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Abstract
The joining of AA2024-T3 with friction stir welding (FSW) at a rotational speed of 600 rpm and welding speed of 200 mm/
min produces areas with significantly different heterogeneous microstructures, which relate to mechanical properties and 
corrosion behavior. In this study, the mechanical properties and corrosion susceptibility of different zones of an AA2024-T3 
joint were investigated with tensile, hardness, and electrochemical testing. The joint was found to have reduced mechanical 
properties compared to base metal due to the significant microstructural changes. The developing localized high temperatures 
allow re-formation of the Guinier–Preston-Bagaryatsky (GPB) zone and dissolution of S phase, resulting in lowers hardness 
in the stir zone (SZ). Tensile test specimens failed in the lowest hardness area located in the heat-affected zone (HAZ) at the 
retreating side (RS). The SZ exhibited a relatively low pitting corrosion resistance compared to that of the BM and HAZ of 
the top surface, due to the refined grains and a larger number of intermetallic particles during welding.

Keywords Friction stir welding · Aluminum alloy · Mechanical properties · Corrosion sensitivity

1 Introduction

When using conventional fusion welding techniques, such as 
gas tungsten arc welding (GTAW) and gas metal arc welding 
(GMAW) high-strength aluminum alloys, joints develop 
porosity, poor dendritic solidification microstructures, 
and reduced mechanical properties [1–3]. So, a solid-state 

joining technique like friction stir welding (FSW) can join 
high-strength alloys which belong to the 2xxx and 7xxx 
series [4, 5], which alloys’ joints always contain welding 
defects when welded with conventional fusion techniques 
[6, 7], while FSW produces joints without defects with the 
added advantages of refining the microstructure, decreasing 
the grain size and improving the tensile properties, hardness, 
and fatigue life. However, these joints undergo intense 
frictional heating and plastic deformation as a rotating tool 
is plunged into the joint [1, 8, 9]. These effects may make 
the joint more susceptible to corrosion than the base material 
itself. There exist four microstructural zones in the FSW 
joint: stir zone (SZ), thermomechanically affected zone 
(TMAZ), heat-affected zone (HAZ), and base material (BM) 
[4, 10]. Due to the heterogeneous heating and deformation 
along the joint, these zones have different microstructures (in 
terms of grain size, dislocation structure/density, precipitate 
state, etc.). Furthermore, the microstructures in the 
advancing side (AS) and that in the retreating side (RS) are 
asymmetric due to the inherent characteristics of the process 
[11–13], so it is expected that they will exhibit different 
degrees of corrosion resistance and micromechanical 
properties.

During service, it is expected that FSW joints will be 
exposed to various corrosive environments. In the past 
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decade, a number of published works have focused on 
microstructural evolution [14, 15], mechanical properties 
[1, 16, 17], residual stress analysis [18, 19], and numerical 
simulation of the plastic deformation and temperature field 
[20, 21] of such joints. However, there are no publications 
investigating the relationship between microstructure, 
mechanical properties, and corrosion behavior of aluminum 
alloys FSW joints. It is an established fact that precipitates 
and second-phase particles play an important role in 
corrosion behavior in the case of heat-treatable aluminum 
alloys. Zhang et al. [1] examined the hardness profiles and 
microtensile properties with the microstructure in 2024-T3 
which had been joined with FSW. It was found that lower 
hardness and tensile properties were measured in the SZ and 
HAZ and the lower mechanical properties were associated 
with the dissolution of the GPB zone and the coarsening 
of S phase during the thermal cycle and localized plastic 
flow of the process. Jariyaboon et al. [21] reported that both 
SZ and HAZ in the AA2024-T351 joints are susceptible to 
corrosion. The SZ shows a larger cathodic activity than the 
HAZ due to the increased number of intermetallic compound 
particles. All of the joints produced fractured in the lowest 
hardness area in the HAZ where partial dissolution of the 
GPB zone and coarsening of the S phase occur. Xu et al. [22] 
identified that the state of the precipitate and second particle 
strongly relate to the corrosion performance of the joint 
along its thickness and the hardness measured through the 
joint for the 2219-O aluminum alloy. It is expected that FSW 
joints are more sensitive to the corrosion environment than 
the Al matrix itself in the case of high-strength Al alloys 
[23]. The mechanical properties and corrosion behavior are 
affected by grain size, precipitation distribution, and size, as 
well as intermetallic phases present.

