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Abstract
This paper explicates the joining of AA 6061/TiO2 composites by the friction stir welding (FSW) process. FSW experiments 
were conducted as per the three factors, three-level, central composite ivy– face-centered design method. Mathematical 
relationships between the FSW process parameters, namely tool geometry, welding speed, and tool rotational speed, and 
the output responses such as hardness, yield strength, and ultimate tensile strength were established using response surface 
methodology. Adequacies of established models were assessed through the analysis of variance method. Further, the paper 
elucidates the application of the teaching–learning-based optimization (TLBO) algorithm to identify the optimal values 
of input variables and to obtain an FSW joint with superior mechanical properties. The optimized experimental condition 
obtained from the TLBO yields an FSW joint with a UTS of 174 MPa, yield strength of 120 MPa, and hardness of 126HV. 
The study revealed that the result of the TLBO algorithm matched the findings of the FSW experiments.

Keywords AA6061/TiO2 composite · Friction stir welding · Response surface methodology · TLBO algorithm · 
Optimization

1 Introduction

As a solid-state thermo-mechanical joining technique, fric-
tion stir welding (FSW) is considered a promising method 
for welding aluminum matrix composites (AMCs) as it has 
the ability to eliminate the defects such as voids, porosity, 
and cracks associated with the traditional metal welding 
process [1]. FSW has been widely applied in many indus-
trial applications including automotive, marine, aerospace, 
railway, and renewable energy [2]. FSW is a dynamically 
continuous joining method that operates at a temperature 
less than the melting point of the material to be welded. 
This offers superior welding characteristics in alloys and 

metal matrix composites and consumes lesser energy than 
the conventional fusion welding process [3, 4]. In FSW, a 
rotating tool is inserted into the faying surfaces of the parts 
to be welded, and the tool is made to move along the weld 
line. The non-consumable tool generates sufficient heat at 
the weld area to plasticize the material by developing a huge 
frictional force between the revolving tool and the stationary 
workpiece. The localized heating softens the material around 
the pin, and a combination of tool rotation and translation 
leads to the movement of material from the front of the pin 
to the back of the pin [5, 6]. Plasticized material flow in 
the FS region is affected by the relative motion of the tool 
concerning the workpiece as well as the tool pin geometry 
[7, 8]. During the FSW process, the heat developed at the 
weld zone is comparatively lower than the amount of heat 
supplied in the conventional fusion welding process, which 
minimizes distortion and subsequently reduces the residual 
stress. Thus, FSW yields a uniform, void and defect-free 
joint which makes it an attractive joining process in the auto-
motive, aerospace, and marine industries [9].

During the recent decades, several experimental stud-
ies were reported in search of the impact of FSW process 
variables on the mechanical and metallurgical characteris-
tics of aluminum matrix composites (AMCs) dispersed with 
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different particulates such as SiC,  B4C,  ZrB2, AlN,  TiB2, 
TiC, and rutile [10, 11]. Comprehensive literature reviews 
suggest that FSW is a potential method to weld AMCs. It 
has been inferred from the literature that the process param-
eters (welding and tool rotational speed, tool geometry, axial 
force, tool tilt angle, tool, and workpiece material) play an 
important role to attain sound [12, 13]. High-quality welds 
with superior properties can be obtained by choosing the rel-
evant process variables with their optimum values. Several 
techniques exist to predict the optimum process parameters. 
Siva et al. [14] espoused a multi-criteria decision-making 
technique to evaluate the interrelationship among the FSW 
process parameters and different joint properties of the FS 
welded joints. The generalized reduced gradient (GRG) 
technique was utilized by Kalaiselvan and Murugan [15] to 
optimize the process variable in FSW of Al-B4C compos-
ite and evaluate metallurgical characteristics of FS welded 
joints. Verma et al. [16] performed a desirability approach 
based on optimization of the FSW process variable of armor 
marine grade alloy and inferred that the joint strength was 
mainly affected by the tool rotational speed and less influ-
enced by axial load and the welding speed. Taguchi-based 
Grey Relational Analysis (TGRA) technique was adopted 
by [17] for optimization of FSW parameters to join pure 
copper. The robustness of the GRA technique was tested by 
conducting the confirmation trials using optimum process 
variables. TOPSIS approach was used by Prabhu et al. [18] 
for multi-response optimization of the FSW process to join 
AMCs. The study revealed that the process parameter values 
obtained from this technique provided better closeness coef-
ficient values. Abdel Maboud et al. [19] employed the analy-
sis of variance (ANOVA) technique to identify the critical 
factors and used response surface methodology (RSM) to 
understand the influence of various FSW process param-
eters. Sreenivasan et al. [20] optimized the FSW of AA7075-
SiC composite through a genetic algorithm by using fitness 
function and predicted maximum value of hardness and 
tensile strength. Recently, Parida and Pal [21] proposed a 
fuzzy-assisted Taguchi approach for optimizing parameters 
of the FSW process with multiple responses. A fuzzy infer-
ence system was adopted to convert multiple responses into 
a single objective, and optimization was carried out using 
the Taguchi technique. ANN with backpropagation algo-
rithm was used by [22] for FSW of dissimilar alloys and 
performed multi-response optimization using particle swarm 
optimization (PSO) method. Prasanth et al. [23] applied the 
artificial bee colony (ABC) algorithm to evaluate the optimal 
combination of variables to attain better joint characteristics 
of FS welded dissimilar aluminum alloys.

