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Abstract
The article attempts to detect the defects in friction stir welding (FSW) process by analyzing the signal acquired during welding.
The said welding technique utilizes pressure and heat developed by the usage of a non-consumable tool. Thus, the axial force
signal carries a lot of information about the physical process, and hence, it could be used to identify the weld defects. Signal
analysis has been performed by using wavelet-based techniques. Before this analysis, a methodology has been followed to select
the best mother wavelets suitable for the signal. The results of defect identification have been validated bymapping the processed
signal with the actual weld quality.
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1 Introduction

The manufacturing sector has experienced a paradigm shift
owing to globalization. They are now expected to cater to
customer demands, i.e., being flexible about the varying prod-
uct features each day. Demand for high precision products is
on the rise as the traditional manufacturing style is getting
obsolete. Integrating advanced manufacturing systems like
sensory systems will help in achieving improved product
quality at a low cost. Sensory systems integrated with me-
chanical components have been able to create a revolution in
the manufacturing sector [1]. The manufacturing industries
are under great thrust to reduce the cost of production, reduce
the equipment downtime, and maintain the product quality.

As such, several advanced and innovative manufacturing
methods are being adopted which are economically more ef-
fective and are environment friendly too. Friction stir welding
(FSW) is one suchmanufacturing technique, and the details of
the same have been discussed in the following paragraph.

The principle of FSW is indicated by its title which reads
friction and stirring [2, 3]. For the friction, a tool with a spe-
cific design is utilized, which plunges inside the basematerials
to be joined, and generates the frictional heat (schematic of the
process depicted in Fig. 1). Thus, the material for the tool
(schematically depicted in Fig. 2) is selected based on the base
materials to be welded. Upon plunging, the base materials get
plastically deformed and attain flowability [3]. The stirring
action is then achieved via a combined action of rotating the
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tool and translation of the machine’s bed [4, 5]. This makes
the deformed material stir alongside the edges of the tool,
finally, forming the weld joint. FSW is being practiced in
manufacturing sectors such as aerospace, automobile, rail-
ways, shipbuilding, and electronics [6–8]. The process has
got numerous merits because of its occurrence in the solid
state [9].

Out of the two base materials shown in Fig. 1, one of them
is referred to as the advancing side. It is the one where the
rotation vector’s direction is the same as that of the welding
direction [4]. The other has these vectors in opposite direc-
tions and is referred to as the retreating side [4]. The quality of
welding is governed by parameters namely welding speed (v),
rotational speed (ω), tilt angle (α), and plunge depth (p) [4, 9].
These are referred to as “joining parameters.”Other than these
parameters, the weld quality is also affected by the dimensions
of shoulder and pin which are categorized as “design param-
eters,” and the combination of base materials and tool material

under the category of “material parameters” [4, 9]. However,
the former set of parameters can be controlled online while the
latter is offline controllable [9].

The present work aims at the identification of weld defects;
thus, it is imperative to discuss the typical weld defects en-
countered in the FSW process. With the aforementioned three
categories of parameters in FSW, the associated weld defects
can be classified into three namely, defects related to excessive
heating, defects related to insufficient heating, and defect re-
lated to design flaws [9]. The excessive heating condition oc-
curs with a higher value of ω, α, and p, and a lesser value of v,
which deforms the base materials to be welded to a larger
extent resulting in melting [10]. This makes the shoulder of
the tool incapable to uphold the material within its surface,
leading to material loss, which is referred to as nugget
collapse. As a result, a chunk of the lost material gets accu-
mulated alongside the boundary of the welded zone which is
referred to as a flash, and the remaining probably gets stuck to
the tool, being referred as surface galling [11]. Also, because
of the high heat availability, another defect named sticking
occurs, where the bottom part of the plates to be welded gets
stuck to the machine bed. The second category, i.e., the insuf-
ficient heating condition occurs with lower values of ω and
higher values of v. In this condition, the parametric combina-
tion fails to deform the materials plastically. The defects
which arise in such a situation are discussed in the following
sentences. A wormhole or tunnel is one of the defects under
this category, which occurs because of material loss [5]. It is
also referred to as volumetric defects [12]. This defect may
occur because of the high values of v which reduces the con-
tact time between the tool and the base materials [10]. This
thereby fails to deform the materials to be welded, and as such,
the tool interacts with material which almost is in its ambient
condition. This interaction, instead of stirring the materials,
results in the formation of voids and pits in the weld zone.

