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Convolution neural network model with improved pooling strategy
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Abstract
Weld defect recognition plays an important role in the manufacturing process of large-scale equipment. Traditional methods
generally include several serial steps, such as image preprocessing, region segmentation, feature extraction, and type recognition.
The results of each step have significant impact on the accuracy of the final defect identification. The convolutional neural
network (CNN) has strong pattern recognition ability, which can overcome the above problem. However, there are two problems:
one is that the pooling strategy has poor dynamic adaptability and the other is the insufficient feature selection ability. To
overcome these problems, we propose a CNN-based weld defect recognition method, which includes an improved pooling
strategy and an enhanced feature selection method. According to the characteristics of the weld defect image, an improved
pooling strategy that considers the distribution of the pooling region and feature map is introduced. Additionally, in order to
enhance the feature selection ability of the CNN, an enhanced feature selection method integrating the ReliefF algorithmwith the
CNN is proposed. A case study is presented for demonstrating the proposed techniques. The results show that the proposed
method has higher accuracy than the traditional CNNmethod, and establish that the proposed CNN-based method is successfully
applied for weld defect recognition.

Keywords Weld defect recognition . Convolution neural network . Improved pooling strategy . Feature selection enhancement

Abbreviations
CNN Convolutional neural networks
ReliefF Feature selection algorithm
SVM Support vector machine
CGP Cartesian genetic programming

HD-CNN Hierarchical Deep Convolutional
Neural Network

P-CNN Pose-based Convolutional Neural Network
RNN Recurrent Neural Network
DCNN Deep Convolutional Neural Network
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ResNet Residual network
RCNN Region Convolutional Neural Network
ROI Region of interest
Fij Input image
n Moving step
S Feature values obtained after pooling
σP Value in the pooling region
σFM Variance of the values on the feature map
tmin Minimum value in the pooling region
tmax Maximum value in the pooling region
tave Average value considering the maximum

and minimum values in the pooling region
μ Based on the max pooling strategy
R From the training sample set at a time
W(A) Weight of each feature
m Number of samples
Mj(C) jth nearest neighboring sample in different

categories of C
p(C) Proportion of class C samples in the total
Class(Ri) Category to which Ri belongs
diff(A, Ri, Rj) Distance between Ri and Rj

Cn Samples selected in category C
Cm Total samples selected in all the categories
PO Porosity
SL Slag inclusion
LF Lack of fusion
LP Lack of penetration
CR Crack

1 Introduction

In the manufacturing processes of major complex equipment,
such as steam turbines and ships, welding is often involved;
hence, weld defect analysis and recognition based on the ray
detection image of the weld play an important role in
guaranteeing the welding quality, reliability, and safety of
the equipment [1, 2].

Currently, several studies based on traditional machine
learning follow the traditional technical method, whichmainly
includes the process of “defect segmentation - feature extrac-
tion - feature selection - defect recognition” [3]. In these stud-
ies, modified background subtraction [4] and other methods
are proposed for identifying the defect in the X-ray image;
feature extraction generally obtains a set of edge-based fea-
tures [5], hybrid descriptors based on the geometry [6], texture
features [7], and other features. Feature selection primarily
achieves the function of removing redundant features and
noise to retain the useful features alone, and realizes the effec-
tive characterization of the defect-type features. Defect recog-
nition is the effective judgment of the type and nature of the
defect, based on the above steps, and is the core step in the
entire defect recognition system, in which the Bayes [8], SVM

[9], DS evidence theory [10], and other pattern recognition
methods play an important role.

