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Abstract
The effective notch stress approach to estimate fatigue strength of welded components requires knowledge of stress concentration
factors of an idealized weld geometry using notch radii. This paper covers the estimation of those stress concentration factors for
welded cruciform joints with double-filled welds, and K- or double-Y-butt welds with partial or full penetration. Thin, medium,
and thick-walled joints are covered in the resulting estimations as well as different notch radii and weld angles. In comparison
with different existing estimations, new methods using metamodeling (a) by the response surface method based on polynomial
regression using coupling terms and (b) based on artificial neural networks are presented. Both methods show similar and
superior quality. Much lower errors compared to existing estimation methods are obtained. The methods were trained by a large
data base of reference results obtained by finite element analysis for 5973 design alternatives (samples) in total. Besides higher
quality of prognosis, the newmetamodels enhance the range of allowable parameters of the cruciform joints compared to existing
ones. The resulting methods provide sound means of obtaining stress concentration factors fast and of sufficient quality which
could also be embedded in more complex applications as programmed solutions.
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NomenclatureSymbols, abbreviations
ANN (−) artificial neural network
α (°) flank angle
b (mm) total model width
bi (−) bias vectors for artificial

neural networks
ck (−) scalar multiplication parameter

for the PRC method
d (mm) total model depth
E (MPa) modulus of elasticity
errrel (%) relative error
F (N) force
fk (−) value of geometric multiplication

parameter for the PRC method
g (−) input vector for the ANN method
h (mm) total model height

Kf (−) fatigue notch factor
Kt (−) stress concentration factor
Kt, EST (−) stress concentration factor,

estimated
Kt, FEM (−) stress concentration factor,

calculated by FEM
kt (−) stress concentration output

vector of the ANN method
Kt, AKS (−) stress concentration factor of

the Anthes et al. method
Kt, ANN (−) stress concentration factor

of the ANN method
Kt, PRC (−) stress concentration factor

of the PRC method
Kt, RAD (−) stress concentration

factor of Radaj’s method
Kt, RAI (−) stress concentration factor

of Rainer’s method
Kt, YL (−) stress concentration

factor of Yung and
Lawrence’s method

Kw (−) ratio of notch stress to
structural stress
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Kw, min (−) minimum ratio of notch
stress to structural stress

l1 (mm) leg length
M (N/mm) moment
ν (−) Poisson ratio
Φi (−) artificial neural network

layer potential
PRC (−) polynomial regression

with coupling terms
r (mm) Notch radius
Sb (MPa) nominal bending stress
St (MPa) nominal tension stress
σe (MPa) Notch stress
σw (MPa) structural stress
ti (mm) sheet thickness
w (mm) length of root face
Wi (−) weight matrices of artificial

neural networks
xi,gain (−) gain input vector for artificial

neural networks
xi,offset (−) offset input vector for artificial

neural networks
y (−) ratio of leg length to

sheet thickness
yo,gain (−) gain output vector of artificial

neural networks
yo,offset (−) offset output vector of artificial

neural networks
z (−) ratio of length of root face to first

sheet thickness
Indices, superscripts
b, bend bending
t, tens tension
f. p. full penetration
K PRC method index
p. p. partial penetration
r, root root
toe toe

1 Introduction

Analytical fatigue strength of welded components can be es-
timated using the so-called effective notch stress approach as
described in the IIW recommendations [1] and related litera-
ture (see, e.g., [2–4]). The method requires input of a stress
concentration factor either referring to maximum principal
stress or von Mises equivalent stress calculated using linear
elastic material.

By increasing the real notch radius in a weld root or
weld toe by using a substituted and fictitious radius r in
the model to calculate the stress concentration factor Kt,
this value obtained can be intrinsically interpreted as an

effective fatigue notch factor Kf. The effective notch
stress concept as embedded in the IIW recommendations
[5] was developed by Seeger and co-workers at Darmstadt
University in the 1980s [5]. This concept was motivated
by early work of Radaj [6] who derived a fictitious
rounding of a notch stress model of welds based on the
idea of Neuber’s microstructural support effect [7] assum-
ing worst-case conditions of the real notch radius in toes
and roots. Seeger’s concept is based on a modeling guide-
line for unified modeling of welds using a fixed radius for
toes and roots to standardize the analytical stress calcula-
tion. The scatter of fatigue strength of the welds, e.g.,
influence of weld geometry details and material data,
was fully combined in the SN curve to be applied to the
stress values obtained by this standardized modeling.
Those SN data have been obtained by back calculation
from experimental fatigue testing of different weld joints
using the same rules for modeling. Therefore, the con-
cepts of Radaj and Seeger seem to be identical but both
are based on different ideas and have been derived inde-
pendently and using different assumptions. Fortunately,
both methods merge into a similar modeling and have
proven good quality of prognosis in many cases.