Fig. 1 Schematic diagram of the
FSW process for a butt joint
configuration

Fig. 2 Schematic diagram of the FSW tool
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Another defect is the lack of fill which occurs with an insuffi-
cient value of p during welding [13].Kissing bond is the name
given to a defect that occurs because of improper fusion of the
materials, i.e., the weld joint lacks a metallurgical bonding
[14]. Other defects encountered are overpenetration and lack
of penetration which are related to the flaws in design [2]. If
the height of the pin (l) is equal to or more than the thickness
of the base materials, it probably may hit the machine bed
surface, destroy the tool, and will result in defects. This is
referred to as overpenetration. On the other hand, a lesser
value of l as compared to the base materials’ thickness will
fail to obtain a fully consolidated weld joint, resulting in a lack
of penetration. The literature suggests the pin height to be
lesser than the thickness of the base materials by 0.2 to
0.3 mm [2].

Fabrication is essential to industries and is expensive as
well. The structure/part obtained after fabrication is subjected
to several tests to ensure the quality and durability of the
welded joint. These tests may be destructive and non-destruc-
tive. Both these means involve expenditure and time. Instead,
the defects in a weld can be determined by monitoring a few
physical parameters which are relevant to the FSW process.
These include force, torque, acoustic emission (AE), power
signals, etc. which are imperative to the FSW process [9]. As
the present work aims at the identification of defects by mon-
itoring the physical parameters, the following paragraph dis-
cusses the literature reported on the automation of the FSW
process. This section appreciates the individual works which
have been reported by other researchers mentioning its impor-
tance and concurrently reports the lack of the work as well.

Researchers have attempted to monitor FSW by acquiring
various signals such as force, torque, and AE [15–18]. The
force and torque signals have been utilized for defect identifi-
cation. The signal analysis includes the application of discrete
wavelet transform (DWT) where theDaubechies family (db4)
has been utilized as the mother wavelet [15]. The detail coef-
ficients of the two signals up to three levels were extracted and
the square of errors of the detail coefficients was utilized as a
feature for identification of the faults. A higher amplitude of
the selected feature was found for the regions of the weld with
defects. A good correlation can be observed between the de-
fects in the welded sample and the extracted feature from the
signal. However, the justification for the use of db4 for the
analysis has not been reported. A similar investigation for the
identification of defects has also been carried out by applying
continuous wavelet transform (CWT) on the force signals by
using db8 as the mother wavelet [16]. In this study, the vari-
ance of the signal has been extracted as a feature. A higher
intensity of the extracted feature was observed for the defec-
tive weld region as compared to the defect-free regions of the
weld. Though a new technique for defect identification in
FSWhas been reported through this work, the CWT technique
requires more computation time as compared to DWT, which

limits the usage of CWT in real-time applications. Moreover,
this work also does not justify the use of db8 as the mother
wavelet. The force signal and power consumption by the ma-
chine over the welding period have been utilized in another
study for differentiating the defective and defect-free welds in
the FSW process [19]. The said signals have been analyzed
via DWT, where the detailed coefficients have been extracted
up to six levels. A study on optimization has also been report-
ed for the selection of level of decomposition. Out of the two,
the power signal has been found to provide more information
as compared to the force signal. The reason reported in the
paper is the external connection of the power sensor which
does not get affected by the components of the FSWmachine,
whereas the force sensor was inbuilt to the machine. One more
probable reason to this could be the inherent availability of the
power signal in the system. During the welding process, with
the occurrence of any abnormality, the current and voltage
consumption in the motors will vary. Thus, this will get
reflected in the power consumed over time. However, the
article does not discuss about the mother wavelet which is
essential information in the process of DWT for analysis of
any signal.