In recent years, with the development of artificial intelli-
gence (AI) technology, methods based on the convolutional
neural network (CNN) have become a research hotspot in
image processing, pattern recognition, and other fields [11]
because the end-to-end [12] recognition method addresses
the issues involved in complex artificial processes, and have
been applied in several fields such as environmental sound
classification [13], grasp classification in myoelectric hands
[14], and sentiment analysis [15]. In order to enhance the
performance of the CNN, many improvements have been pro-
posed; some of them focus on the common problems existing
in the CNN. He et al. [16] proposed a pooling strategy called
spatial pyramid pooling, for solving the problem of the artifi-
cial fixing of the size of the input image by the CNN, which
decreases the recognition rate. Zhang [17] introduced a new
graph CNN architecture based on the depth-based representa-
tion of a graph structure, which captures both the global topo-
logical structure and local connectivity structure within a
graph. Suganuma [18] proposed a method for designing
CNN architectures based on Cartesian genetic programming
(CGP). Some studies have proposed CNNs for specific tasks:
Yan et al. [19] proposed a HD-CNN for large-scale visual
recognition, UberNet [20] for recognition tasks in computer
vision, and P-CNN [21] for action recognition. HD-CNN re-
duces the top 1 and top 5 errors of VGG-19 model by 1.11%
and 0.74%, respectively, and achieves advanced results on
both CIFAR100 and large-scale ImageNet 1000-class bench-
mark datasets. In addition, in some studies, the improvement
of the CNN is closely related to the characteristics of its ap-
plication objects and the specific problems existing in the
application of the CNN. Chaturvedi et al. [22] combined dy-
namic Gaussian Bayesian networks with the CNN to address
an existing issue in previous works, wherein the prior distri-
bution is not generally considered, when using sliding win-
dows to learn word embedding. Ha et al. [23] introduced a
multiple neural network topology, referred to as the selective
deep CNN, to obtain accurate results for distorted images.
Wang et al. [24] combined CNNs with the RNN and proposed
a CNN-RNN framework to address the failure of explicitly
exploiting the label dependencies in an image. The mean av-
erage precision of this method on PASCAL VOC 2007
dataset is 84%.Wu et al. [25] introduced a light CNN for deep
face representation with noisy labels. Md Zahangir et al. [26]
introduced an inception recurrent residual convolutional neu-
ral network (IRRCNN) model which is a deep convolutional
neural network (DCNN) model. IRRCNN model combines
the strengths of the inception network (Inception-v4), residual
network (ResNet), and recurrent convolutional neural network
(RCNN) for breast cancer classification. On the CIFAR-100
dataset, the IRRCNN model achieves 72.78% object recogni-
tion accuracy, which is about 4.53% higher than the recursive
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convolutional neural network (RCNN). Abdulnabi et al. [27]
proposed a joint multitask learning algorithm to better predict
the attributes in images using deep CNN. The accuracy of
attribute prediction of the algorithm proposed by the author
is higher than other methods in color attributes, pattern group,
cloth parts, and appearance group on the clothing dataset. Its
total prediction accuracy reaches 92.82%. Chen et al. [28]
presented an algorithm for unconstrained face verification,
based on the CNN, for improving the performances of previ-
ous algorithms, which were often considerably degraded
when images involving large variations in the pose, illumina-
tion, expression, aging, cosmetics, and occlusion were used.
Recently, some studies have proposed convolution auditing
neural networks for weld defect recognition. Khumaidi et al.
[29] trained the CNN by replacing the convolution kernel with
a Gauss kernel to form a neural network model to recognize
two common types of weld defects. Liu et al. [30] proposed a
VGG16-based fully convolutional structure for classifying
weld defect images, achieving high accuracy with a relatively
small dataset for the deep learning method. Anil et al. [31]
improved the cost function of the CNN, which avoids redun-
dant activation of the hidden layer in the CNN. Yuan et al.
[32] changed the construction of the low and middle convo-
lution kernels, and improved the generalization and conver-
gence of CNNs. Xie et al. [33] combined data enhancement
and the window slip detection method to realize defect classi-
fication and defect location marking. Using the super pixel
segmentation algorithm and an improved ELU activation
function, the model proposed by Fan et al. [34] can effectively
identify four types of weld flaw detection images. And the
overall recognition rate can reach 97.8%, which enhanced
the recognition accuracy. Rui et al. [35] combined continuous
wavelet transform (CWT) with the CNN to improve the accu-
racy. The accuracy of the proposed method by them is
96.94%, which is nearly 10% higher than the traditional meth-
od. Li et al. [36] constructed a deep learning network structure
based on the principle of simulated visual perception, which
can automatically learn the complex depth features in X-ray
weld defect images.

However, in the existing studies on the application of
CNNs for weld defect recognition, as the characteristics of
the weld defect image are not studied in detail, the existing
methods often lack pertinence and are therefore not conducive
for the further improvement of the final defect recognition
rate. First, the traditional pooling strategy (max pooling and
average pooling) shows poor dynamic adaptability in the pres-
ence of different feature distributions in the weld defect area,
resulting in inaccurate feature extraction for the entire image.
As the gray distribution of the defects in a weld seam image
has an important relationship with the gray distribution of the
surrounding area [7], the pooling strategy needs to consider
the distribution characteristics of the defect area. Furthermore,
CNN-based methods generally include three layers: the input

layer, hidden layer, and output layer. The output feature vector
of the hidden layer is an important factor that causes over-
fitting in the CNNmodel [11]. Therefore, improving the train-
ing ability and type recognition accuracy of the model by
improving the feature selection ability of the output layer re-
mains a problem to be solved.

To overcome the above problems, a CNN with improved
pooling strategy, feature selection model, and weld defect rec-
ognition is proposed in this study. First, an improved pooling
strategy considering the feature distribution of the pooling
area and feature map comprehensively is proposed, which
can overcome the problem in the traditional pooling strategy
wherein the weld defects characteristics are disregarded.
Furthermore, the ReliefF algorithm is integrated with the
CNN for constructing a strengthened feature selection meth-
od. A CNN is then constructed and trained with the above
pooling strategy and feature selection method for image rec-
ognition. A practical case demonstrates that this method effec-
tively overcomes the shortcomings of the traditional CNN,
improves the accuracy of the pool feature selection and feature
selection ability of the CNN model, and achieves good recog-
nition accuracy.

The remainder of the paper is organized as follows.
Section 2 analyzes the two problems in the application of
the CNN for weld defect recognition. Section 3 describes the
proposed pooling strategy for solving the problem in the tra-
dition pooling strategy, discusses the enhanced feature selec-
tion method, and illustrates the flow of the weld defect recog-
nition method proposed in this study. Section 4 presents a
weld defect recognition case and the results of the proposed
method in comparison with the traditional CNN methods.
Finally, Section 5 presents the conclusions on the proposed
method.