From the available literature, it is learned that several tra-
ditional methods were used for the optimization of the FSW 
process, but these methods do not work well over a wider 
range of problems, and also often, they offer a local optimum 

solution. An evolutionary algorithm such as GA can over-
come these limitations, but efficient usage of this technique 
depends on the size of the population and the diversity of 
each solution in the given problem. Other evolutionary algo-
rithms such as ABC and PSO are adopted by researchers. 
But, successful usage of these techniques needs a proper 
selection of specific parameters related to the algorithm 
such as scaling, crossover, and mutation probability [24]. 
Choosing suitable algorithm-specific variables for a given 
problem is itself a major task in these optimization tech-
niques. To eliminate these limitations, an algorithm-specific 
parameter-less algorithm is used in this work, developed by 
Rao et al. [25, 26] known as the TLBO algorithm. It employs 
only general controlling variables like several iterations and 
population size for its working.

Identifying the optimal FSW process parameters to join 
aluminum matrix composites is a critical issue in realizing 
the process. Consequently, there is a requirement to formu-
late the modeling and optimization strategies for joining of 
composite by the FSW process. Hence, this paper focuses 
on the joining of AMCs through the FSW technique and 
developing the mathematical models for different responses 
such as yield strength (YS) and ultimate tensile strength 
(UTS) and hardness using the RSM technique. Further, 
attempts were made to apply a novel TLBO algorithm to 
identify the optimal combination of process variables from 
the developed mathematical model. To the author’s (of this 
paper) knowledge, the application of the TLBO algorithm 
to optimize the FSW of AA6061/TiO2 composite has not 
been yet studied and reported in the literature. Hence, the 
present article tries to contribute to the related knowledge 
base on this matter.

In the present paper, firstly the detail of experiments 
conducted to join AA6061/TiO2 composite by FSW pro-
cess is explained, followed by the steps to develop a math-
ematical model between the input parameters and the output 
responses using RSM that is illustrated. Then the impact 
of process parameters on different outputs responses is 
explained. Furthermore, the comprehensive explanation on 
working and the application of the TLBO algorithm on the 
developed models are shown along with the confirmation 
trials, conducted to confirm the relevance of the algorithm 
for the present FSW process.

2  Experiment

Stir cast AA6061/TiO2 composite plates have been consid-
ered in the present study. Table 1 lists the composition of the 
stir cast composite. The plates for welding were cut from the 
stir cast blocks in the size of 100 × 50 × 5, and FSW of these 
plates was performed on a CNC milling machine (vertical 
milling center). FSW tool with three different types of pin 
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profiles was used in this study, namely square, triangle, and 
threaded cylindrical. Pin dimensions were chosen in such a 
way that all three pins cover the same dynamic volume dur-
ing the FSW process. The tools are made of molybdenum 
steel, hardened to 63 HRC, having a 6 mm pin dynamic 
diameter and 4.7 mm pin length. Figure 1 depicts the tools 
used in the present work. Welding speed, tool rotational 
speed, and tool geometry are identified as process varia-
bles, whereas YS, UTS, and hardness are considered output 
responses.

