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Abstract
The paper is concerned with the problem of stress concentration in cruciform fillet welded joints subjected to axial and bending
load. Extended numerical analyses were carried out with the help of the finite element method. It made it possible to estimate
stress concentration factors Kt for a variety of geometrical parameters defining the geometry of cruciform welded joints. It has
been found that approximate Kt formulas, available in the literature, have two disadvantages, i.e. an unknown accuracy and small
range of application with respect to geometrical parameters defining the weld shape. For these reasons, more general and accurate
new formulas for stress concentration factors Kt have been derived. Even though the present approach is applicable to all types of
welded joints, the analysis presented below has been conducted for a cruciform joint with the weld flank angle of θ = 45°. Final
solutions have been given in the form of polynomial expressions, and they can be easily used in computer-aided design
procedures.

Keywords Cruciform welded joints . Stress concentration factor . Weld geometry . Finite element method . Axial and bending
load . Fillets

List of symbols
a Weld throat thickness
Kt Theoretical elastic stress concentration factor
Ktb Pure bending stress concentration factor
Ktt Pure axial stress concentration factor
h Attachment weld leg length
hp Main plate leg length
n=λ−1 Stress field exponent for a sharp corner
N Number of loading cycles
S Cyclic stress
t Thickness of the main plate
T Thickness of the attachment plate
X=ρ/(ρ+a) Normalised weld toe radius parameter
Y=a/(a+t) Normalised weld thickness parameter

2α Total angle of the sharp corner
δx Accuracy of the approximate Kt value
θ Weld flank angle
κ Correction function for the relative

attachment thickness T/a
κb Correction function for the relative

attachment thickness T/a for pure bending load
κt Correction function for the relative

attachment thickness T/a for pure axial load
λ Eigenvalue of the characteristic equation
ρ Weld toe radius
σb Nominal bending stress
σt Nominal axial stress

1 Introduction

The linear elastic stress concentration factor Kt is one of the
most important parameters used in predicting fatigue life of
structural components with various types of stress raisers like
holes, notches, grooves, and stiffeners. A variety of Kt solu-
tions and approximated formulas can be found in the literature
(e.g. [1–7]). Welded joints are often used in engineering prac-
tice, but apart from their economic advantages, the
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technological process involved possesses several additional
problems which have to be considered in design procedures.
The heat-affected zone, residual stresses, microstructural
changes of the material and geometry of the weld-producing
local non-uniform stress distribution are of great importance
while predicting the fatigue strength and durability of such
joints. The damage process usually initiates at the weld toe
[8, 9], especially in the case of cruciform joints without the
lack of penetration [10] or when the fillet weld size is suffi-
ciently large [11]. Therefore, this region is of special interest to
designers. From the point of view of the joint quality, it is
important to predict the maximum permissible stresses at crit-
ical locations of the joint as well as to verify design require-
ments by means of measurable geometry parameters. The
general form of a cruciform welded joint and its basic geomet-
rical dimensions are shown in Fig. 1.

It is generally accepted [12, 13] that the overall load
applied to the main plate of thickness t may be regarded
as the superposition of the axial and bending load. For
this reason, the maximum stress, appearing at critical
locations, shown in Fig. 1 as circles, depends on both
the axial and bending load magnitude, and it is de-
scribed by two stress concentration factors Ktt and Ktb,
respectively. These factors are usually defined as the
ratio of the maximum peak stress to the nominal stress,
often called the remote stress [14, 15] or as the average
stress in the notch root cross section. Sometimes, the
hot spot stress [12] is also used to define the stress
concentration factor as well. Despite the fact that max-
imum stresses due to tension and bending are not locat-
ed at the same point on the small curvilinear surface of
the weld toe, they are close enough to consider the peak
stress as being the sum of those two independent con-
tributions. Since the stress concentration phenomenon
depends on several geometrical parameters of the joint,
the determination of the stress concentration factor Kt is
a troublesome and time-consuming process. For practi-
cal engineering applications, various approximate formu-
las of Kt are used.