2 Analysis of the problem in weld defect
identification using a CNN

In this section, the problems in the pooling strategy and fea-
ture selection of the traditional CNN model are analyzed. The
CNN, first proposed by Fukushima in 1980 [37], contains an
input layer, hidden layer, and output layer. The hidden layer is
generally composed of multiple convolution layers and
polling layer structures, and a fully connected layer. The
polling layer is obtained by pooling the input feature map.
Selecting different continuous ranges in the input feature
map as the pooling region, an n × n rectangular area is gener-
ally selected, and a feature in the pooling region is selected as
the characteristic of the pooling region, for a certain strategy.
The traditional feature selection strategy includes max and
average pooling: max pooling involves the selection of the
maximum value in the pooling region as the feature of the
pooling region, whereas average pooling involves the
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selection of the average value of the pooling region as the
feature of the pooling region. Assuming that Fij is the input
image,n × n is the size of the pooling region, and n is the
moving step, S represents the feature values obtained after
pooling. The max and average pooling strategies are depicted
in Eqs. (1) and (2), respectively.

S ¼ max
n

i¼1; j¼1
Fij
� � ð1Þ

S ¼ 1

n2
∑
n

i¼1
∑
n

j¼1
Fij

 !
ð2Þ

To demonstrate the problems involved in the feature
extraction of the two traditional pooling strategies, two
different representative pooling regions were selected, as
shown in Fig. 1. Figure 1(a) shows the pooling process
of the CNN model, in which the gray background area in
the red box represents a 2 × 2-sized pooling region.
Figure 1 (b) and 1(c) display two types of defects with
the inclusion of slag and tungsten, respectively. The red
and blue boxes in the images represent the pixel value
distribution in the four pooling regions depicted by
Fig. 1(d), 1(e), 1(f), and 1(g), respectively. Based on
the distribution of the pixel values in Fig. 1(d)–1(g),
two different pooling regions with different feature dis-
tributions can be observed because of the different posi-
tions of the pooling regions on the feature map. One is
the pooling region depicted in Fig. 1(d) and 1(f). The
distribution of the pixel values in this type of pooling
region is more uniform. Pooling regions with such

feature distribution occur mostly in the weld area. Here,
feature extraction by average pooling is appropriate. If
maximum pooling is used, noise may be introduced.
Another type of pooling region is depicted in Fig. 1(e)
and 1(g), which is located in the edge zone of the defect
edge. This pooling region contains the edge feature of
the defect. If average pooling strategy is used to extract
the features of this type of pooling region, it will result
in the elimination of the edge features of the defect.
Therefore, the traditional maximum pooling and average
pooling strategies have poor dynamic adaptability for
pooling regions with different feature distributions,
resulting in inaccurate feature extraction. In a weld im-
age with defects, although the variation of the gray
values within and outside the defect area is different,
the traditional maximum pooling and average pooling
strategies do not reflect these variations.

Regarding the feature selection problem in the CNN, as
previously mentioned, the output feature vector of the hidden
layer has significant influence on the training ability and clas-
sification effect of the CNNmodel. Figure 2 shows the hidden
layer structure of a typical CNN, in whichW11,W12,W21, and
W22 constitute the parameter matrix of the convolution kernels
on two layers of the convolution layer, and W3 is the param-
eter transfer matrix between the two fully connected layers. In
the CNN training process, the final output feature is deter-
mined and selected by continuously updating the parameters
of Wij. However, because CNN training often includes over-
fitting or under-fitting, the output feature includes redundancy
and noise, reducing the efficiency of the final classification.

Fig. 1 Pooling strategies in
different areas
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3 Improved CNN model for weld defect–type
identification

3.1 Improved pooling strategy

In this section, an improved pooling strategy is proposed to
overcome the problems in the feature extraction of weld defect
images using the traditional pooling strategy. The proposed
improved pooling strategy is discussed using two types of
defect images (slag inclusion and tungsten trapping) as exam-
ples, which are shown in Fig. 3; Fig. 3(a)–3(d) indicate the
respective pooling domains located in four different regions of
the two defect images. Different pooling methods are needed
depending on whether the pooling domain is outside the de-
fect area or on the edge of the defect area, and the calculation
method is shown in Eq. (3).

S ¼
min
n

i¼1; j¼1
Fij
� �

;σP≥σFMand tmin−tavej j > tmax−tavej j
max
n

i¼1; j¼1
Fij
� �

;σP≥σFMand tmin−tavej j≤ tmax−tavej j
μ max

n

i¼1; j¼1
Fij
� �

;σP < σFM

8>>>><
>>>>:

ð3Þ

where σP is the value in the pooling region, σFM is the variance
of the values on the feature map, tmin is the minimum value in
the pooling region, tmax is the maximum value in the pooling
region, and tave is the average value considering the maximum
and minimum values in the pooling region.