Other than the force signal, the AE signal has been acquired
to monitor the FSW process. One such work reports about the
monitoring of gap defects [17]. This defect occurs when there
is a gap in the abutting edges of the two base materials to be
welded. Since FSW relies on frictional heat and mechanical
deformation of the base materials, it is important to ensure that
the materials fixed on the fixture of the machine are alongside
each other, which will be one of the primary factors for
obtaining a consolidated joint. This principle of FSW is also
the reason for the utilization of AE signal which is generated
in metals undergoing plastic deformation. Thus, the AE sig-
nals are inherently generated during the welding. The signals
were processed via DWT by using db6 as the mother wavelet,
and the energy of the wavelet coefficients was extracted as a
feature for the identification of those defects. Though the dif-
ferentiation between a normal and defective weld has been
successfully shown, the AE signal acquisition was carried
out at a sampling rate of 1 MHz, which is significantly high
for real-time applications. Furthermore, the information re-
garding the suitability of the utilized mother wavelet is also
lacking. The gap defects have also been monitored by acquir-
ing force signal where a drop in the signal was found when-
ever the tool approached the gap in the abutting edges of the
weld [20]. Though the drop in the force signal corresponds to
approximately 1000 N for a gap of 0.05 mm, a negligible drop
has been reported for smaller gaps.

Furthermore, to classify the welds into defective and defect
free, DWT has been applied to the weld images where coiflet
has been utilized as the mother wavelet for decomposing the
images [21]. Features extracted from the approximation coef-
ficients were variance, energy, and entropy. The range of
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energy for the defect-free weld has been reported to be in the
range of 99.74 to 99.93 and that of in the range of 99.21 to
99.51 for the defective welds. Similarly, the variance and en-
tropy features of the approximation coefficients have clear
separation for defect-free and defective welds. These features
were then utilized to train a support vector machine model for
classifying the welds. One limitation of this work is the use of
the image for quality analysis which could only provide the
information present on the weld surface and overlooks the
presence of internal defects which rather is also necessary.
Furthermore, no information has been reported as to why the
coiflet is used in the analysis.

Other reported studies are concerned with the effect of
varying process parameters (ω, v, and p) in FSW [18]. The
AE signal was acquired for this study and was analyzed in the
time domain, and other techniques such as DWT and fast
Fourier transform (FFT). The time-domain AE signal is
found to be an indicator of the fluctuations in the values of
p, where it has been observed that with insufficient contact
between the tool and the workpiece, the amplitude of the sig-
nal was highly random. This randomness stabilized with prop-
er contact between the two. This also suggests the importance
of the AE signal which could be utilized to ensure proper
contact between the tool and the workpiece during welding.
With DWT, the approximation plot has been found providing
information about the proper contact between the tool and the
workpiece. However, as mentioned earlier for the AE signal,
the sampling rate involved is very high which limits its usage
in real-time applications. Furthermore, the study has not re-
ported the mother wavelet used for performingDWT.Another
study attempts to monitor the change in tool pin profiles by
applying DWT on vibroacoustical signals acquired during the
welding [22]. Two different pin profiles, one with groove and
the other with flutes, were selected, and the signals acquired
during fabrication with these two tools have been classified.
The signals were analyzed by using db5 as the mother wave-
let. Three features namely, root mean square (RMS), variance,
and median were extracted from the approximation coeffi-
cients of the decomposed signals. Out of the three features,
the median outperformed the other two features in classifying
the tools. In addition to this analysis, the approach may be
utilized in studying whether, with the wear of the tool, any
information can be gathered from the signal. But again, it must
also be noted that the vibroacoustical signals need a high sam-
pling rate. This will lead to the generation and processing of a
huge amount of data which would require devices with high
processing power and space. This would limit its usage for
real-time applications. Furthermore, in the context of signal
analysis, the suitability of db5 has not been reported. A com-
prehensive review of the research works on the automation of
FSW can be referred from the cited literature [9, 23].