2 Available stress concentration factor
formulas for cruciform joints

Avariety of approximate Kt formulas for welded joints can be
found in the literature [12, 14–16]. Examples of such formu-
las, presented by Ushirokawa and Nakayama (U&N) [14] and
Tsuji [16] for a cruciform joint subjected to axial and bending
load, are shown below, Eqs. (1)–(3):

& axial load

Ushirokawa and Nakayama [14]:

K tt ¼ 1þ 2:2
h=ρ

2:8 W=tð Þ−2
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ffiffiffiffiffiffiffiffiffiffiffiffi
W=2h

ph i

1−exp −0:9 π=2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffi
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:
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Tsuji [16]:

K tt ¼ 1þ 1:348þ 0:397ln
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t

� �� �
h=ρ

2:8 W=tð Þ−2
� �0:467

1−exp −0:9θ
ffiffiffiffiffiffiffiffiffiffiffiffi
W=2h

ph i

1−exp −0:9 π=2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffi
W=2h

ph i
8<
:

9=
;

ð2Þ

& bending load

Ushirokawa and Nakayama [14]:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh
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where W = (t + 4h) + 0.3(T + 2hp) and θ is in radians.
All parameters appearing in formulas (1)–(3) are defined in

Fig. 1.
Taking into account the typical shape and slope of

the well-known fatigue S–N curve [17, 18], it is clear
that the predicted fatigue life of a welded joint depends
strongly on the accuracy of estimated Kt factors. Despite
the fact that several authors were concerned mostly withFig. 1 Cruciform welded joint and its basic geometrical dimensions
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fatigue crack propagation life of such joints [11, 19,
20], the stress concentration factor Kt is also useful for
estimating stress distributions in critical cross sections
needed for fracture mechanics-based analyses [9, 13].
For this reason, extended numerical FEM-based analyses
have been carried out to verify the range of validity and
accuracy of available approximate Kt formulas (1)–(3)
and to develop extended Kt formulas for a wider range
of geometrical parameters.

3 Analysis of stress concentration factors
by using the finite element method

3.1 General assumptions

The shapes and basic geometrical parameters of the full pen-
etration cruciform welded joint are depicted in Fig. 1.

The following assumptions have been made:

1. Joint material is l inear elastic, isotropic and
homogeneous.

2. Small deformations occur due to external loading—
tensile and bending.

3. Joint material is free from residual stresses, structural ir-
regularities and imperfections including lack of penetra-
tion defects.

4. Weld faces are plane, and contour of the weldment is
smooth, with a transition radius ρ > 0.

5. Weld flank angle θ = 45°.
6. Both attached plates are of the same thickness T and are

co-linear.
7. Four welds are symmetrical.
8. Ktt for tensile and Ktb for bending loads are defined as

σ1max/σt and σ1max/σb, respectively.

3.2 The numerical model and boundary conditions

Numerical models of a variety of cruciform joint geometries
have been developed using the ANSYSFEM program. Due to
the double symmetry of the joint under axial load and
symmetric-anti-symmetric deformation under bending load,
only one quarter of the total joint was modelled. The geometry
of the joint and the boundary conditions are schematically
shown in Fig. 2.

The weld throat thickness parameter a was introduced
for convenience, and it represents, in this case (for θ =
45°), the weld throat thickness, as shown in Figs. 1 and
2. The attachment leg length h and the main plate leg
length hp, shown in Fig. 1 and appearing in Eqs.
(1)–(3), are related to the weld throat thickness a in
the form of Eq. (4).

a ¼ hcos θð Þ ¼ hpsin θð Þ: ð4Þ

Equation (4) makes it possible to reduce the number of
independent variables used in the analysis. In the present case
(θ = 45°), the following relations hold a = 0.707 h = 0.707hp.
Besides that, two non-dimensional parameters X and Y have
been introduced in the form of expressions (5) and (6).