The present study employed a central composite design 
(CCD) to fit a second-order response surface. CCD com-
prises a set of trial experiments at center points, a set of trial 
experiments in axial points, and a set of trial experiments 
in other points [22]. CCD consists of a set of trial experi-
ments at axial points, at center points, and experiments at 
other points. Axial points provide an evaluation of curvature 
of output response surfaces, whereas center points reduce 
the error related to model prediction and deliver uniform 
precision, ensuring a similar variance of prediction in the 
response surface. This ensures protection against bias, due 
to the existence of higher-order coefficients [27]. Thus, the 

process stability, uniform precision, and variance of predic-
tion are ensured by the center points in the design, and also 
these points provide a shield against bias. The number of 
trials to be performed in CCD is calculated by a formula 
(2p + 2p + q), where p represents the number of process vari-
ables or factors used in the study. The term q represents the 
number of central points, term 2p denotes axial points, and 
term 2p is the number of trial experiments. For a process 
with three factors, the suggested number of central points is 
either five or six [28]. In most of the studies, the number of 
central points was taken as six, by considering the suggested 
values of q and available resources in the studies [29, 30]. 
Consequently, in the present work, the CCD matrix with 
three process variables or factors with three levels that are 
having 20 sets of experiments are designed to compute the 
linear, quadratic, and two-way interaction of the input pro-
cess variables on the output responses. Twenty sets of coded 
experiments consist of  23 or 8 sets of trial experiments, 6 
sets at axial points, and the remaining 6 sets at central points. 
Table 2 lists the coded values of input process parameters.

Specimen for UTS test was prepared as per the ASTM-
E8 guidelines, by cutting the sample normal to the weld 

Table 1  Chemical composition 
(in wt %) of the stir cast 
composite

Chromium Copper Iron Manganese Magnesium Silicon TiO2 Aluminum

0.04–0.35 0.15–0.4 0.7 0.15 0.8–1.2 0.4–0.8 3 Remaining

Fig. 1  FSW tool with square, 
triangle, and a threaded cylin-
drical pin

Table 2  Input process 
parameters with levels

Parameters Low Mid High

Tool rotational speed (RS) (rpm) 750 1000 1250
Welding speed (WS) (mm/min) 60 75 90
Tool geometry (TG) Threaded cylindrical 

(TC)
Triangle (TL) Square (SQ)
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direction as depicted in Fig. 2 and tested on a universal test-
ing machine. For each of the experiments, three samples 
were taken for testing, and the mean of these test values was 
taken as final values. Measurement of hardness was done 
using Vickers hardness tester, with a load of indentation of 
5 kg for 30 s. Measurement was done in the mid of the stir 
zone.

3  Development of a mathematical model

The process parameters and the output responses were corre-
lated by developing a second-order regression equation, and 
the response function Z is mathematically represented as:

where Q0 denotes regression constant and Qi, Qii, and Qij 
denote linear, quadratic, and interaction coefficients, respec-
tively, whereas xi and xj represent the independent process 
parameters, Z denotes the dependent output response, and er 
represents the error in the experiments [31]. As the present 
work consists of three independent parameters, the above 
relation may be shown in the following form:

where Q0 is a constant; Q1, Q2, and Q3 are linear coef-
ficients; Q12, Q13, and Q23 are interaction coefficients; Q11, 
Q22, and Q33 are quadratic coefficients in the regression 
model; and RS, WS, and TG represent process parameters. 
Integer values are assigned to the different types of tool 
geometries to develop the mathematical model. TC, TL, and 
SQ are assigned integer values of 1, 1.5, and 2, respectively. 

(1)Z = Q
0
+ Qixi + Qiix

2

i
+ Qijxixj + er

(2)

Output = Q
0
+ Q

1
(RS) + Q

2
(WS) + Q

3
(TG)

+ Q
11
(RS2) + Q

22
(WS2) + Q

33
(TG2)

+ Q
12
(RS.WS) + Q

13
(RS.TG)

+ Q
23
(WS.TG).

Minitab software was used to carry out regression analysis 
to obtain coefficients of the regression equation [32]. The 
mathematical relationships between the variables and the 
output responses were developed and given by Eqs. 3a, 3b, 
and 3c.