From the aforementioned literature, it can be inferred that
the potential of thewavelet transform is massive in identifying

the faults from the transient signals. Signal processing, proper
analysis, and extraction of the information are crucial for
manufacturing operations to keep a track of the process and
eradicate wastage of resources. The signals acquired from
manufacturing operations mostly consist of transient events
[9]. Thus, processing them via the time-domain methods will
be insufficient because the said technique will not report the
frequencies present in the signal. The Fourier transform tech-
nique can be applied to find the frequency components.
However, upon transforming, the time information is lost,
and they are effective for stationary signals [19]. For identifi-
cation of the frequencies present in a signal with the time
information, time-frequency analysis is needed. Thus, proper
and precise identification of faults in the process can be
achieved by processing the signals through wavelet transform
[15, 16]. The wavelet transform however depends upon the
selected mother wavelet, and from the literature reported, it
can be observed that the art of the same is lacking for FSW.
For investigation on this, the axial force signal has been con-
sidered. A methodology for identification of the best mother
wavelet has been identified and presented. The test for the
same has been investigated via 42 different welded samples.
This has been followed by the presentation of another tech-
nique for identification and localization of the weld defects by
analyzing the axial force signal through DWT with the best
mother wavelet. The following section discusses the method-
ology followed in the study.

2 Methodology

The welding process gives rise to three forces namely: axial
force (Fz), traversing force (Fy), and side force (Fx), as shown
in Fig. 1. The Fz acts vertically and it arises as a result of the
tool trying to maintain a desired position during the welding.
The Fy acts parallel to the motion of the tool, which is a result
of the opposition of the material to the motion of the tool.
Finally, the Fx acts perpendicular to the traverse direction.
The welds are achieved through the pressure and the frictional
heat. At any point, if the contact between the tool and base
materials is disturbed, or the pressure that has to be exerted by
this tool lowers down, then it would result in defective welds.
Thus, the signature of Fz is of higher importance than that of
Fy and Fx. The present work thus makes use of the Fz signal
for defect identification and localization.

In the present work, a computer numerically controlled
(CNC) FSW machine is selected, which has an inbuilt load
cell to acquire the Fz signal. The first objective was to under-
stand the behavior of this signal. Fz is a non-stationary signal,
i.e., it is transient. A signal is considered transient if it contains
transient events, which are described as an abrupt change in
phase, frequency, or amplitude of the signal. Considering an
abrupt change in the amplitude in the case of a transient event,

454 Weld World (2021) 65:451–461



a large RMS value of a window applied on the signal will
indicate the probability of the existence of transient events.
A simple method for identifying these probable transients is
to consider those RMS values which are crossing a certain
threshold for a given signal.

Figure 3 depicts the variation of an Fz signal during the
welding phase, and the same corresponds to a defective weld.
It can be said defective in a sense that the parameters utilized
to fabricate the weld were so chosen that a defective weld was
obvious. Severe fluctuations can be seen in the amplitudes,
which were because of the change in the process parameters
(ω and v) during welding. To calculate the threshold, various
non-adaptive thresholding methods can be applied to a signal
namely, Donoho’s universal method and statistics-based
threshold [24]. The mathematical equations for the two tech-
niques are depicted in Eqs. (1), (2), (3), and (4), respectively
[24].

TD ¼ σ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log nð Þð Þ

p� �
ð1Þ

σ ¼ Median W j;k
�� ��� �

0:6745
ð2Þ

TS1 ¼ Mean Sð Þ þ 2� Std: Sð Þ ð3Þ
TS2 ¼ 1:5� Std: Sð Þ ð4Þ

In the above equations, σ is the estimation of the average
variance of the noise, n is the length of the signal,Wj, k repre-
sents all the wavelet coefficients at scale 1 of the signal with j
being the scale parameter and k represents the shift parameter,
S represents the original signal, TD stands for the threshold
calculated by Donoho’s method, and TS1 and TS2 stand for
the threshold calculated using the statistical-based method.