According to Eq. (3), when σP ≥ σFM and |tmin − tave| > |tmax

− tave|, as in the case of Fig. 3(a), the minimum value in the
pooling region is the output feature. When σP ≥ σFM and |tmin

− tave| ≤ |tmax − tave|, as in the case of Fig. 3(b), the maximum

Fig. 3 Revised max pooling
strategy

Fig. 2 Hidden layer structure of the CNN
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value in the pooling region is the output feature value. When
σP < σFM, the feature variance in the pooling region is small
and the maximum feature value is not obvious; for this case, a
strategy is proposed, in which a modification factor,μ, is in-
troduced based on the max pooling strategy. This modifica-
tion factor is the ratio of the sum of the feature values and the
difference in the pooling region to the sum of feature values in
the pooling region, as shown in Eq. (4):

μ ¼ tsum−tmax þ tminð Þ=tsum ð4Þ

For example, Fig. 3(a) shows the pooling strategy for the
pooled region in the slag inclusion area, where the minimum
feature value in the pooling region represents the defect edge
characteristics (the feature values in the pooling region of Fig.
3(a) are 92, 90, 90, and 33, of which 33 represents the defect
edge). Figure 3(b) shows the pooling strategy for the pooled
region in the inclusion defect region, where the maximum
feature values in the pooling domain indicate the edge char-
acteristics of the tungsten inclusion defects (the feature values
in the pooling domain of Fig. 3(b) are 242, 174, 166, and 153,
of which 242 represents the feature values of the defect edge
in the pooling domain). Therefore, the minimum and maxi-
mum pooling strategies can be adopted for Fig. 3(a) and 3(b),
respectively, because their output feature values are 33 and
242, respectively. When the pooling region is located in the
feature map area outside the defect area, as shown in Fig. 3(c)
and 3(d), the output value is calculated using the improved
maximum pooling strategy, namely, Eq. (3).

In summary, using the improved pooling strategy, different
output feature value calculation methods are used according to
the different locations of the pooling region in the feature map,
which can reflect the characteristics of the defect image and
include certain adaptability.

3.2 Enhanced feature selection method

To enhance the CNN feature selection ability, an enhanced
feature selection method that integrates the ReliefF algorithm
with the CNN is proposed. The ReliefF algorithm, first pro-
posed by Gore [38], is a traditional feature evaluation method
that deals with two classification problems. It can provide the
corresponding weight, based on the significance of the feature.
The greater the weight of the feature, the stronger is its clas-
sification ability. The ReliefF [39] algorithm can deal with
multiclass problems, and is used for re-evaluating the features
extracted by the CNN for recognition. When dealing with
multiclass problems, the ReliefF algorithm randomly extracts
a sample, R, from the training sample set at a time, and then
finds the k nearest neighboring samples of R from the same
sample set as R, and the k nearest misses from the different
sample sets of each R, and then updates the weight of each
feature, W(A), as shown in Eq. (5):

W Að Þ ¼ W Að Þ− ∑
k

j¼1
diff A;R;H j
� �

=mk

þ ∑
C≠class Rð Þ

p Cð Þ
1−p Class Rið Þð Þ ∑

k

j¼1
diff A;R;M j Cð Þ� �" #

= mkð Þ

ð5Þ
where m is the number of sampling times, Mj(C) is the jth
nearest neighboring sample in different categories of C, p(C)
is the proportion of classC samples in the total, Class(Ri) is the
category to which Ri belongs, and diff(A, Ri, Rj) is the distance
betweenRi and Rj, and ismathematically expressed by Eq. (6):

diff A;Ri;Rj
� �

¼
Ri A½ �−Rj A½ �����

max Að Þ−min Að Þ ;A is continuous

0; A is discontinuous;Ri A½ � ¼ Rj A½ �
1; A is discontinuous;Ri A½ �≠Rj A½ �

8>><
>>: ð6Þ

The traditional ReliefF algorithm may cause the samples to
fall into one or several categories, during the random sampling
of multiclass samples, and the distribution of the characteris-
tics of the entire sample cannot be considered. Based on this,
this study adopts the “interclass ratio, intraclass randomness”
sampling method; “interclass ratio” is the ratio of the number
of samples extracted in each category to the total number of
samples in that category:

Cn

Cm
¼ n

m
ð7Þ

where n is the total number of samples in category C, m is the
total number of samples in all the categories, Cn represents the
samples selected in category C, and Cmrepresents the total
samples selected in all the categories; “intraclass randomness”
refers to the random selection of samples in a category, where-
as “intraclass randomness “ refers to the random selection of
samples in category C.

The feature weights calculated by ReliefF may contain
negative values. If the feature weight is a negative value, it
indicates that the distance between samples of the same cate-
gory is greater than those between samples of different cate-
gories, which is contrary to the expected feature properties.
Therefore, during feature selection, this study eliminates this
type of feature and sets the corresponding weight of the fea-
ture to zero; the revised weight vector is then obtained, based
on the initial weight vector provided by the ReliefF algorithm.
The revised weight vector is assigned to the CNN for
extracting the feature vectors for classification, and the fea-
tures selected by combining the ReliefF algorithm with the
CNN are obtained. Hence, the ReliefF algorithm combines
its understanding of the feature significance with that of the
CNN. The evaluation and selection of features are beneficial
for improving the feature selection ability of CNN models.
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3.3 Weld defect recognition process based on the
proposed CNN

Based on the methods described in Sections 3 and 4, an im-
proved CNNmodel for weld defect–type identification is pro-
posed. The flow chart of the defect-type identification using
this method is depicted in Fig. 4.