ANOVA technique is employed to test the adequacy of 
the developed empirical relationships. Table 3 lists the result 

(3a)

YS = − 257.5 + 0.5071 ∗ RS + 1.975 ∗ WS

+ 39.6 ∗ TG − 0.000252 ∗ RS ∗ RS

− 0.00990 ∗ WS ∗ WS − 12.91 ∗ TG ∗ TG

− 0.000133 ∗ RS ∗ WS + 0.00200 ∗ RS ∗ TG

+ 0.0333 ∗ WS ∗ TG

(3b)

UTS = − 354.2 + 0.7520 ∗ RS + 2.049 ∗ WS

+ 53.8 ∗ TG − 0.000374 ∗ RS ∗ RS

− 0.00828 ∗ WS ∗ WS − 15.45 ∗ TG ∗ TG

− 0.000133 ∗ RS ∗ WS + 0.00000 ∗ RS ∗ TG

+ 0.0000 ∗ WS ∗ TG

(3c)

Hardness = − 100.0 + 0.3196 ∗ RS + 0.757 ∗ WS

+ 26.1 ∗ TG − 0.000165 ∗ RS ∗ RS

− 0.00364 ∗ WS ∗ WS − 9.27 ∗ TG ∗ TG

+ 0.000033 ∗ RS ∗ WS + 0.00300 ∗ RS ∗ TG

+ 0.0500 ∗ WS ∗ TG

Fig. 2  Schematic representation 
of a FSW weld specimen and b 
specimen for UTS test

R6

25
32
100

30

10

5

a)

b)

Table 3  ANOVA results

Response Sum of squares Mean square F value R2 Adj R2

YS 2325.85 258.428 162.07 99.32% 98.71%
UTS 4845.96 538.44 200.64 99.45% 98.95%
Hardness 1071.47 119.052 64.23 98.30% 96.77%
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of ANOVA, which ensures the accuracy of the developed 
model. It has been observed that models developed for YS, 
UTS, and hardness are adequate since the measured F ratios 
are lesser than the computed values at a confidence level 
of 95%. Similarly, the values, R2, and adjusted R2 of the 
developed models are greater than 95%, which indicates that 
the regression models are adequate for further analysis. Fig-
ure 3a, b, and c show the normal probability plots in which 
standard residuals were plotted on X-axis, and Y-axis was 
plotted with normal percentage probability to find whether 
the data follows normal distribution [33]. Almost all points 
were within the acceptable range (normal observation range) 
except few points spotted slightly distant from the straight 
line which indicates that residuals are nearly aligned with 
the straight line and confirms that the errors follow normal 
distribution (http:// www. itl. nist. gov/ div898/ handb ook/ prc/ 
secti on1/ prc16. html). The experimental and predicted data 
were compared and plotted as a scatter diagram for better 
understanding as depicted in Fig. 4a–c. Predicated values 
and experimental values are in close agreement, and the 
points are distributed around a straight line indicating the 
suitability of the mathematical model [34].

4  Results

The effect of each of the independent process variables on 
the dependent variables is depicted in Figs. 5a and b and 6, 
which confirms the interdependencies of the process param-
eters and the output responses.

4.1  Effect of tool traverse/welding speed

Figure 5a depicts the effect of tool traverse/welding speed 
on YS, UTS, and the hardness of the FS welded compos-
ites. It has been learned from the graph that an increase 
in the welding speed within the chosen range results in an 
increase in output response values. As observed in the trial 
runs, choosing welding speed beyond the chosen range leads 
to the welding defects such as voids, pinholes, and tunnel 
holes. Welding speed affects the duration of heat transfer 
in the weld region and thereby controls the rate of cooling. 
The joint shows lesser UTS at the lower welding speed due 
to the higher heat supply caused by the slow movement of 
the tool. Higher heat input and reduced cooling rate result 
in improper plasticization and turbulent material flow caus-
ing poor consolidation of the material in the weld region 
[35–37]. Hence, both YS and UTS of the joint show lesser 

Fig. 3  Normal probability plot for a YS, b UTS, and c hardness

http://www.itl.nist.gov/div898/handbook/prc/section1/prc16.html
http://www.itl.nist.gov/div898/handbook/prc/section1/prc16.html
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value at lower welding speed. The joint strength gradually 
increases as the welding speed increases due to the proper 
plasticization and smooth material flow resulting from the 
optimum heat input. Welding speed beyond the chosen range 
results in defects due to the poor plasticization and consoli-
dation of the material.

The hardness of the joint shows a similar trend as shown 
by the UTS to welding speed. Non-uniform material flow 
and poor consolidation of the material reduce the hardness 
at lower welding speed, whereas joint exhibits higher hard-
ness as the welding speed increases within the chosen speed 
range as it assists in proper plasticization, uniform flow, and 
improved consolidation of the material [37].