Figure 4 represents the plot of RMS values of the original
signal depicted in Fig. 3 calculated over a window of 10. The
threshold values (TD, TS1, and TS2) are depicted in the same

plot. The RMS values can be seen to be crossing these thresh-
olds which are indications of abrupt changes in the amplitude
of the signal and thus, they represent a high probability of
occurrence of transient events. Similarly, the transient charac-
teristic of a signal in the time-frequency domain is character-
ized by an abrupt change in the frequency, phase, and the
amplitude of the signal. This can be validated by calculating
the RMS values of the 1st-level detail coefficients of the orig-
inal signal. By using the thresholding schemes discussed
above, an abrupt change in frequency and amplitude can be
identified by looking at the RMS values crossing the thresh-
old, indicating a high probability of the existence of a transient
event. Figure 5 is the representation of this discussion.

Owing to the transient characteristics of the Fz signal, pro-
cessing of the same in the time domain or frequency domain
may not yield significant results. Instead, a time-frequency-
based approach such as wavelets will be best suited for the
transient signals which will provide information about both
time and frequency. This is more relevant to the

Fig. 3 Plot of the original signal showing the variation of axial force with
time

Fig. 4 RMS values and thresholds plot

Fig. 5 RMS values of the 1st-level wavelet coefficients and thresholds
plot
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manufacturing processes. After studying the signal, the next
objective was to come up with a technique for the selection of
a mother wavelet, which is discussed in the following
paragraph.

Wavelets can be defined as waves that exist for a limited
duration of time, have an irregular shape, and a zero mean
value [25, 26]. Mother wavelets are the basis vectors in the
case of the wavelet transform [27]. DWT decomposes a signal
into different frequency bands [28, 29]. The signal upon de-
composition yields wavelet coefficients namely, detail and
approximation. By nature, the detail coefficients are sparse,
which is the primary reason for its huge range of applications
in the field of compressive sensing. Recent studies in FSW
have utilized the wavelet coefficients extracted by DWT for
real-time monitoring and control of the process and monitor-
ing of the tool quality [1, 30]. In this process, it is crucial to
choose a suitable mother wavelet for a particular signal as
different mother wavelets may produce different results.

Wavelets exist as families which can be categorized into
two namely, orthogonal and biorthogonal. Orthogonal wave-
let family members offer a perfect reconstruction of the sig-
nals, are concise, and are computationally inexpensive [31]. In
the present work, 32 orthogonal wavelets have been selected
which include (a) db2 to db15 (from Daubechies family), (b)
sym2 to sym15 (from Symlet family), (c) coif2 to coif5 (from
Coiflet family), and 14 biorthogonal wavelets which include
(d) bior1.1, bior1.3, bior1.5, bior2.2, bior2.4, bior2.6,
bior2.8, bior3.1, bior3.3, bior3.5, bior3.7, bior4.4, bior5.5,
and bior6.8. The db1 of the Daubechies family is the simplest
wavelet and is called the Haar wavelet, and the same has not
been included in the study because of its low vanishing mo-
ment. Similarly, sym1 and coif1 have also been excluded from
the analysis [32]. The biorthogonal wavelet is a new extension
to the wavelet family. It uses one mother wavelet for decom-
position and another for synthesis. The analysis has been car-
ried out in two different forms: (a) considering only the or-
thogonal family and (b) considering both orthogonal and
biorthogonal families. Such a classification has been followed
because the biorthogonal family is computationally expensive
and takes more time [31]. The decomposition has been carried
out for each signal up to the first level because features ex-
tracted from subsequent levels are not being able to localize
properly with the defects present in the signal.