X ¼ ρ= ρþ að Þ ¼ ρ=a
ρ=aþ 1

ð5Þ

Y ¼ a= aþ tð Þ ¼ a=t
a=t þ 1

ð6Þ

The introduction of parameters X and Ymakes further anal-
ysis more convenient than when directly using parameters ρ/a
and a/t. In this way, all possible values of parameters X and Y
fall into the range of 0, 1. For each particular geometrical case
analysed in plane stress, a very fine mesh composed of about
800,000 linear PLANE182 finite elements was used.
PLANE182 finite element is defined by 4 nodes having 2
degrees of freedom at each node. The mesh density was in-
creased in the weld toe region where the number of finite
elements along the arc, described by the toe radius ρ, was
about 15 to 60, depending on the radius magnitude. In all
cases, the geometrical proportions were selected in a way to
obtain an unperturbed nominal stress field in a cross section
located sufficiently far from the weld zone. At the initial stage
of building the FEM model, the finite element mesh density
was successively increased to obtain a stable numerical solu-
tion with the maximum stress value staying constant. As a
result of gathering a significant number of cases and corre-
sponding numerical solutions, a special mesh-generating pro-
cedure was developed. Moreover, the size of the finite ele-
ments changed smoothly the further from the zone of maxi-
mum stress concentration. These assumptions made the finite
element mesh very fine.

The weld toe radius, ρ1, along the attachment weld line was
arbitrarily chosen as 0.1a, and it had no influence on stress
concentration factors Ktt and Ktb. Relative lengths of the main
and attachment plate, as well as the type of load and “rolling
support” displacement boundary conditions, are shown sche-
matically in Fig. 2. The thickness of the attachment plate,
denoted as T in the present analysis, was normalised with
respect to the weld throat thickness parameter a and varied
within the range of 1 ≤ T/a ≤ 4. The non-dimensional param-
eters X and Y have fallen into the range of 0.01 to 0.57 each.
Particular values of stress concentration factors Ktt and Ktb

were obtained by dividing the maximum peak stress at the
weld toe by the nominal remote stress.

Number of finite elements, nodes and the minimum
size of the element depended on the proportions be-
tween geometrical parameters of the joint represented
by X, Y and T/a. For example, the model shown in
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Fig. 3, where X = 0.2, Y = 0.4 and T/t = 1, contained
872,642 elements and 875,096 nodes.

3.3 Accuracy of approximate Kt formulas

After performing the numerical calculations, approximate
Ktt and Ktb values, given by formulas (1)–(3), were com-
pared to those ones obtained with the help of the FEM
method. Two examples of such comparisons obtained for
the tensile and bending load are shown in Table 1 and
Table 2, respectively. The accuracy δx is defined as the
difference (%) between approximate Kt formulas (Eqs.
(1)–(3)) and those obtained from the present FEM analy-
sis and relative to the FEM data.

From the set of results presented in Table 1 and Table 2, one
may conclude that the accuracy of stress concentration factors
Ktt and Ktb obtained from approximate formulas (2) and (3)
varies within the range of + 12.3 to − 22% and would give
rather poor predictions of fatigue life. It appears that the ap-
proximate formulas have two important disadvantages: unde-
termined accuracy and narrow range of application with re-
spect to geometrical parameters defining the weld geometry.
For this reason, it seems necessary to elaborate on a slightly
updated approach to the problem of stress concentration fac-
tors Ktt and Ktb in cruciform welded joints.

4 The weld toe radius and the plate thickness
effects

It is important, while analysing the stress concentration
phenomenon in welded joints with fillet welds, to know
the effect of particular geometrical parameters on stress
concentration factors Ktt and Ktb. Two typical situations
appearing while designing welded structures are consid-
ered below. The first one is when only the weld toe
radius ρ varies, and the second one is when only the
main plate thickness t varies, while in both cases, all
remaining parameters stay the same. It is worth noting
that in both cases, the classical most important non-
dimensional parameter ρ/t changes as well, and it tends
to the limit zero when ρ→ 0 or t→∞. As a result, two
different limit stress concentration factors occur for the
value of ρ/t→ 0.

