between 1 and 10. The 
maximum value n1max = 9 and the minimum value n1min = 2 
for the number of nodes in the hidden layer were determined 
by the Eqs. (1) and (2). The neural networks with 2 to 9 nodes 
in the hidden layer were trained one by one. The root mean 
squared error (RMSE) of the validation samples were used to 
analyze the model error. The formula of RMSE is as follows:

The RMSEs for the neural networks with 2 to 9 nodes 
in the hidden layer were compared, and the optical num-
ber of nodes in the hidden layer for the final structure of 
BP neural network were determined as that for the neural 
network model with the minimum RMSE.

3.2.2 � Activation function

The activation function can limit the output of neuron nodes 
to some range and introduce nonlinear ability. The inputs and 
outputs of purelin activation function can be arbitrary values, 
which is suitable for data fitting. Therefore, the purelin func-
tion was selected as the activation function, and the gradient 
descent method was used to train the neural network.

(1)n
1
<

√

n + m + a

(2)n1 = log2n

(3)RMSE =

�

∑N

i=1

�

Xobs,i − Xmodel,1

�2

N

3.2.3 � Training parameters

The training times, the learning rate, and the minimum error of 
the training target were set as 10,000, 0.001, and 0.00001 mm, 
respectively. When the number of training iterations reaches 
10,000 or the training error is less than 0.00001 mm, the train-
ing process ends.

Based on the above-mentioned settings, the neural networks 
with 2 to 9 nodes in the hidden layer were trained, whose 
RMSEs are shown in Table 2. When the number of nodes 
in the hidden layer was set to 5, the RMSE was the smallest, 
which was 0.0799 mm. Therefore, the number of nodes in the 
hidden layer for the final structure of BP neural network was 
selected as 5.

3.3 � Modeling results

Fifty samples were used to validate the BP neural net-
work. The validation results are shown in Fig.  4. In 
Fig. 4a, the lower limit of D3 in training dataset was 
2 mm which is marked with the red dot dash line; while 
the upper limit was 10 mm, which was marked with the 
red dash line. In practice, if D3 is lower than 2 mm, the 
weld is partially penetrated, while if D3 is over 10 mm, 
the weld is over penetrated; thus, the training dataset 
covered the whole working range for full penetration 
condition. In other words, the BP neural network trained 
using the training dataset had the same working range, 
i.e., D3 was within [2, 10] mm. All the validation sam-
ples were all in this range too, as shown in Fig. 4a. The 
maximum error was no more than 0.10 mm (Fig. 4b). It 
proved a high prediction accuracy of the model, showing 
a good model performance within the working range. 
Therefore, the BP neural network model can meet the 
requirements of predicting the penetration degree based 
on the characteristic signals.

4 � Experimental results and discussion

4.1 � The influence of step distance on characteristic 
signals

In our previous study [1], the relationship between char-
acteristic signals and penetration degree in a single sta-
tionary welding was explored. In the step welding, the 
welding points overlap partially, and the previous weld-
ing point causes the change in temperature field of work-
piece, which would influence the weld pool geometry 

Fig. 3   Structure of BP neural network model

Table 2   RMSEs for the BP 
neural networks with 2 to 9 
nodes in the hidden layer

Number of nodes in the hidden layer 2 3 4 5 6 7 8 9

RMSE/mm 0.1387 0.0910 0.0856 0.0799 0.0894 0.1023 0.1117 0.1317
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and its size of next point. Thus, the dynamic behavior 
of the present molten pool and the characteristic signals 
may also be interfered. In order to analyze the applicabil-
ity of the characteristic signals obtained from the station-
ary welding in the step welding, four groups of welding 
tests with different step distances were conducted. The 
D3

* was set to 5 mm, and the step distances were set as 
7 mm, 5 mm, 3 mm, and 1 mm, respectively. When the 
step distance was 7 mm, the time for the torch travel-
ling across this step distance was 35 ms (at an average 
torch travel speed of 200 mm/s relative to the workpiece), 
which was far less than the pulse current cycle of 200 ms. 
Therefore, the level of welding current during the torch 
travelling process was not considered.

The input and output of the feedback control system are 
shown in Fig. 5. Since the backside molten pool width was 
approximately 4 mm when critical penetration occurred [1], 
the start line of D̂3 was set to 4 mm in Fig. 5. The step signals 
are in the form of pulse with an amplitude of approximately 
4 V, which was sent to the stepper motor when the trigger 
condition is met. The weld morphology for the experiments 
in Fig. 5 is shown in Fig. 6.