Fig. 4  Predicted vs actual 
responses for a YS, b UTS, and 
c hardness
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Fig. 5  Effect of a welding speed and b rotational speed on YS, UTS, and hardness
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4.2  Effect of tool rotational speed

Figure 5b depicts the average values of YS, UTS, and 
hardness values for different levels of tool rotational 
speeds. It has been found that initially YS, UTS, and 
hardness increase as the rotational speed increases, and a 
further increase in the speed reduces these values. These 
trends are in line with the reported literature, in which 
higher speed results in excessive heat supply at the weld 
zone [35, 36]. The almost parallel plots of YS and UTS in 
Fig. 5b indicate that the joints formed at different speeds 
show adequate ductility by exhibiting sufficient resist-
ance for the propagation of cracks and preventing prema-
ture breakage of weld plate in the strain hardened zone. 
Similar results are observed in several other published 
literature [36, 38].

An increase in the tool rotational speed increases 
the hardness in the weld zone initially and thereafter 
decreases. Optimum rotational speed assists in uniform 
material flow in the weld zone and proper dispersion of 
reinforcement, thereby increasing the hardness, whereas 
increased rotational speed results in higher heat input 
as well as turbulent material flow resulting in improper 
consolidation of the material and thereby reduces the 
hardness.

4.3  Effect of tool pin geometry

Figure 6 shows the effect of tool geometry on the joint 
properties. The tool with a TC pin enables the smooth 
flow of material from top to bottom as well as from front 
to the rear side of the pin [36]. 2019). TC tool offers 
clean, smooth joints with better surface finish, whereas 

surface finish of the joint prepared with triangle and 
square pin was less compared to that obtained using TC 
tool. Mechanical properties of the joint prepared with the 
SQ tool show a better result followed by TL and TC tool, 
respectively [39]. The tool with sharp edges provides a 
pulsating effect during the welding process, which assists 
in proper stirring and better consolidation of the plasti-
cized material. For the same speed, the SQ tool provides 
a 33% more pulsating effect than the TL tool and, hence, 
produces joints with better mechanical properties. From 
the performed experiments, it has been observed that 
joints produced with the SQ tool show improved joint 
properties compared to those obtained using the other two 
tool geometries for the same process parameter values.

5  Process optimization using TLBO 
algorithm

5.1  Working of TLBO algorithm

Inspired by the teaching and learning process, Rao et al. 
developed a TLBO algorithm for process optimization. 
TLBO follows the principle of “how teacher influences 
and enhances the output of a learner in the class” [25]. 
The algorithm consists of two vital components, namely 
teacher and learner. TLBO is based on two types of learn-
ing, one is through the teacher, and the other is through 
interaction among the learner known as the teacher phase 
and learner phase respectively. Being a population-based 
technique, a bunch of students (i.e., learners) is taken as 
the population in TLBO, and the subjects offered to the 
students are considered independent process parameters of 
the optimization problem. The results of the students are 
taken as the fitness value of the problem, which has to be 
optimized. Figure 7 depicts the flowchart of the working 
of the TLBO algorithm.

5.1.1  Level I—teacher level

At this level, the teacher tries to enhance the average 
results of the class in his subject. Assume there are “n” 
learners and “m” subjects. Let the learner be denoted by 
k, varying from 1 to n, and the subject is denoted by j, 
varying from 1 to m, and iteration is denoted by “i.” At 
any iteration, the average result of the learner in a sub-
ject is represented by  Mj, i. By considering all the subjects 
from the total learner population, the best overall results 
(i.e.,  Atotal-kbest, i) are taken as the output/result of the best 
learner, denoted by  kbest. The best learner is then renamed 
as a teacher in the algorithm, as a teacher is usually a 
better-learned person. The difference between the average 
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Fig. 6  Influence of tool geometry on UTS, YS, and hardness
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result of a learner in each subject and the value corre-
sponding to the best learner (i.e. teacher) is presented as:

where Aj,kbest,i is the result of the best learner in the 
subject/variable “j,” ri represents random number within 
the interval of 0 and 1, and TF is the teaching factor and it 
takes values either 1 or 2. Value of the TF is calculated by:

The prevailing solution is revised based on the 
MeanDiff j,k,i in the teacher phase as per the below equation.