In today’s computer-driven design, those stress concen-
tration factors obviously might be obtained by numerical
simulations, e.g., finite element analysis. This process re-
quires the creation of a suitable computer model,
performing a numerical analysis and performing conver-
gence studies to obtain a result of reliable and sufficient
numerical quality. This effort deters many practitioners to
perform such estimations which in turn is a reason why
the effective notch stress concept often is second choice
for proving the integrity of welded structures. For product
safety and reliability, this method gives an alternative and
diverse method to evaluate structural integrity of welded
structures. The method also covers some size effect since
the same notch radius for thicker welds results in higher
stress concentration factors. Also, analysis of the influ-
ence of flank angles is possible which increases the appli-
cability of this method compared to the nominal or struc-
tural stress concepts.

As an alternative to performing time-consuming nu-
merical simulations, different authors have developed a
number of empirical formulae obtained by regression
analysis of existing solutions since decades. In the first
days, those empirical formulae have been the only eco-
nomic way to supply the factors. With increasing capabil-
ities in finite element simulation, these methods have tak-
en a back seat though. Reliable empirical formulae—
because of their efficiency—are worth thousands of sim-
ulations. If those equations supply results of high quality
with respect to the exact or reference solutions, their ap-
plication will save a lot of time, effort, and cost.
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Therefore, those methods are still valuable to be applied
for using the effective notch stress approach efficiently.

2 Numerical simulation of welded cruciform
joints

Welded cruciform joints were considered in this study. The
sheets might be welded by simple double fillet welds, K-butt
welds with double fillet welds, or double-sided Y-butt welds,
both with full or partial penetration. No axial or angular mis-
alignment is considered. If misalignment is present in the
structure, it needs to be contained in the stress analysis as
secondary effect or by reducing allowable stresses. Since the
raw data from tests at Darmstadt University is based on fatigue
testing of T-joints under primary bending, secondary stresses
occurring from angular or axial misalignment are not
contained in the SN data as for example included to some
extent for the nominal stress approach.

2.1 Parameterization

At first, a finite element model of the cruciform joint with
parametric geometry was modeled using ANSYS
Mechanical™ 18.11 (see Fig. 1 and Table 1) [25]. This model
enables numerical assessment of stress concentration factors
at the weld toe and the weld root, respectively, for loading in
pure tension as well as pure bending for a large parametric
design space. Full as well as partial penetration welds are
considered.

The following assumptions are used:

& Symmetric geometry
& No axial or angular misalignment
& No nonlinear contact in the root face

& Equal reference radii of weld toe and weld root, modeled
as fillet radii

& Plain strain condition
& Constant parameters for linear elastic material:

& Module of elasticity E = 210 GPa
& Poisson ratio ν = 0.3

& Uniform tension or bending nominal stress of St = Sb =
1 MPa applied along the sheet end faces t1 (see Fig. 1)

& Evaluation of maximum principal stress σ1

The use of the effective notch stress approach requires
a reference radius depending on the sheet thicknesses t1
and t2. For this model, extended recommendations for
the radius selection according to Merkblatt DVS 0905
[3] have been used. Those recommendations represent
an extension to the IIW recommendations for thin- and
thick-walled welded structures [1]. The range of the
sheet thickness was divided into six subranges where
an adequate reference radius can be assigned (see
Table 2). For weld joints with root face, the minimum
sheet thicknesses t1 and t2 are at least 10 times the ref-
erence radii to prevent the top and bottom root fillets of
the idealized root face geometry from overlapping. In
order to analyze a wide range of leg lengths without
creating unrealistic geometries, the range of leg length

1 ANSYS Mechanical™ is a trademark of ANSYS, Inc., Canonsburg, PA,
USA, see http://www.ansys.com

Fig. 1 Parameterized geometry of the cruciform joint with symmetric
fillet welds and weld root faces

Table 1 Parameter ranges of numerical model

Parameter Range

Flank angle (°) α [25; 80]

Reference radius (mm) r See Table 2

Sheet thickness 1 (mm) t1 [0.5; 100]

Sheet thickness 2 (mm) t2 [0.5; 100]

Leg length to sheet thickness 1
ratio

y ¼ l1
t1

[0.5; 2]