It has been established that in order to prevent corrosion, 
the surfaces of the 2xxx or 7xxx series aluminum alloys need 
to have pure aluminum (of about 30 μm thickness) cladding 
[1, 20]. This layer is destroyed during FSW, which removes 
the corrosion protection from the top surface of the joint. 
As corrosion usually attacks a joint on the top surface, the 
study of the top surface is required [24]. There is however 
limited literature on the investigation of corrosion behavior 
on the top surface of FSW joint, which is required for the 
assessment of service properties of such joints. Hence, the 
objective of this work is to measure mechanical properties 
(microhardness and tensile properties), identify microstructure 
evolution (precipitation distribution), and measure corrosion 
susceptibility of the top surface under optimum welding 
parameters. A relationship between microstructure, 

microhardness, and corrosion performance of 2024-T3 joint 
was established, because of its wide industrial use.

2  Experimental procedure

2.1  Materials

The 3.2-mm-thick plate of commercial AA2024-T3 aluminum 
alloy was used as base material in this study, with its 
composition shown in Table 1. The specimens had dimensions 
200 mm × 90 mm × 3.2 mm, and they were butt welded with a 
Beijing FSW Technology Co., Ltd. of Beijing, FSW machine. 
The welding direction was parallel to the rolling direction of 
the sheets along the sheet length of 200 mm. The AA2024-T3 
sheets were cleaned with acetone prior to welding and were 
fixed tightly using a custom fixture. The friction stir tool 
material was H13 tool steel. The tool shoulder was concave 
with a diameter of 10 mm, and the tool pin is a right-hand 
threaded conical probe of 3.4 mm in diameter and 2.9 mm 
in length. The tool tilt angle was set at 2.5° (Z-axis) and the 
plunging depth at 0.2 mm. In addition, the optimum welding 
parameters were set to, following tests, a rotational speed of 
600 rpm and traveling speed of 200 mm/min [25].

2.2  Test methods

The metallographic images of the cross section of the joint 
and the corrosion depth were obtained with an optical 
microscope (OM) from samples embedded in resin, which 
were progressively ground with SiC abrasive papers 
from P200 up to P5000 size, and polished with 1.5 μm 
diamond paste then to be etched with Dix-Keller’s reagent 
[26]. A scanning electron microscope (SEM) was used to 
characterize the corrosion morphologies and tensile fracture 
surfaces. Differential scanning calorimetry (DSC) was used 
to identify the precipitation evolution of the joint with 
measurements conducted in Ar atmosphere to minimize 
oxidation. The area of TMAZ is narrowest among other 
zones, and the DSC sample is not extracted in TMAZ. In this 
study, the DSC sample was φ4 × 2 mm. DSC experiments 
were also carried out at a heating rate of 10 °C/min in the 
temperature range of 50 to 450 °C. Tensile testing was 
performed at room temperature at a displacement rate of 
1  mm/min with specimens, which were machined in a 
direction perpendicular to the joint and a gauge length of 
25 mm. The specimens were cut from the welded sheets with 
electric discharge machining, as shown in Fig. 1.

Table 1  Chemical composition 
of AA2024 alloy (wt%)

Cu Mg Mn Fe Si Cr Zn Ti Others Al

3.8 ~ 4.9 1.2 ~ 1.8 0.3 ~ 0.9  ≤ 0.5  ≤ 0.5  ≤ 0.1  ≤ 0.25  ≤ 0.15  ≤ 0.15 Bal
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Vickers hardness was measured across the cross-sectional 
surface for a load of 200 g applied for 15 s. As shown in 
Fig. 2, three series of measurements were taken across the 
weld (BM, HAZ, TMAZ, SZ) at a spacing of 0.5 mm of each 
other. The width of the measured zone is 40 mm while being 
at 0.5 mm off the top and bottom surfaces of the joint. The 
three series of hardness measurements were performed and 
classified as: center line of the cross section (L1), top 1 mm 
(L2), and bottom 1 mm (L3) and shown in the figure. Each 
line of the series of measurements incorporated 80 measure-
ments that extended from the center away up to 20 mm on 
both the retreating side (RS) and the advancing side (AS).

In order to relate microhardness and tensile strength 
measurements with changes in corrosion susceptibility 
within the joint, localized electrochemical measurements 
were made on the top surface of the joint (Fig. 1) using the 
three-electrode system. The reference electrode was satu-
rated calomel electrode (SCE) with Luggin capillary, while 
the counter electrode was a large platinum sheet and the 

working electrode was the joint itself with an approximate 
area of 0.2  cm2. Prior to electrochemical measurements, 
specimens were mechanically ground and polished to mir-
ror surface finish, washed with distilled water, and dried in 
warm air. The test solution used was a non-deaerated and 
unstirred 3.5 wt% NaCl aqueous solution at ambient tem-
perature. An equal volume of the same concentration fresh 
testing solution was provided to each specimen. Tafel polari-
zation scans were conducted, which started with a range 
of − 0.25 V vs open circuit potential (OCP) up to 0.25 V vs 
OCP at a scan rate of 0.167 mV/s. Electrochemical imped-
ance spectroscopy (EIS) was carried out at voltage ampli-
tude of ± 5 mV in the 0.01 to 100 kHz range[27].