As DWT provides the wavelet coefficients by analyzing
the signal, the higher the magnitude of the wavelet coeffi-
cients, the higher will be the correlation between the analyzed
signal and the mother wavelet used for analysis. High magni-
tudes correspond to high energy [33]. The energy content is
given as the sum of squares of magnitudes of coefficients at a
scale and has been depicted in Eq. (5). At the same time, it is
also crucial to minimize entropy which indicates the disorder
in the frequency response and quantifies the distribution of
energy at different scales of decomposition. The mathematical

equation for the entropy measure has been depicted in Eq. (6).
The performance of a mother wavelet can be judged by these
two parameters, i.e., it must yield maximum energy while
producing minimum entropy. Combining these two parame-
ters, the new parameter defined is known as energy to
Shannon entropy ratio which will serve as the basis for the
determination of a suitable mother wavelet for a signal [34].
The base wavelet should give maximum energy to the entropy
ratio. This is also known as the maximum energy to Shannon
entropy ratio criterion.

Energy jð Þ ¼ ∑
K

k¼1
w j; kð Þj j2 ð5Þ

Sentropy jð Þ ¼ − ∑
K

k¼1
pklog2pk ð6Þ

pk ¼
w j; kð Þj j2
Energy jð Þ ð7Þ

Ratio jð Þ ¼ Energy jð Þ
Sentropy jð Þ ð8Þ

where pk refers to the energy probability distribution of the
wavelet coefficients.

The performance of a selected wavelet needs to be evalu-
ated for a given signal to check whether the criteria selected
has any improvement in the amount of information extracted
from the raw signal [35, 36]. A significant fluctuation in the
detail coefficients is observed during the occurrence of a de-
fect. This fluctuation is used in the identification of defective
weld regions. But the detail coefficients alone cannot distin-
guish between the defective region and defect-free regions.
This is because the rise in magnitudes may also result in false
positives for the occurrence of a defect, and there are no
threshold selection criteria to separate the detail coefficients
of defective regions from those of defect-free regions.
Therefore, some other statistical parameter is needed for iden-
tifying the defective region and to showwhichmother wavelet
can do that by extracting the maximum amount of information
about the defect from the raw signal. According to the avail-
able literature [15, 19], the square of errors has been used as a
metric to identify defects which necessarily indicates the var-
iance of data points. As pointed in another literature [34], the
kurtosis of the detail coefficients obtained by applying DWT
on a signal represents the presence of outliers better than the
variance and at the same time, it also eliminates the transient
noise in the signal, if any. Kurtosis is an established method
for studying the shape characteristics of a signal. It is funda-
mentally independent of the signal-to-noise ratio of the data;
thus, the same criterion can be applied to the entire dataset,
which is an additional advantage over the use of variance.
Therefore, in this study, kurtosis of the DWT is considered
for defect identification. The mathematical equation for
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determining kurtosis has been depicted in Eq. (9).

k ¼ n nþ 1ð Þ n−1ð Þ
n−2ð Þ n−3ð Þ

∑n
i¼1 X i−X

� �4

∑n
i¼1 X i−X

� �2
� 	2 ð9Þ

where n is the length of the signal, Xi is the ith data point of the
signal being considered, X represents the mean of the signal,
and k stands for kurtosis.

Since kurtosis will return a single value for a given signal,
therefore, to map the defective regions with the values of the
kurtosis, the same has been evaluated on windows of 100 sam-
ples. The selected window size is based on observations whose
evaluation begun with a window size of 10 samples and finally
reached a value providing optimal results for a defective region
in a welded sample. The kurtosis plots of various mother wave-
let families are observed and the wavelet depicting the presence
of a defect in the sample is verified with the selection criteria
presented and finally selected for defect identification by using
force sensor signal. The next section mentions the experiments
that have been carried out in this study.

3 Experiments

This section provides the details about the experiments related
to the fabrication of the welds through FSW and the process of
signal acquisition during the welding.

FSW was performed on two aluminum sheets (AA6061)
welded in butt joint configuration. The FSW machine is hav-
ing a capacity of 2 ton (WS004, ETA Technology), and it

works on a displacement mode. The tool utilized was ma-
chined from the H13 tool steel material and the dimensions
of this tool have been given in Table 1. The equipped load cell
captures the force signature during welding. The machine is
also equipped with LABVIEW for the acquisition of the cap-
tured data at a sampling rate of 10 Hz. After the welding, the
acquired signals were transferred to a local computer which
was then processed throughMATLAB for selection of mother
wavelet and feature extraction. The feature map was then
studied for identifying the weld defects. To validate the results
obtained by analyzing the acquired signals, the fabricated
welds were scanned via a 3D X-ray micro-computed tomog-
raphy (CT) system (Phoenix vtome x s, General Electric) to
find the internal defects in those welds.