4.1 The weld toe radius effect

It is well-known that the weld toe radius ρ is the most impor-
tant parameter influencing the stress concentration in a welded
joint. Therefore, there are design requirements available
preventing using notch tip radii smaller than the recommend-
ed limit.

Let us assume that the weld toe radius ρ varies,
while all remaining geometrical parameters stay the
same. The FEM-based stress concentration factors Ktt

obtained in due course are shown in Fig. 4 in terms
of the normalised parameter X. They were determined
for several levels of parameter Y.

All curves (Fig. 4) are singular, which means that
stress concentration factors increase rapidly when the
weld toe root radius ρ approaches zero, while all other
geometrical parameters of the joint do not vary. Such a
behaviour needs special mathematical care when using
approximate fitted expressions to capture variations of
the stress concentration factor. In such cases, Eqs. (1)
and (2) can be presented in the form of Eqs. (7) and

Fig. 2 Geometry and boundary
conditions of the cruciform joint
subjected to a axial load and b
bending load

Fig. 3 Example of a finite element mesh for X = 0.2, Y = 0.4 and T/t = 1.0
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(8), where constants C1 and C2 depend on other non-
varying characteristic geometrical parameters of the
joint.

Ktt ¼ 1þ C1 ρð Þ−0:65 ð7Þ

Ktt ¼ 1þ C2 ρð Þ−0:467 ð8Þ

It is worth noting that the exponents in Eqs. (7) and (8) are
different, and this means that the stress concentration factors
Ktt will vary with different rates when the weld toe radius
decreases, i.e. when ρ→ 0.

4.2 The plate thickness effect

Another important case occurs when only the thickness t of
the main plate varies, while other geometrical parameters of
the joint remain unchanged. Such a situation takes place when
all weld dimensions depend on constant thickness T of the
attachment plate, while the thickness t of the main plate varies.
The Ktt data obtained for such a case are presented in Fig. 5,
where the axial stress concentration factor was obtained for a
range of values of parameter X, and it is given as a function of
the relative weld throat thickness Y.

In all those cases, the Ktt vs. Y relationship can be
approximated by a smooth and regular function tending

Table 1 Comparison of tensile stress concentration factorsKtt obtained with the FEMwith those developed by Ushirokawa and Nakayama (U&N, Eq.
(1)) and Tsuji (Eq. (2)), where θ = 45°, h = hp, t = T, h/t = 0.75, 0.025 ≤ ρ/t ≤ 0.35

ρ/t 0.025 0.050 0.075 0.10 0.15 0.25 0.35

Ktt FEM 3.768 3.013 2.649 2.420 2.137 1.838 1.673

U&N 4.231 3.059 2.582 2.312 2.008 1.723 1.581

accuracy δx + 12.3% + 1.5% − 2.5% − 4.5% − 6.0% − 6.2% − 5.5%
Ktt Tsuji 3.103 2.521 2.259 2.101 1.911 1.718 1.613

accuracy δx − 17.6% − 16.3% − 14.7% − 13.2% − 10.6% − 6.5% − 3.6%

Table 2 Comparison of bending stress concentration factors Ktb obtained with the FEM with those developed by Ushirokawa and Nakayama (U&N
Eq. (3)), where θ = 45°, h = hp, t = T, h/t = 0.75, 0.025 ≤ ρ/t ≤ 0.35

ρ/t 0.025 0.050 0.075 0.10 0.15 0.25 0.35

Ktb FEM 2.935 2.353 2.074 1.901 1.689 1.474 1.361

U&N 2.291 1.970 1.801 1.686 1.531 1.347 1.242

accuracy δx − 22.0% −16.3% − 13.2% − 11.3% − 9.4% − 8.6% − 8.7%

Fig. 4 Influence of the relative weld toe radius X on the axial stress
concentration factor Ktt obtained for a variety of Y ratios while T = 1.4a

Fig. 5 The effect of the relative thickness Y on the axial stress
concentration factor Ktt for various X ratios, while T = 1.4a
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to a finite limit when the relative weld throat thickness
Y tends to zero.