3  Results and discussion

3.1  Microstructure

Figure 3 shows the metallographic images of grain size 
and shape distribution of the weld cross section in each 
weld zone when welding with rotation speed of 600 rpm 
and traveling speed of 200 mm/min. The average grain 
size and shape from BM to HAZ and SZ change as shown 
in Fig. 1b–d, due to the different temperatures and plastic 
deformation locally experienced during welding. It can be 
seen that the microstructure of BM has highly elongated 
grains of 20 ~ 40 μm length and 3 ~ 5 μm width. The HAZ, 
also exposed to the same temperature history, has the same 
microstructure as BM with more elongated grains. It can be 
established that TMAZ undergoes less intense mechanical 
stirring action and has upward directed grains, which are 
slightly elongated and bent along the rotation direction [28]. 
The TMAZ is quite narrow, making it difficult to take elec-
trochemical measurements, as it barely extends to the top 
weld surface. In these welds no recrystallization observed in 
TMAZ. The SZ consists of relatively fine, equiaxed grains, 
with an average size of 3 μm, as dynamic recrystallization 
occurred under the intense deformation and frictional heat-
ing present.

Figure  4 shows back-scattered electron microscope 
images of the intermetallic particle distribution in all regions 
of the joint, as it has been established that the distribution of 
secondary phases can affect localized corrosion resistance 
[21, 22]. Coarse white intermetallic particles are present in 
all three microstructural areas, whose distribution and size 
is controlled by plastic deformation. These intermetallics 
were of two types of particles [22, 29, 30]: small round-
shaped S-phase  (Al2CuMg) and irregularly shaped Fe and 
Si enriched residual impurity particles (the corresponding 
EDS measurement has not been included), both of which 
are usually found in such areas. The size of the interme-
tallics was attributed to two factors: (i) During FSW of 

Fig. 1  Position and detail of samples (A, tensile specimen; B, met-
allographic specimen; C, hardness specimen; D, DSC specimen; E, 
electrochemical corrosion testing specimen; mm)
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AA2024 alloy, the intermetallics are broken up due to the 
stirring action (mainly plastic deformation). And the larger 
the stirring action is, the smaller the intermetallics are. The 
gradual decrease in the size of intermetallics and increase in 

number is due to the intense change in plastic deformation 
from BM, HAZ, and TMAZ to SZ. (ii) The intermetallics 
were dissolved and re-precipitated under the action of phase 
transformation due to the heat input. These particles cannot 

Fig. 3  Cross section of FSWed AA2024-T3 joint: (a) global view, (b) BM, (c) TMAZ, and HAZ in the AS and (d) SZ

Fig. 4  Backscattered scanning 
electron observations of inter-
metallic distribution: (a) SZ, (b) 
TMAZ, (c) HAZ, and (d) BM
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be eliminated and dissolve with heat treatment, but can be 
grouped together or even eliminated by plastic deformation 
[21], effects which are typically found in FSW. Particles both 
in BM and HAZ appear the same to these intermetallic par-
ticles (Fig. 4a and b). The intermetallics in the TMAZ were 
redistributed along the rotation direction due to the effect of 
the rotating pin (Fig. 4c). However, intermetallics in the SZ 
show a uniform size and distribution due to intense stirring 
and mixing (Fig. 4d).

3.2  Microhardness map and differential scanning 
calorimetry curves

Figure 5 shows the hardness profiles in the top, middle, and 
bottom of weld cross section, where the lower hardness 

areas are located in the SZ and HAZ of the RS and AS. 
The width of the soft zone is about 30 mm, which is the 
ratio that has been observed in literature [31–33]. The hard-
ness distribution is different in the top, middle, and bottom 
of weld cross section, due to the heterogeneous heat input 
during welding. This could be attributed to the following: 
grain size and precipitated phase are obviously heterogene-
ous in top, middle, and bottom cross sections. Microhard-
ness is affected strongly by the strengthening precipitates of 
the Guinier–Preston-Bagaryatsky (GPB) zones and S phase 
 (Al2CuMg) [29, 33, 34].