From the flow chart, we can see that the proposed defect
recognition process includes steps A, B, and C. In step A, a
CNN with a specific architecture is constructed, which in-
cludes substep A1 for constructing an improved pooling mod-
el considering the pooling region and area surrounding the
defect feature distribution comprehensively, and substep A2
for constructing an enhanced feature selection method. The
structure of the CNN with the improved pooling strategy
and feature selection model is depicted in Fig. 5.

The basic structure of the network includes an input layer,
two convolution layers (C1 and C3), two pooling layers (P2
and P4), two full connection layers (F5 and F6), one feature
selection layer, and one output layer. By abstracting and
extracting the input image layer-by-layer, the characteristic
information of the representative sample can be obtained.

In the first convolution operation, the input image is convoluted
by six convolution checkers sized 5 * 5, and six 28 * 28-pixel
feature maps are obtained in the C1 layer. The input layer is a gray
image of 32 * 32 pixels, with a stride of one and padding of zero.
In the first pooling operation, six feature maps of the C1 layer are
operated using a 2 * 2 pooling domain, and six 14 * 14-pixel
feature maps are obtained in the P2 layer, with a stride of two.

In the second convolution operation, sixteen convolution
checkers sized 5 * 5 are used to convolute the feature images of
the P2 layer, and sixteen 10 * 10-pixel featuremaps are obtained in
the C3 layer, with a stride of one and padding of zero. In the
second pooling operation, the feature maps of the C3 layer are
operated using a 2 * 2 pooling domain, and sixteen 5 * 5-pixel
feature maps are obtained in the P4 layer, with a stride of two.

The F5 and F6 layers are fully connected, containing only a
one-dimensional vector. In the full connection operation of P4
and F5, 120 convolution checkers sized 5 * 5 are used to
convolute sixteen feature maps of the P4 layer. The stride is
one and the padding is zero. One hundred and twenty feature
maps sized 1 * 1 are obtained in the F5 layer, i.e., the F5 layer
is a one-dimensional vector containing 120 values. The F5
layer is fully connected, and a one-dimensional vector con-
taining 84 values is obtained in the F6 layer.

The method described in Section 3.2 is used for feature selec-
tion of the F6 layer. Features with high importance are reserved,
whereas those with low importance are eliminated by setting the
corresponding node value to zero to get the feature selection
layer. Finally, the softmax multiclass classifier is used to classify
the feature selection layer, and the output layer is obtained. The
principle of the softmax classifier is as follows:

P Y ¼ Y ið Þ ¼ eY i

∑K
i¼1eY i

;

Step A Construct specific CNN

A1 Construct an improved 

pooling model

A2 Construct an enhanced 

feature selection model

Step B Iterate to train the CNN with 
the objective of minimizing the cost 

function  

Step C Send the image to be 
recognized to the trained CNN to realize 

weld-defect recognition

Fig. 4 Flow chart of the proposed defect recognition method

pooling strategy

Input Layer

32*32

conv kernel size: 5*5

stride: 1  pad: 0

Convolution

Layer (C1)

6*28*28

Pooling Layer

(P2)

6*14*14

Convolution

Layer (C3)

16*10*10

Pooling Layer

(P4)

16*5*5

conv kernel size: 5*5

stride: 1  pad: 0

Full Connection Layer

(F5)      (F6)

120        84

Output Layer

6

pooling strategy

Feature Selection

conv kernel size: 5*5

stride: 1  pad: 0

Fig. 5 Structure of the CNN with
the improved pooling strategy and
model
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where Yi represents the output result corresponding to defect i
in the image, i = 1, 2, 3, 4, 5, 6 corresponds to crack, lack of
fusion, lack of penetration, slag inclusion, porosity, and
nondefect in the weld, respectively. K is the number of cate-
gories and P(Y=Yi) is the probability information of the output
results Yi corresponding to defect i in the image.

Furthermore, in step B, iteration is performed with the ob-
jective of minimizing the cost function to train the neural
network constructed in step A for weld defect recognition.
Finally, in step C, the sample weld image to be identified is
input to the CNN trained in step B for the automatic recogni-
tion of the defect types.

4 Experiment and result

The main research object of this study is the defect in the
welding process of steam turbines, and radiographic images
were provided by the Dongfang Turbine Co., Ltd., Sichuan,
China. The base metal of the welding seam includes mainly
steel, nickel, and copper, and the welding joint is a double-
sided butt weld. As the weld defects are detected through X-
ray inspection, the X-ray film is digitized using an X-ray film
scanner (JD-RTD) developed in-house, as shown in Fig. 6.

There are five types of weld defects in digital radiograph,
including porosity (PO), slag inclusion (SL), lack of penetra-
tion (LP), lack of fusion (LF), and crack(CR), as shown in
Fig. 7.

Because the weld defect image was large, it was difficult to
directly use the image as the input to the training network
model of the neural network. Therefore, the original weld
image was preprocessed, the defect and surrounding area in
the original weld image was intercepted as a 32 × 32-sized
region of interest (ROI), and the ROI image was the input to
the neural network. In this study, 3486 ROI weld images were
selected, including 504 porosity (PO), 410 slag inclusion (SL),
460 lack of fusion (LF), 864 lack of penetration (LP), 804
crack (CR), and 444 nondefect images. All these images were
divided into a training set and testing set at a ratio of 4:1. A
total of 2789 images were obtained for training and 697 im-
ages for testing. Some of the images, as experimental samples,
are shown in Fig. 8.