4 Results and discussion

To begin with the presented methodology for finding the best
mother wavelet, several welds were fabricated considering
AA6061 material. Nearly 42 welds were fabricated with six
different values of ω and seven different values of v. These 42
welds were ranked based on their ultimate tensile strength.
The force signal of the best weld sample (ω = 1000 rpm and
v of 200 mm/min) out of the 42 welded samples was analyzed
with the proposed methodology for the selection of the best

Table 1 Tool
dimensions Shoulder diameter (in mm) 18

Pin diameter (in mm) 6

Pin length (in mm) 2.6

Fig. 6 Plot of energy to entropy
ratio values corresponding to
selected mother wavelets
(orthogonal family) for a welded
sample
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mother wavelet. For the analysis, only orthogonal mother
wavelets have been considered, and the result of the same
has been depicted in Fig. 6.

From Fig. 6, it can be seen that the highest ratio is obtained
for db8 for the said welded sample. Thus, db8 is chosen as the
most appropriate mother wavelet for this sample. Similarly,
the best mother wavelets were determined for the remaining
41 welded samples, and the histogram plot depicting the
counts of the same has been depicted in Fig. 7. Results indi-
cate that db8 is the most selected mother wavelet in the entire
selected list. Other than db8, db6 and db4 can also be found to
have a higher ratio.

For the validation of the obtained mother wavelets, the
correlation between features extracted through kurtosis has
been mapped with the defects present in the different weld
samples. As mentioned in the preceding section, two welded
samples have been chosen for this purpose with internal de-
fects. The results of those welded samples have been shown in
the following sections.

4.1 Orthogonal wavelets

Figure 8 shows the physical weld image of a welded sample
(parameters: ω of 500 rpm and v of 40 mm/min). The corre-
sponding force signal has been decomposed via DWT by
using db8 as the mother wavelet. The fluctuations of the
kurtosis values obtained for the signal analyzed via db8, along
with the corresponding CT scan image have been depicted in
Fig. 9. The extracted feature has a high magnitude wherever a
defect is present in the welded sample.

The peaks in the plots mostly correspond to the weld de-
fects present in the welded sample. The peak in the kurtosis
map at the start of the weld is because of the start in the
movement of the tool which resembles the start of the welding
phase. Before this phase, the tool was in the plunging position
and dwelling at the same location. Then, the machine bed
starts moving and the weld joint is fabricated. The peak at
the end of the kurtosis map corresponds to a hole in the CT
scan image which is referred to as the keyhole in FSW caused
by the removal of the tool from the welded sample. Some
other low magnitude peaks in the plot can be accounted for
the noise and vibrations caused by the machine since the force
sensor is integrated with the machine itself.

Referring to Fig. 7, the four other mother wavelets which
are performing good apart from db8 are db6, db4, sym6, and
sym4. To make a comparative analysis among these five
mother wavelets (i.e., db8, db6, db4, sym6, and sym4), the
kurtosis values of all five of these mother wavelets consider-
ing the wavelet coefficients of the force signal have been
depicted in Fig. 10. From the figure, it can be seen that the
highest magnitude at locations where the defect is present is
being obtained by using db8. The other wavelets (db6, db4,
sym6, and sym4), though are being able to localize the defect
positions, the rise in magnitude in defect regions is not enough
in comparison to db8.