When the main plate thickness t increases and the weld toe
radius ρ stays constant, the ratio ρ/t→ 0, but the stress con-
centration factor Ktt tends to a finite value and not to infinity,
as in the previous case of ρ→ 0.

4.3 Conclusions drawn from finite element method
solutions

The analysis of the two cases named as the “radius
effect” and the “thickness effect”, presented above, in-
dicates that the ρ/t ratio is a very important parameter
influencing stress concentration factors. However, the
stress concentration factor Ktt depends also on other
parameters like the weld throat thickness a and the at-
tachment thickness T. The data presented in Figs. 4 and
5 indicate that when the weld toe radius ρ tends to
zero, while the plate thickness t stays constant, the sin-
gularity effect occurs, resulting in theoretically infinite
stresses at the weld toe. However, when the weld toe
radius ρ remains constant, while the main plate thick-
ness t tends to infinity, the maximum stress at the weld
toe tends to a finite value. The dual tendency
concerning stress concentration factors in welds needs
appropriate treatment.

Analogous data and tendencies concerning stress con-
centration factors under axial load (Figs. 4 and 5) were
also obtained under pure bending load. The phenome-
non discussed above is illustrated in Fig. 6 for both
pure tension (a) and bending load (b), where at least
two parameters describing the variation of stress con-
centration factors in weldments are necessary because
the description in terms of only one parameter ρ/t is
insufficient.

The data presented in Fig. 6 were obtained with the finite
element method by varying the parameters ρ/a and a/t within
the range of 0.01 to 1.3.

5 General form of the analytical stress
concentration factor formula

The data presented and discussed above indicate that
any general mathematical formula for the weldment
stress concentration factor requires using an expression
capable of modelling the singularity when the weld toe
radius ρ tends to zero. It is also necessary to approxi-
mate a potential stress concentration factor expression
with respect to at least two geometrical parameters such
as X and Y defined earlier.

5.1 The sharp corner configuration as the limiting
case of the weld toe radius

When the weld toe radius ρ→ 0, the weld toe region converts
into a sharp corner with its characteristic angle 2α, as shown
in Fig. 7.

The fundamental solution to the case [21, 22] shown in Fig.
7 must satisfy the compatibility of the displacement field giv-
en by Eq. (9). This means that Eq. (9) must be satisfied for
characteristic values of the parameter λ.

sin 2λαð Þ þ λsin 2αð Þ ¼ 0 ð9Þ

Since the complimentary angle in the analysed case
(weld angle θ = 45°) is 2α = 5π/4, the first characteristic
exponent of the solution is λ = 0.6736. Thus, the degree
of the singularity of the fundamental solution is n = λ −

Fig. 6 Dependence of stress
concentration factors as a function
of parameters ρ/t, a/ρ while T/a =
1.4; a variations of Ktt under axial
load and b variations of Ktb under
bending load
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1 = − 0.3264. This solution means that as the weld toe
radius ρ becomes very small, the stress concentration
factor Ktt or Ktb should be described by the power law
function of ρ with the exponent n = − 0.3264. The sin-
gularity of the solution may be subsequently removed
by using the Kt/X

n parameter instead of Ktt or Ktb. As a
consequence, a smooth and regular function dependent
on parameters X and Y can be obtained for simulating
variations of stress concentration factor Ktt or Ktb. In
other words, the stress concentration factor domain can
be represented by a surface being the function of pa-
rameters X and Y.

5.2 Graphical form of the regular two-dimensional
function representing stress concentration factors

Graphical representations of stress concentration factors in the
form of surfaces drawn in X and Y coordinates are shown, for
axial and bending load, in Fig. 8 and Fig. 9, respectively. The
data were obtained with the finite element method for the
attachment thickness to the weld throat thickness ratio of T/
a = 1.