The experiment was performed on a Windows 7 operating
system using an Intel (R) Core (TM) i5-4460 CPU with a

Fig. 6 X-ray film scanner (JD-RTD)

Fig. 7 Defects: (a) porosity (PO),
(b) slag inclusion (SL), (c) lack of
penetration (LP), (d) lack of
fusion (LF), and (e) crack (CR)
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3.20-GHz processor, 8.00-GB running memory, PyCharm in-
tegrated development environment based on Python 3.6.4,
and Google open source tensorflow 1.13.0 deep learning
framework. The model training and testing scheme is shown
in Fig. 9.

The minibatch gradient descent method was selected for
training; the batch size was set to 64 and cross entropy was
used as the loss function. In the model training process, 20
steps were set as an epoch and the maximum number of train-
ing steps was 200. After training, the data of the test set was
input to testing, and the accuracy of defect identification in the
test set was obtained.

4.1 Validation of the improved pooling strategy

In order to verify the effectiveness of the pooling strategy
proposed in this study, the basic CNN network model was
used for the experiment, and the maximum pooling strategy,
average pooling strategy, and pooling strategy proposed in
this study were used to construct the network model in the
pooling layer. And CNN-1, CNN-2, and CNN-3 were

obtained. The network architecture of the model is shown in
Fig. 10. The selection of specific pooling strategies is shown
in Table 1.

Experiments were performed using CNN-1, CNN-2, and
CNN-3, respectively. The defect recognition accuracies, un-
der different iterations, for the three models are listed in
Table 2.

The experimental results demonstrate that under different
iterations, pooling model, CNN-3, obtained higher accuracy
than the max pooling model, CNN-1, and the average pooling
model, CNN-2. The recognition accuracy calculation method
is as follows: the single defect identification accuracy (correct
number / total number) is calculated, and the average identi-
fication accuracy of all the defects is considered as the recog-
nition accuracy.

According to Table 2, the accuracy of defect image recog-
nition of the network models constructed using the pooling
strategy is higher than those of the maximum pool strategy
and average pool strategy models under different iterations.
When the number of iterations is 200, the accuracy of defect
image recognition of the network model constructed using the

Fig. 8 Experimental sample images

Train data

Our model

Characteristics of 

train data

Characteristics of 

test data

Softmax
Classification 

results

Test data

Training model

Training softmax 

classifier

Fig. 9 Flow chart of the model
training and testing scheme
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pooling strategy is 90.0%, which is 5.3% higher than the
model with the maximum pool strategy and 1.8% higher than
the model with average pool strategy.

4.2 Validation of the enhanced feature selection
method

To validate the proposed feature selection method, a feature
selection layer was added between the FC6 layer and output
layer of the basic CNN architecture (Fig. 10) to construct a
CNN with enhanced feature selection (Fig. 11). In the feature
selection layer, the features extracted from the FC6 layer were
selected by the ReliefF algorithm. Features with strong clas-
sification ability were retained along with their weights, and
the redundant features were eliminated. The selected features
were used as the input to the output layer.

The training set included 3348 images. In the FC layer, 84
features were extracted from each image. In each iteration of
the CNN shown in Fig. 11, the batch size used was 110, to
obtain a feature set, T, of dimension, 110×84. The ReliefF
algorithm described in Section 4 was then used for processing

feature set, T, and 84 feature weights were obtained. Some of
the parameters in the ReliefF algorithm were set as follows:
The number of neighboring samples in each sample set was
five, and the number of samples selected randomly by the
ReliefF algorithm for weight evaluation in each sample set is
presented in Table 3.

After the above processing, we obtained the initial feature
value vector, L0, with 84 nodes corresponding to each feature
of the FC6 layer in the CNN architecture shown in Fig. 11,
with each iteration of the CNN; the 200th iteration is shown in
Table 4.

From L0, it was determined that the weights corresponding
to some of the features were negative, indicating that the dis-
tances between samples in the class were greater than those
between classes, which is not conducive for classification and
needs to be eliminated. Based on this, feature weights less
than zero were set to zero, and the revised weight vector,L1,
was obtained, as depicted in Table 5.

Input Image: 32*32

C1: 6*28*28

P2: 6*14*14

C3: 16*10*10

P4: 16*5*5

FC5: 120

FC6: 84

Convolution

Layer

Pooling

Layer

Convolution

Layer

Pooling

Layer

Full Connection 

Layer

Convolution

6*(5*5)

Pooling

(2*2)

Convolution

16*(5*5)

Pooling

(2*2)

Full

Connection

Full

Connection

Output: 6

Full Connection 

Layer

Fig. 10 Basic CNN architecture

Table 1 Pooling strategy selection

CNN architecture Layers

Pooling strategy

P2 P4

CNN-1 Max pooling Max pooling

CNN-2 Average pooling Average pooling

CNN-3 Proposed strategy Proposed strategy

Table 2 Recognition accuracies of the three pooling strategies under
different iterations