The DSC is a reliable and powerful tool to investigate 
solid-state reactions in precipitation strengthened Al alloys 
like the 2xxx series Al alloys, and that of AA2024 consists 
of GPB and S phase [34]. Figure 6a shows the DSC curves 
of BM, HAZ, and SZ. According to the literature [34], a 
well-defined endothermic peak A corresponds to the dis-
solution of GPB zone, and the exothermic peak B can be 
linked to the precipitation of S phases from the solid solution 
resulting from the dissolution of the GPB zone. The follow-
ing equations proposed by Genevois et al. [6] were used in 
this study to calculate the relative fractions of GPB zone 
(fGPB) and S phases (fS) originally present in the sample.

Figure 6a shows the DSC curves of BM, HAZ, and SZ, 
where an endothermic peak A is shown between 170 and 
240 °C with maximum at ~ 225 °C, due to the dissolution 
of GPB zone from solute clusters (mainly Cu-Mg clus-
ters) [1]. As dissolution is observed in all three zones, it is 
understood that GPB zone exists. The exothermic peak B is 
shown between ~ 230 and 300 °C, and it is associated with 
the precipitation of S phases from the solid solution and, in 
addition, it is the effect of the dissolution of the GPB zone. 
It can be assumed that the peak area A is SA and SA0 with a 
volume fraction of fGPB, and the peak B is SB and SB0 with a 
volume fraction of fS. According to [34], the relative ratios 
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of the GPB zone (fGPB) and the S phase (fS) which were ini-
tially present in the joint can be estimated by the following:

3.3  Tensile properties and fracture surfaces

Figure 7a and b show the stress–strain curves and test results 
for both BM and the joint, where error bars in Fig. 7b indi-
cate the range of test results for three specimens per case. 
There were no defects in the weld due to insufficient heat 
input. However, the ultimate tensile strength (UTS), the 
yield tensile strength (YS), and the elongation (El) of the 
joint were lower than those of BM. This is related to the 

(1)f
GPB

=
SA

SA0

(2)f
S
= 1 −

SB

SB0

following: at the beginning, during welding, all zones in the 
joint experience intense heat input and plastic deformation, 
which result in heterogeneous microstructures and lower 
mechanical properties [1, 4]. Furthermore, the non-uniform 
distribution and size of precipitation (S phase, etc.) weaken 
mechanical properties to a limited extent [1, 4].

In addition, tensile test samples fractured at the HAZ of 
the RS (inserted figure in Fig. 7a), in which fracture site 
was related to the weakest zone, i.e., the lowest hardness 
distribution as shown in Fig. 5. Examination of the fracture 
surfaces by SEM is shown in Fig. 7c and d, which show 
tearing ridges and deep dimples (Fig. 7d), characteristics of 
ductile fracture.

3.4  Electrochemical corrosion

Figure 8 shows the Tafel polarization curves of SZ, HAZ, 
and BM specimens in a 3.5-wt% NaCl solution where all 
curves follow the same trend. Electrochemical parameters 
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calculated from Tafel polarization curves are shown in 
Table 2 using linear extrapolation. The corrosion resistance 
of every zone can be evaluated with these parameters. It can 
be seen that the corrosion potential (Ecorr) of the SZ was 
slightly lower than that of the BM and HAZ, and the cor-
rosion current density (icorr) of the SZ was slightly higher. 
Furthermore, both HAZ and SZ showed a lower Ecorr value 
and higher icorr value than that of the BM. As a result of this, 
both SZ and HAZ specimens showed an increased tendency 
for corrosion in the electrochemical Tafel polarization tests, 
and SZ showed the worst corrosion resistance among three 
specimens.

EIS measurements were performed in a 3.5-wt% NaCl 
solution to assess the electrochemical corrosion resistance 
of SZ, HAZ, and BM. The experimental and fitted Nyquist 
plots of three specimens are shown in Fig. 9. The Nyquist 
plots were analyzed using the equivalent electrical circuit 
and inserted in Fig. 9, where RS stands for the electrolyte 
resistance of 3.5 wt% NaCl solution, R2 represents the resist-
ance of oxide film, R1 corresponds to the resistance inside 
the film pores, and Q includes the pseudocapacitance of 
the film, expressed with the constant phase element (CPE), 
where C stands for the double layer capacity and R2 is the 
main polarization resistance and can directly reveal the 
corrosion rate. The variation of oxide film resistance (R2) 

is shown in Fig. 10. A higher value of R2 is related to the 
reduced damage of the oxide film by the chloride of the 
electrolyte. It can be seen in Fig. 10 that R2 increases from 
the SZ, to the HAZ and then further to the BM, with the BM 
exhibiting the best corrosion performance, and the corrosion 
resistance of the HAZ being better than that of the SZ.