Both surfaces can be easily described by appropriate poly-
nomials involving parameters X and Y varying in the range of

0 to 0.57. The resulting range of variation for parameters ρ/a
and a/t was of 0 to 1.3. It has been concluded that assumed
ranges of variation, for all parameters being discussed, were
essential and sufficient for practical applications.

The closed form expression for convenient estimation of
stress concentration factors in cruciform weldments was se-
lected in the form of Eq. (10)

Kt ¼ X −0:3264 A0 þ A1X þ A2X 2 þ A3X 3 þ A4X 4
� � ð10Þ

The Ai parameters depend only on the non-dimensional
geometrical parameter Y. The formula (10) is valid for constant
value of parameter T/a = 1 involving the thickness of the at-
tachment plate and the weld throat thickness. Parameters Ait
for the axial and Aib for the bending load are given in the
Appendix.

5.3 The effect of the attachment thickness T on stress
concentration factors Ktt and Ktb

The weld throat thickness a is related to the thickness of one or
both plates welded together, and therefore, additional analyses
were carried out for relative attachment thicknesses varying in
the range of 1 ≤ T/a ≤ 4.

The effect of the relative attachment thickness T/a on the
stress concentration factorsKtt andKtb can be accounted for by
introducing two correction functions κt(T/a,X,Y) and κb(T/
a,X,Y) for tensile and bending load, respectively, given by
Eqs. (11) and (12)

κt ¼ 1þ
ffiffiffiffiffiffiffiffi
T=a

p
−1

	 

1− 0:538þ 8:659Y 2

� �
X

� �
exp − 3:654Yð Þ2:7−1:453

h i

ð11Þ
κb ¼ 1þ

ffiffiffiffiffiffiffiffi
T=a

p
−1

	 

1− 0:600þ 20:148Y 2

� �
X

� �
exp − 6:899Yð Þ2:0−1:492

h i

ð12Þ
Fig. 8 Regular surface representing the axial stress concentration factor
Ktt normalised by the singular term; cruciform joint, axial load, θ = 45°, T/
a = 1, n = − 0.3264

Fig. 7 Sharp corner (ρ→ 0) in a semi-infinite plane and its characteristic
angles of 2α and θ= 45° representing the sharp weld toe region

Fig. 9 Regular surface representing the bending stress concentration
factor Ktb normalised by the singular term; cruciform joint, bending
load, θ = 45°, T/a = 1, n = − 0.3264
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The accuracy of each formula is higher than 99% compar-
ing to FEM results.

A range of values of the correction functions κt and κb for
arbitrarily chosen relative attachment thickness T/a = 2 and T/
a = 4 are shown in Fig. 10 a and b for the axial and bending
load, respectively.

Thus, the final formulas for the stress concentration factors
in cruciform weldments, accounting for the variation of the
parameter T/a, can be written down in the form of Eq. (13) and
Eq. (14).

Ktt ¼ X −0:3264 A0t þ A1tX þ A2tX 2 þ A3tX 3 þ A4tX 4
� �

κt T=a;X ;Yð Þ
ð13Þ

Ktb ¼ X −0:3264 A0b þ A1bX þ A2bX 2 þ A3bX 3 þ A4bX 4
� �

κb T=a;X ;Yð Þ
ð14Þ

Particular formulas for calculating numerical values of Ait
and Aib are given in Appendix.

6 Validation of approximating formulas

Numerical FEM Ktt and Ktb values have been compared to
their equivalencies obtained by means of the approximating
functions. Some examples of such comparisons are presented
in Tables 3, 4, 5, and 6, for a cruciform joint subjected to
tensile and bending loads.

Accuracy for all approximating formulae and variables in
the range of validity, summarised in Appendix, is much better
than 97.5%.