CNN model Times

Accuracy

50 75 100 125 150 175 200

CNN-1 0.828 0.846 0.846 0.864 0.855 0.864 0.855

CNN-2 0.848 0.857 0.864 0.864 0.875 0.875 0.884

CNN-3 0.866 0.866 0.875 0.884 0.893 0.900 0.900

Input Image: 32*32

C1: 6*28*28

P2: 6*14*14

C3: 16*10*10

P4: 16*5*5

FC5: 120

FC6: 84

FS7: 84

Convolution

Layer

Pooling

Layer

Convolution

Layer

Pooling

Layer

Full Connection 

Layer

Convolution

6*(5*5)

Pooling

(2*2)

Convolution

16*(5*5)

Pooling

(2*2)

Full

Connection

Full

Connection

Output: 6

Feature

Selection

Weight

Evaluate

Full Connection 

Layer

Fig. 11 Enhanced feature selection CNN architecture
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The feature weight of weight vector, L1, was assigned to
the corresponding feature in FC6 of the CNN architecture
shown in Fig. 11, and the feature selected by the ReliefF
algorithm could be obtained at the feature selection level.
For the zero weights in L1, the FC6 feature was given a cor-
responding feature weight, which is equivalent to removing
the corresponding feature with a weight of zero. A total of 16
zero feature weight values were calculated, indicating that the
feature vectors in the FC6 layer were reduced to 68 dimen-
sions after feature selection.

As shown in Table 5, the weights of 16-dimensional fea-
tures were zero, which is equivalent to discarding the neurons
in the locations of the 16-dimensional features, during the
process of feature selection. In addition, for reducing the train-
ing time and preventing over-fitting, the “dropout” method is
often used to temporarily discard certain neurons. However, in
the “dropout” process where neurons are discarded randomly,
some neurons with important characteristics may be
discarded, leading to certain blindness, and in the process of
training, it is necessary to eliminate neurons. It is difficult to
debug the super-parameter of the quantity in training. In the
process of feature selection, some neurons can be selectively
discarded, based on the feature importance, playing a role not

only in evaluating the importance of the features but also in
selectively discarding neurons.

To verify the effectiveness of this feature selection method
and the proposed defect recognition method, we consider
CNN-1, the CNN architecture in Fig. 5 referred to as CNN-
4, and CNN-5 as comparison experimental objects; more in-
formation on CNN-1, CNN-4, and CNN-5 is listed in Table 6.
Under different iterations, experiments were carried out on
CNN-1, CNN-4, and CNN-5, respectively, and the recogni-
tion accuracies are shown in Table 7. By comparing the accu-
racies of CNN-1 and CNN-4, the effectiveness of the pro-
posed enhanced feature selection method can be verified. By
comparing the accuracy of CNN-5 with those of CNN-1 to
CNN-4, the validity of the welding defect recognition method
proposed in this study can be verified.

The experiments demonstrate that the recognition accuracy
can be further improved by combining the ReliefF algorithm
with the neural network for feature selection. Moreover, when
the number of iterations is relatively small, the advantage of
this feature selection method is more obvious.

In Table 7, by comparing the defect recognition accuracy
rates of CNN-1 and CNN-4 and CNN-3 and CNN-5 under
different iterations, it can be seen that the method of enhanced
feature selection proposed in this study can effectively im-
prove the defect recognition rate, and when the number of
iterations is 200, the defect image recognition accuracy rate
of CNN-4 is 87.5%, which is 2.3% higher than that of CNN-1,
and the defect image recognition accuracy of CNN-5 is accu-
rate. The rate is 91.0%, which is 1.1% higher than that of
CNN-3. The results show that the combination of ReliefF
algorithm and neural network can further improve the recog-
nition accuracy. Moreover, when the number of iterations is
relatively small, the advantage of this enhanced feature selec-
tion method is more obvious.

By comparing the defect recognition accuracy of CNN-
5 with CNN-1, CNN-3, and CNN-4 under different

Table 3 Number of extractions of different samples

Sample class Total sample size Number of times selected

Crack 643 26

Lack of fusion 368 14

Lack of penetration 691 28

Slag inclusion 328 12

Porosity 404 16

Nondefect 355 14

Total 2789 110

Table 4 Corresponding weights
of the initial feature value vector Feature number

1–7 0.0000 0.0758 0.0395 0.0140 0.0901 0.0358 0.0000

8–14 0.0000 0.0476 0.0000 0.0829 0.0395 0.0750 − 0.0010
15–21 0.0333 − 0.0023 − 0.0001 0.0201 −0.008 0.0209 0.0132

22–28 0.1047 0.0104 0.0022 0.0431 0.1046 0.0686 0.0078

29–35 0.0263 0.0714 0.0455 0.0244 0.0400 0.1212 0.0000

36–42 0.0000 0.0288 0.0000 −0.0001 0.0065 0.0298 0.0528

43–49 0.0164 0.0004 0.0000 0.0339 0.0017 0.0605 − 0.0007
50–56 0.0412 0.0329 0.0503 0.0426 0.0353 0.1215 − 0.0044
57–63 0.1076 0.0724 0.0565 0.0019 0.0463 0.0365 0.0359

64–70 0.0337 0.2809 0.0711 0.0000 0.0037 0.0000 0.0756

71–77 0.0045 0.1191 0.0472 0.0914 0.0360 0.0013 0.0548

78–84 0.0212 0.0102 0.0350 0.0239 0.0153 0.1033 0.0693
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iterations, it can be seen that the model based on pooling
strategy and feature selection has good recognition perfor-
mance. When the number of iterations is 200, the recogni-
tion accuracy rate of defect image of the model is 91.0%,
which is 1.1% higher than that of the model without en-
hanced feature selection, and compared with the model
without enhanced feature selection. Compared with the
traditional CNN model, the maximum pooling strategy is
improved by 4.0% and 6.4%, respectively. Experimental
results show that the proposed molten pool strategy and
feature selection method have good effect on improving
the defect recognition rate, and when the two are com-
bined, the recognition accuracy of weld image defects
can be further improved.