Figure 11 shows the Bode plots and phase angle diagrams 
of the three specimens. The values of phase angles are con-
stant and similar with the SZ, HAZ, and BM for the low 
frequency range of 0.01–1 Hz. The impedance and phase 
angle values of the BM are much higher than those of the 
SZ and HAZ for frequencies. In the case of high frequency 
spectra, of  103 to  105 Hz, the value of phase angle decreases. 
It is also clear from Fig. 11 that resistance to electrolyte of 
the HAZ is higher than that of the SZ.

In every case, the local corrosion performance in a joint 
is related to microstructural changes. The BM is usually 

-10 -9 -8 -7 -6 -5 -4 -3 -2
-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3
V(

lait
net

o
P

S
C

E
)

Log (i/A cm
-2

)

 SZ

 HAZ

 BM

Fig. 8  Tafel polarization curves of the SZ, HAZ, and BM in a 3.5-
wt% NaCl solution

Table 2  Electrochemical parameters estimated from the Tafel polari-
zation curves

Sample Ecorr (vs SCE)/mV icorr (mA/cm2)

SZ  − 650.2 50.9
HAZ  − 630.2 42.2
BM  − 617.6 41.9
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clad with pure Al film to improve its corrosion resistance 
[35]. In the SZ, severe plastic deformation and intense heat 
input contribute to the formation of diffuse precipitation 
and coarsening of the S phase, which results further nucle-
ation of pitting corrosion [28]. Furthermore, the SZ has 
undergone severest plastic deformation during welding. 
Thus, the size of intermetallics in SZ is smallest and the 
number is most among BM and HAZ. However, the lower 

temperature in HAZ effectively prevents the formation 
precipitation and coarsening of S-type phase [29, 36, 37].

3.5  Morphology of corrosion attack

Figure 12 shows the SEM micrographs of SZ, HAZ, and 
BM after the potentiodynamic polarization tests in a 3.5-
wt% NaCl solution. In the SZ (Fig. 12a), more pitting holes 
were found which were formed by combining a large number 
of smaller pits. It should be noted that a large number of 
white corrosion products were observed on the surface of 
SZ. Figure 12b shows a typical pit of the HA, whose depth 
and numbers of them are lower than those of the SZ. A few 
pits, which are shallow and small and not connected to other 
corrosion holes or grooves, can be observed in the HAZ. 
In addition, there are few pits in the BM and most of the 
surface has not been unaffected by corrosion (Fig. 12c). The 
SEM micrographs show that the corrosion severity degree 
increased in the order SZ > HAZ > BM, which is in agree-
ment with the observation from the electrochemical tests. 
This is related to the size and distribution state of S-phase 
 (Al2CuMg) and residual impurity particles.

The potential of the S phase is more negative than that 
of the matrix due to the activity of Mg in the S phase, 
making the S phase the first to be corroded followed by the 
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creation of pits [28]. In the SZ, the S phase is smaller and 
it is more uniform, which is associated with increased pit 
nucleation than the HAZ and BM. Moreover, the refined 
grains in the SZ would likely decrease corrosion resist-
ance when the dissolution rate is over 10 μA/cm2 [37]. 
Therefore, the corrosion resistance of the SZ is hindered 
considerably, compared to the HAZ and BM. All these 
points are in agreement with morphologies shown in the 
SEM and the electrochemical test results.

4  Conclusions

In this study, the welding of AA 2024-T3 with FSW was 
performed at a tool rotational speed of 600 rpm and weld-
ing speed of 200 mm/min. The microstructural character-
istics, mechanical properties, and corrosion performance 
were investigated. The findings of the present work can be 
briefly summarized:

1. A sound joint was produced. The dissolution of the 
GPB zones in the HAZ is lower than that in the SZ. The 
SZ shows the smallest grain size and the most disperse 
intermetallic particles than anywhere in the joint.

2. The hardness in SZ and HAZ was lower than that in 
the BM. In addition, the lowest hardness of the joint is 
located at the HAZ due to reduced dissolution of GPB 
zones and grain size. The fracture location of the joint 
was located in the HAZ of the RS where the lowest hard-
ness values were measured.

3. From the electrochemical tests and observations of the 
corrosion attack morphologies, SZ shows the worst cor-
rosion resistance performance between SZ, HAZ, and 
BM due to the refined grains and a larger number of 
intermetallic particles during welding. The BM shows 
the best corrosion resistance.
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