When the step distance was 7 mm, there was almost 
no overlap between the neighbored welding points from 
the backside view (Fig. 6a2), while there was a small 

part of welding points overlapped from the topside 
(Fig. 6a1). From Fig. 5a, D̂3 obtained by the BP neural 
network gradually increased after the critical penetration 
occurred. When D̂3 reached 5 mm, the control system 
sent a step signal to move the torch to the next position 
for a new stationary welding process, and in such a way, 
the backside weld width of each welding point was con-
trolled to the preset value, approximately 5 mm. From the 
observations described above, the step distance of 7 mm 
between the welding points was too large, the previous 
welding point had no effect on the characteristic signals 
for the present one, but the backside weld width was 
uneven due to no overlap.

When the step distance was reduced to 5 mm, there was 
partial overlap between the adjacent welding points from 
the topside view (Fig. 6b1), and the uniform backside weld 
width (Fig. 6b2) was obtained, indicating that the previous 
welding point had little effect on the characteristic signals 
for the present one.

With the further decrease in the step distance to 3 mm, 
the overlap between the adjacent welding points increased 
from the topside view (Fig. 6c1), and the backside weld 
width was more uniform (Fig. 6c2) compared with the weld 
having a step distance of 5 mm. The influence of the previ-
ous welding point on the characteristic signals for the pre-
sent one still can be neglected.

However, when the step distance was reduced to 1 mm, 
the volume of molten pool during the welding process 
increased (as can be inferred from Fig. 6d1 and 6d2, the 
topside and backside weld width increased) due to the heat-
ing of the previous welding point, and burn through occurs 
at approximately 30 s (Fig. 5d). From Fig. 5d, after approxi-
mately 15 s, there were some welding points with only one 
prediction from the BP neural network, indicating the sig-
nificant influences of the previous welding point. It failed the 
prediction model using the proposed characteristic signals 
from the stationary welding, and further failed the control 
strategy of stepping welding.

To summarize, the step welding method is feasible, only 
if the step distance is set properly, in the horizontal position, 
in which condition the proposed characteristic signals and 
control strategy are effective. In the subsequent backside 
weld width control, the step distance controlled by the con-
troller was all set to the optimized one, i.e., 3 mm.

4.2 � Backside weld width control experiment

4.2.1 � Step welding experiment with closed‑loop control

The schematic diagram of the normally placed pipe is 
shown in Fig. 7. The square butt welding was conducted 
in the horizontal position. The set value in the step 

Fig. 4   Prediction results (a) and their errors (b) of BP neural network 
model
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Fig. 5   The input and output of 
the control system. The step 
distances were set as 7 mm (a), 
5 mm (b), 3 mm (c), and 1 mm 
(d), respectively
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Fig. 6   The weld morphology. 
The topside weld appearances 
for experiments with the step 
distances of 7 mm (a1), 5 mm 
(b1), 3 mm (c1), and 1 mm (d1) 
are presented at left side; and 
the corresponding backside 
weld appearances are presented 
in subfigures a2–d2 at the right 
side, respectively

Fig. 7   Schematic diagram of 
normally placed pipe. a Main 
view; b vertical view
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welding experiment with closed-loop control was fixed, 
D3

* = 5 mm, and the control results are shown in Fig. 8. 
Figure 8b is the enlarged view of the input and output 
of the control system from 80 to 100 s. When the back-
side molten pool width calculated by BP neural network 
reached 5 mm, the control system sent a step signal for 
the next stationary welding. In order to observe the weld 
shaping inside the pipe, the pipe was cut into 4 pieces. 
The topside and backside of the weld were well shaped, 

and the backside weld width was uniform and maintained 
at approximately 5 mm. The experimental results showed 
that no predictive algorithm is needed for the controller.

In order to explore the regulation process of the con-
trol system, a test with variable set value of D3

* was con-
ducted. D3

* stepped from 5 to 7 mm. The control results 
are shown in Fig. 9. After the D3

* stepped to 7 mm, the 
control system sent a step signal when D̂3 reached 7 mm, 
and the backside weld width was apparently stepped up at 

Fig. 8   The input and output of 
the control system and weld 
appearance in the step welding 
experiment with fixed backside 
weld width. a The input and 
output of control system; b 
enlarged view of a from 80 to 
100 s; c topside weld appear-
ance; and d backside weld 
appearance
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the position with yellow arrow in Fig. 9d. The backside 
weld width was controlled to approximately 5 mm and 
approximately 7 mm before and after the step change, 
respectively. The experimental results showed that the 
regulation process cannot be clearly observed due to the 
intermittent control in the step welding, but the relation-
ship between Ub  , ΔUb, and the backside molten pool 
width works well when the step distance is set properly.