4.3 Validation of the proposed method

Sections 4.1 and 4.2 verified the proposed pooling method and
feature selection method, respectively. In this section, the entire
improved CNN is tested and validated. The data set used is the
experimental data set of this study. The proposed method,
CNN, SVM, and improved DS [10] method were used to per-
form the experiments, respectively. Table 8 shows the recogni-
tion accuracy for different defects under the various methods.

The proposed method can determine the category of de-
fects in the input image. It can be seen from the table that
the average accuracy of this method for defect identification
is the highest among all the methods (7.57% higher than the
DS method, 2.74% higher than the SVM method, and 3.29%
higher than the CNN method).

Table 5 Corresponding weights
of the revised feature value vector Feature number

1–7 0.0000 0.0758 0.0395 0.0140 0.0901 0.0358 0.0000

8–14 0.0000 0.0476 0.0000 0.0829 0.0395 0.075 0.0000

15–21 0.0333 0.0000 0.0000 0.0201 0.0000 0.0209 0.0132

22–28 0.1047 0.0104 0.0022 0.0431 0.1046 0.0686 0.0078

29–35 0.0263 0.0714 0.0455 0.0244 0.0400 0.1212 0.0000

36–42 0.0000 0.0288 0.0000 0.0000 0.0065 0.0298 0.0528

43–49 0.0164 0.0004 0.0000 0.0339 0.0017 0.0605 0.0000

50–56 0.0412 0.0329 0.0503 0.0426 0.0353 0.1215 0.0000

57–63 0.1076 0.0724 0.0565 0.0019 0.0463 0.0365 0.0359

64–70 0.0337 0.2809 0.0711 0.0000 0.0037 0.0000 0.0756

71–77 0.0045 0.1191 0.0472 0.0914 0.0360 0.0013 0.0548

78–84 0.0212 0.0102 0.0350 0.0239 0.0153 0.1033 0.0693

Table 6 Model construction
CNN model Pooling model Add feature selection

layer? (yes/no)
P2 layer P4 layer

CNN-1 Max pooling Max pooling No

CNN-4 Max pooling Max pooling Yes

CNN-3 Proposed pooling strategy No

CNN-5 Proposed pooling strategy Yes

Table 7 Recognition rates of
CNN-1 and CNN-4 under differ-
ent iterations

Model Times

Accuracy

50 75 100 125 150 175 200

CNN-1 0.828 0.846 0.846 0.864 0.855 0.864 0.855

CNN-4 0.848 0.866 0.864 0.884 0.875 0.884 0.875

CNN-3 0.866 0.866 0.875 0.884 0.893 0.900 0.900

CNN-5 0.875 0.875 0.884 0.893 0.893 0.900 0.910
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With respect to the recognition accuracy of a single defect,
the deep learning method applied by the proposed method
achieves better results in identifying PO and SL defects due
to its ability to extract abstract features; however, due to the
small crack width, the number of features extracted by deep
learning is less, and the recognition accuracy for CR defects
needs to be improved. For traditional defects, the DS shows
better performance. The results indicate that DS method has a
high recognition accuracy for CR, but the accuracy is not high
when identifying PO and SL defects. Further improvement
involves the addition of artificial crack features to the CNN
to improve the accuracy of crack identification.

5 Conclusion

In this study, in order to improve the pool adaptive ability and
feature selection ability of the CNN for different defect image
features, the classic pooling strategy was improved, and the
traditional feature evaluation method was combined with the
neural network for feature selection. In summary,

(1) A pooling strategy, which considers the feature distribu-
tion of the pooling region and the feature map to which
the pooling region belongs, was proposed. This model
includes the characteristics of max pooling and average
pooling, and reflects the pooling region, when different
feature distributions are involved. A certain degree of
dynamic adaptability is significant for improving the rec-
ognition rate of deep neural networks.

(2) Combining the traditional feature evaluation method of
ReliefF and the understanding of the feature importance
of the neural network, the feature selection ability of the
model was strengthened, enabling further improvement
of the model’s classification ability.

(3) The method proposed in this study can identify and clas-
sify defects in radiographic images. The effectiveness of
the CNN model based on the improved pooling strategy

and feature selection was verified. The experimental re-
sults demonstrated that compared to the traditional CNN,
the proposed method has higher correct recognition rate
and better adaptability. Compared to the traditional DS
method, the overall performance of the proposed method
was improved; however, the recognition accuracy for
crack defects requires improvement. The CNN model
based on the improved pooling strategy and feature selec-
tion exhibited good performance in the defect classifica-
tion of X-ray images. In the future, it is intended to im-
prove the recognition accuracy for crack defects.
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