(4)MeanDiff j,k,i = ri(Aj,kbest,i − TFMj,i)

(5)TF = round[1 + rand(0, 1){2 − 1}]

Here, A′

j,k,i
 is the revised value of Aj,k,i . Finally, accept 

A
′

j,k,i
 if it provides a higher function value. All these values 

are maintained and transferred to the learner level as input 
values at the end of the teacher level.

5.1.2  Learner level

Usually, by interacting among themselves, learners enhance 
their knowledge. For the given size of population “n,” the 
learning process in this level is formulated as follows:

(6)A
�

j,k,i
= Aj,k,i +MeanDiff j,k,i

Fig.7  Flow chart of TLBO 
algorithm [20]
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Choose any two learners F and G randomly, such that 
A

�

total−F,i
≠ A

�

total−G,i
 (where A�

total−F,i
 and A�

total−G,i
 are the 

revised values of Atotal−G,i and Atotal−G,i , respectively, at the 
end of the previous level).

Accept A′′

j,F,i
 if the function value provided by this is bet-

ter than the previous condition.
MATLAB R2019b software was used to develop the 

TLBO algorithm. TLBO requires the only size of the pop-
ulation and the total number of iterations to develop the 
algorithm [40]. The size of the population for the current 
study was fixed as 20 and the number of iteration as 50. The 
result of the TLBO used in the present problem is shown in 
Table 4.

5.2  Validation

An optimal combination of FSW process variables was 
obtained from Eqs. 3(a), 3(b), and 3(c), for output responses 
YS, UTS, and hardness, respectively, using the TLBO algo-
rithm. Confirmation tests were performed to validate the 
results. Three friction stir weld samples were prepared using 
a close range of process variables obtained from the TLBO 
algorithm to validate its performance. Table 4 compares 
the output responses obtained from the TLBO algorithm 
with the response values obtained from the experiments. As 
three samples were prepared to have a close range of process 
parameters, the mean value of each of the output responses 
was considered for comparison with estimated response val-
ues. From the confirmation test, it can be confirmed that the 
developed models are acceptable to optimize the FSW pro-
cess variable values to join AA6061/TiO2 composite, using 
the TLBO algorithm.

(7a)
A��

j,F,i
= A�

j,F,i
+ ri

(

A�

j,F,i
− A�

j,G,i

)

, if A�

total−F,i
< A�

total−G,i

(7b)
A��

j,F,i
= A�

j,F,i
+ ri

(

A�

j,G,i
− A�

j,F,i

)

, if A�

total−F,i
> A�

total−G,i

6  Conclusion

The effect of FSW process variables and their interactions 
was determined in  TiO2-reinforced aluminum matrix com-
posite FSW joints, and the mathematical relationships were 
established for output responses in terms of independent 
input process variables. The accuracy of the mathematical 
models was tested using ANOVA. Models developed for 
YS, UTS, and hardness are satisfactory as the measured F 
ratios are lesser than the computed results at a 95% level of 
confidence; similarly, the values, R2, and adjusted R2 indi-
cate that the models are passable enough for further analysis. 
Further, the TLBO algorithm was employed to optimize the 
FSW process parameters within the selected range, and the 
results of the algorithm were experimentally verified.

The current study revealed that an increase in tool rota-
tional speed improves the UTS, YS, and hardness initially 
and attains a maximum value. However, as the rotational 
speed increases beyond a certain value, the response values 
decrease gradually, whereas an increase in the welding speed 
increases the response values within the chosen range of 
welding speed. The tool with a square pin provides a bet-
ter response compared to other tool geometries due to the 
pulsating effect and enhanced stirring of the material. UTS 
of 174 MPa, yield strength of 120 MPa, and hardness of 
126HV have been obtained by using the optimized experi-
mental condition provided by the TLBO technique. The pre-
sent work also confirms that the developed empirical model 
and optimization of the process by TLBO is a reliable and 
favorable technique to predict the optimal combination of 
FSW process variables to weld composites that yield the 
best joint properties.
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Table 4  TLBO algorithm 
predictions and the 
experimental values

Response func-
tion optimized

TLBO algorithm estimations Experimental values Error %

FSW process variables Response value FSW process vari-
ables

Response 
values

RS WS TG RS WS TG

YS 987.425 89.996 1.729 121.7323 1000 90 2 120 1.443
UTS 989.024 89.999 1.741 176.0498 1000 90 2 174 1.178
Hardness 997.244 89.999 1.819 126.6664 1000 90 2 126 0.529
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