7 Conclusions

Extended numerical simulations that were carried out with the
help of the FEM package ANSYS Mechanical APDL 16.2
have shown that the weld toe radius ρ, the weld throat thick-
ness a and the main plate thickness t are the most important
geometrical parameters affecting stress concentration factors

Fig. 10 Correction functions κt
and κb accounting for the effect of
T/a for various X and Yparameters
on the stress concentration factors
Ktt and Ktb, respectively, for a
axial load and b bending load

Table 3 Comparison of Ktt values calculated using Eq. (13) (*) to the
FEM results for a cruciform joint subjected to tensile load, while T/a = 1.4

T/a = 1.4 X = ρ/(ρ + a)

Y = a/(a + t) 0.05 0.15 0.25 0.35 0.45 0.55

0.15 4.105 2.799 2.313 2.022 1.815 1.653

4.108* 2.799* 2.313* 2.023* 1.816* 1.652*

0.25 3.970 2.700 2.223 1.934 1.726 1.560

3.950* 2.685* 2.213* 1.928* 1.723* 1.556*

0.35 3.651 2.477 2.034 1.765 1.571 1.416

3.645* 2.475* 2.035* 1.770* 1.577* 1.421*

0.45 3.269 2.218 1.821 1.581 1.411 1.282

3.258* 2.211* 1.818* 1.582* 1.413* 1.282*

0.55 2.891 1.964 1.617 1.414 1.277 1.183

2.891* 1.965* 1.621* 1.419* 1.282* 1.185*

Table 4 Comparison of Ktb values calculated using Eq. (14) (*) to the
FEM results for a cruciform joint subjected to bending load, while T/a =
1.4

T/a = 1.4 X = ρ/(ρ + a)

Y = a/(a + t) 0.05 0.15 0.25 0.35 0.45 0.55

0.15 3.785 2.572 2.118 1.844 1.648 1.504

3.773* 2.563* 2.112* 1.841* 1.648* 1.497*

0.25 3.266 2.222 1.833 1.604 1.445 1.323

3.271* 2.226* 1.839* 1.609* 1.448* 1.325*

0.35 2.819 1.931 1.609 1.423 1.299 1.209

2.819* 1.929* 1.607* 1.421* 1.295* 1.204*

0.45 2.469 1.710 1.443 1.298 1.206 1.143

2.472* 1.710* 1.445* 1.299* 1.207* 1.143*

0.55 2.178 1.532 1.320 1.209 1.142 1.096

2.177* 1.530* 1.317* 1.207* 1.139* 1.094*
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Ktt and Ktb of cruciform welded joints having the weld angle
θ = 45°. The appropriate description of the singularity
appearing when the weld toe radius ρ tends to zero and the
introduction of normalising parameters X and Y made the
range of application of the final formulae significantly large,
i.e. 0 < ρ/a ≤ 1.3, 0 < a/t ≤ 1.3 and 1 ≤ T/a ≤ 4 with the maxi-
mum percentage error less than 2.5%.

The effect of the relative attachment thickness T/a on Ktt

and Ktb was accounted for by means of two correction func-
tions κt and κb, given in a close form by Eqs. (11) and (12),
which corrected Ktt and Ktb of a particular reference T/a value
to a new actual one. The accuracy of each correction function
is about 99% compared to FEM results.

In this way, one general formula (for each loading case)
was obtained covering all proportions between geometrical
parameters of the cruciform joint commonly used in engineer-
ing applications.

Since the final solution is given in the form of a polynomial
expression, it can be easily applied in computer-aided design
processes involving optimisation. The procedure described
above may be easily repeated for other types of joints with
fillet and butt welds and various weld angles θ.

Appendix. Approximate Kt formulas
for a cruciform welded joint subjected to axial
and bending load

Variables: ρ, a, t, T
Constant values:
θ = 45°; n = −0.3264
Normalising parameters:
X = ρ/(ρ + a); Y = a/(a + t)
Range of application: 0 < ρ/a ≤ 1.3; 0 < a/t ≤ 1.3; 1 ≤ T/a ≤

4
Approximation accuracy: maximum percentage error

much lower than 2.5% compared with FEM results
General formulas:

Ktt ¼ X −0:3264 A0t þ A1tX þ A2tX 2 þ A3tX 3 þ A4tX 4
� �

κt

ð15Þ
Ktb ¼ X −0:3264 A0b þ A1bX þ A2bX 2 þ A3bX 3 þ A4bX 4

� �
κb

ð16Þ

Cruciform joint, axial load, θ = 45°

A0t ¼ 1:495þ 0:116Y þ 1:690Y 2−12:878Y 3 þ 12:853Y 4

A1t ¼ −0:405þ 0:553Y−4:856Y 2 þ 12:410Y 3−9:082Y 4

A2t ¼ 0:505−0:881Y−0:405Y 2 þ 3:533Y 3−2:689Y 4

A3t ¼ −0:826þ 1:654Y þ 5:274Y 2−35:138Y 3 þ 41:767Y 4

A4t ¼ 0:374þ 0:061Y−20:664Y 2 þ 79:757Y 3−76:234Y 4

κt ¼ 1þ
ffiffiffiffiffiffiffiffi
T=a

p
−1

	 

1− 0:538þ 8:659Y 2

� �
X

� �
exp − 3:654Yð Þ2:7−1:453

h i

Cruciform joint, bending load, θ = 45°

A0b ¼ 1:491þ 1:137Y−14:897Y 2 þ 30:960Y 3−21:195Y 4

A1b ¼ −0:379−0:831Y þ 5:195Y 2−7:152Y 3 þ 3:924Y 4

A2b ¼ 0:440−1:322Y þ 2:031Y 2 þ 4:113Y 3−1:144Y 4

A3b ¼ −0:792þ 2:683Y−12:341Y 2 þ 41:768Y 3−55:767Y 4

A4b ¼ 0:533−3:688Y þ 25:247Y 2−74:895Y 3 þ 75:845Y 4

κb ¼ 1þ
ffiffiffiffiffiffiffiffi
T=a

p
−1

	 

1− 0:600þ 20:148Y 2

� �
X

� �
exp − 6:899Yð Þ2:0−1:492

h i
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in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
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Table 6 Comparison of Ktb values calculated using Eq. (14) (*) to the
FEM results for a cruciform joint subjected to bending load, while T/a =
3.0

T/a = 3.0 X = ρ/(ρ + a)

Y = a/(a + t) 0.05 0.15 0.25 0.35 0.45 0.55

0.15 3.938 2.669 2.190 1.896 1.686 1.528

3.922* 2.654* 2.177* 1.889* 1.684* 1.524*

0.25 3.289 2.236 1.843 1.608 1.445 1.324

3.289* 2.236* 1.845* 1.612* 1.449* 1.325*

0.35 2.821 1.933 1.608 1.422 1.297 1.209

2.820* 1.930* 1.607* 1.421* 1.295* 1.204*

0.45 2.468 1.709 1.444 1.299 1.206 1.142

2.472* 1.710* 1.445* 1.299* 1.207* 1.143*

0.55 2.177 1.532 1.319 1.209 1.142 1.097

2.177* 1.530* 1.317* 1.207* 1.139* 1.094*

Table 5 Comparison of Ktt values calculated using Eq. (13) (*) to the
FEM results for a cruciform joint subjected to tensile load, while T/a = 3.0

T/a = 3.0 X = ρ/(ρ + a)

Y = a/(a + t) 0.05 0.15 0.25 0.35 0.45 0.55

0.15 4.516 3.066 2.519 2.185 1.944 1.751

4.512* 3.053* 2.507* 2.178* 1.942* 1.754*

0.25 4.189 2.838 2.324 2.009 1.779 1.594

4.165* 2.815* 2.306* 1.998* 1.774* 1.593*

0.35 3.731 2.525 2.066 1.785 1.580 1.418

3.707* 2.509* 2.058* 1.784* 1.585* 1.424*

0.45 3.290 2.228 1.826 1.581 1.408 1.278

3.266* 2.215* 1.821* 1.583* 1.413* 1.281*

0.55 2.893 1.963 1.615 1.410 1.274 1.181

2.891* 1.965* 1.621* 1.419* 1.282* 1.185*
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