Fig. 7 Histogram plot for selection of orthogonal mother wavelets

Fig. 8 Picture of the welded
sample

Fig. 9 Plot of kurtosis values of the 1st level detail coefficients of force
signal with db8mother wavelet versus X-position and corresponding CT
scan image
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Similarly, Fig. 11 shows the picture of another welded
sample (parameters: ω of 2000 rpm and v of 40 mm/min).
Figure 12 shows the corresponding extracted kurtosis values
from the 1st-level detail coefficients of the force signal of the
welded samples shown in Fig. 11. The detail coefficients have
been extracted by using db8 as the mother wavelet. Along
with this figure, the corresponding CT scan image of the
welded sample has also been shown to validate the results
obtained. It can be seen that the extracted feature has a high
magnitude wherever a defect is present in the welded sample.
Furthermore, the comparison plot among the mother wavelets
has been depicted in Fig. 13. From the figure, it can be seen
that the highest magnitude at locations where the defect is
present is being obtained by using db8. The other wavelets
(db6, db4, sym6, and sym4), though are being able to localize
the defect positions, the rise in magnitude in defect regions is
not enough in comparison to db8.

4.2 Orthogonal and biorthogonal wavelets

This section compares the results obtained by db8 (the best
mother wavelet obtained in the preceding section) with the 14
selected mother wavelets of the biorthogonal family. Figure 14
shows the variation of energy to entropy ratio for the selected
mother wavelets for a welded sample. It can be seen that the
ratio is highest for the bior5.5 wavelet. Thus, bior5.5 may be
chosen over db8 as the most appropriate wavelet for this
welded sample. Thus, selecting bior5.5 as the mother wavelet
instead of db8 to analyze the force signal and extract the

selected feature, the defect localization may be more accurate.
This is because of the higher energy to entropy ratio being
possessed by this mother wavelet, which assures that it can
extract more information from the signal as compared with
other mother wavelets. However, the biorthogonal family has
extra computational cost and time lag associated with it, where-
as the orthogonal family is faster and computationally less ex-
pensive. This limits the usage of the biorthogonal family in real-
time applications. Thus, db8, as obtained from the orthogonal
family, can be preferred in real-time applications where com-
putational resources are constrained.

As discussed earlier, Fy is the traversing force that acts
parallel to the motion of the tool, and it arises as a result of
the opposition of the material to the motion of the tool. Fx is
the side force that is perpendicular to the traverse force. The
weld formation in FSW is dependent upon a proper combina-
tion of the joining parameters, which would result in a good
quality weld, as it governs the frictional heat availability need-
ed for proper mixing of the material leading to the required
strength of the weld. The frictional heat is coming from the
plunging and rotating action of the tool. Thus, at any point, if
the contact between the tool and the base materials is dis-
turbed, i.e., if the contact is improper, then defects would be
generated. Amajority of the weld defects such aswormhole or
tunnel, voids, and surface cracks can be identified by analyz-
ing the Fz signal because this force arises as a result of the tool

Fig. 10 Comparison of kurtosis values of the 1st-level detail coefficients
of force signal with db8, db6, db4, sym6, and sym4 mother wavelets
versus X-position for the sample

Fig. 11 Picture of the welded
sample

Fig. 12 Plot of kurtosis values of the 1st-level detail coefficients of force
signal with db8mother wavelet versus X-position and corresponding CT
scan image
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trying to maintain a desired position during the welding. Thus,
in this study, the Fz has been considered for the identification
of a wide range of defects. Fy and Fx may prove better for
identifying the defect such as flash which indicates the accu-
mulation of the weld material alongside the edge of the weld
zone or defect such as voids in the joint line. In the future, all
three forces can be considered for defect identification.

5 Conclusion

DWT is used for the time-frequency domain analysis of the
force sensor signal. The detail coefficients thus acquired can
be used to identify the presence of defects introduced during
welding. The use of different mother wavelets in DWT

produces a different set of coefficients; therefore, the selection
of an appropriate mother wavelet depicting the presence of a
defect most accurately is of utter importance. With the use of a
statistical tool, i.e., kurtosis, on the detail coefficients of the
first-order decomposition, it was observed that the obtained
values of kurtosismap accurately with the presence of defects
in the welded samples. The strategy presented here can help
industries practicing FSW to check the presence of weld de-
fects in the welded sample. In the future, all three forces can be
considered for defect identification and can also be utilized in
building real-time control algorithms for the FSW process.
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