4.2.2 � Robustness of the control system

To test the robustness of the control system, closed-loop 
control experiments with variable gap and variable heat dis-
sipation were designed and conducted.

Figure 10 shows the schematic diagram of a pair of 
pipes under the fit-up condition of a variable gap. The 
minimum gap between the pipes was 0 mm (at 0 o’clock) 

Fig. 9   The input and output 
of control system and weld 
appearance in the step welding 
experiment with variable back-
side weld width. a The input 
and output of control system; b 
enlarged view of a from 105 to 
125 s; c topside weld appear-
ance; and d backside weld 
appearance. The yellow arrow 
points to the step position in d 
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Fig. 10   Schematic diagram of 
pipes under the fit-up condition 
of a variable gap (in mm). a 
Main view; b left view

Fig. 11   The input and output 
of the control system and weld 
appearance in the step welding 
under the fit-up condition of a 
variable gap. a The input and 
output of the control system; b 
enlarged view of a from 80 to 
100 s; c topside weld appear-
ance; and d backside weld 
appearance



1805Welding in the World (2023) 67:1793–1807	

1 3

and the maximum was 1 mm (at 6 o’clock). The set value 
was fixed, D3

* = 5 mm, in the pipe joining process with 
variable gap under the condition shown in Fig. 10. The 
control results are shown in Fig. 11. The topside and 
backside of the weld were well shaped, and the back-
side weld width was uniform, approximately 5 mm. The 
control system mainly controls the backside molten pool 
width according to the molten pool states; thus, it can 
work well under the fit-up condition of a variable gap.

Variable heat dissipation condition was created by cut-
ting slots on the upper and lower pipes (from position 
of 3 o’clock to 9 o’clock), as shown in Fig. 12. The set 
value was fixed, D3

* = 5 mm. The control experiment was 
conducted in the pipe joining process with variable heat 
dissipation under the condition shown in Fig. 12. The 
control results are shown in Fig. 13. In areas with differ-
ent heat dissipation conditions, the topside and backside 
of the weld were well shaped, and the backside weld 
width was maintained at approximately 5 mm. Therefore, 
the control system can work well under different heat 
dissipation conditions.

5 � Conclusions and future work

This work mainly designed a penetration control sys-
tem for the wire-filled pulsed gas tungsten arc welding 
(GTAW-P) of pipe in the horizontal position. BP neural 
network was used to model the relationship between the 
average base voltage ( Ub ), the fluctuation of base voltage 
(ΔUb), and the backside molten pool width ( D3 ). Step 
welding method was employed to verify the effective-
ness of the control strategy. The main conclusions can 
be summarized as follows:

(1)	 As per step welding, a weld penetration control strat-
egy was proposed and a weld penetration control 

system was designed for the wire-filled GTAW-P of 
pipe in the horizontal position. The control strategy 
is that firstly, the occurrence of critical penetration 
is judged using the change in average peak voltage 
(ΔU*) in the stationary welding, and then BP neural 
network is used to calculate the backside molten 
pool width ( ̂D3 ) according to Ub  and ΔUb, when D̂3 
reaches the preset value (D3

*), the controller drives 
the stepper motor and wire feeder for a new station-
ary welding.

(2)	 The BP neural network model with 5 nodes in the 
hidden layer and purelin function as the activa-
tion function was trained to model the relationship 
between Ub  , ΔUb, and D3 in real time, which had a 
high prediction accuracy with the maximum error 
no more than 0.10 mm.

(3)	 It is verified that the characteristic signals was effec-
tive in step welding. When the step distance was 3 mm 
under the condition of the present work, the weld was 
well shaped and D3 was uniform.

(4)	 The closed-loop feedback control system with the 
BP neural network prediction model can effectively 
control D3 to be around the set value. The control 
system mainly controls D3 according to the molten 
pool states, due to which the control system can 
work with a strong robustness in the step welding, 
even under the condition of variable gap or variable 
heat dissipation.

In the present work, the mapping of input and output 
by BP neural network was obtained under the conditions 
that (a) the base material was Q235B; (b) the thickness of 
the base material was 2 mm; (c) the weld was penetrated 
and the backside weld width of it was in the range of 
2 mm to 10 mm; etc. Thus, more modeling work should 
be done in the future so that the prediction model could 
be improved to handle more complex conditions.

Fig. 12   Schematic diagram of 
pipes under the condition of 
variable heat dissipation (in 
mm). a Main view; b left view
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