Root face to sheet thickness 1
ratio

z ¼ w
t1

[0] for fully penetrated welds

[0.5; 1] for partially penetrated
welds

Table 2 Parameter ranges for space-filling Latin hypercube samplings

Subsystem z t1, t2 r y α Samples

1 0 [0.5; 7.5] 0.05 [0.5; 2] [25; 80] 994

2 0 [3.6; 25] 0.3 [0.5; 2] [25; 80] 995

3 0 [5; 100] 1 [0.5; 2] [25; 80] 1000

4 [0.5;1] [0.5; 7.5] 0.05 [0.5; 2] [25; 80] 992

5 [0.5;1] [3.6; 25] 0.3 [0.5; 2] [25; 80] 995

6 [0.5;1] [10; 100] 1 [0.5; 2] [25; 80] 997
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l1 is also between 0.5… 2 t1 (see Table 1). The ranges
according to Table 1 exceed the allowable values for
almost all of the existing empirical rules to calculate
the notch stresses. It was a main goal of this project to
increase the design space of new empirical rules towards
more general applicability and versatility.

2.2 Discretization

To enable tension as well as bending loading, half of the joint
was modeled and symmetric boundary conditions were ap-
plied (see Fig. 2) using the symmetric geometry of the cruci-
form joint.

In order to analyze the notch stresses correctly, the generally
coarse global mesh is refined at the weld toe and the weld root.
A preliminary convergence study showed convergent notch
stresses using a mapped mesh of quadratic PLANE183 ele-
ments [27] with element lengths of 0.05r in the notch until a
depth of 0.4r (see Fig. 2).

2.3 Applicability of 2D modeling vs. 3D structures

As mentioned above, a 2D modeling approach with plain
strain condition was used for finite-element calculation of
the first principle stresses in the weld toe and root.
Nevertheless, the differences between the plain strain and
plain stress condition in simulation must be taken into ac-
count. A minimum total width of the sample has to be met
to establish a plain strain condition in the middle of the
sample.

2.4 Sampling

To analyze the accuracy of existing approaches, the
stress concentration factor is determined for different
geometric designs using the finite element model as
shown in Fig. 2. The system was split into six subsys-
tems in dependency of wall thicknesses and their corre-
sponding reference radii as well as existent or nonexis-
tent weld root faces (see Table 2), according to the rec-
ommendations for the ratio of wall thickness to reference
radius given in [3]. For each subsystem, a space-filling
Latin hypercube sampling was created with optiSLang®
6.1.02 [26]. The number of samples was determined to
be 1000. In summary, 5973 samples were generated au-
tomatically; the finite element simulation of the remain-
ing 27 samples failed due to modeling failure in the
batch run because of extreme parameter combinations.
The corresponding stress concentration factors were eval-
uated with an additional number of 2238 samples, as far
as no restrictions by the evaluation methods were given.
These additional samples were generated to cover all
restrictions given by all methods, even the ones outside
the application ranges of the new methods.

Figure 3 shows the sampling results by two represen-
tative anthill plots. Homogenous dispersion of the sam-
plings within the allowable ranges of the selected param-
eters can be seen.

weld toe

weld root

0,4

Fig. 2 Finite element model for effective notch stress analysis including boundary conditions. Left side: notch areas with mapped mesh of hex element
with mesh size 0.05r. Right side: evaluation of the first principle stress at the weld toe and root face

2 optiSLang® is a trademark of Dynardo GmbH, Weimar, Germany, see
https://www.dynardo.de/software/optislang.hmtl
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2.5 Resulting stress concentration factors

A relationship between the notch radius and the stress concen-
tration factors resulting from the simulations is not apparent
on the first glance (see Table 3, which lists the simulated radii
and the corresponding stress concentration factor ranges).

Due to the ranges for application of the different notch
radii, the stress concentration factors are within about the same
ranges for each radius. This is due to the size recommenda-
tions for each radius. Table 3 demonstrates that the suggested
ranges for application of the different notch radii with respect
to weld size as summarized in Table 2 is reasonably chosen.
Please note that also stress concentration factors below 1000
are possible in the case of concurring notches if a notch is in
the stress shadow.

3 Known methods of notch factor estimation
of cruciform welded joints

Equations to support efficient estimations of stress concentra-
tion factors applying the effective notch stress approach have
been derived by different authors for many decades already.
Early notch factor determination methods were based either
on experimental data or on photoelastic methods [2].
Procedures that are more recent are mainly based on numeri-
cal finite element simulation, but also these procedures lack
precision because of limited computing capacity in the end of
the last decade. Nevertheless, a variety of methods for notch
factor determination have been proposed as listed by [2].

To mention are the methods by Yung and Lawrence [8, 9],
Rainer [10–12], Radaj et al. [13–15], Anthes et al. [16, 17],
and Ushirokawa et al. [18] and Tsuji [19]. A selection of these
procedures for cruciform joints is described in this section.

All of the following equations as well as the new methods
in the following chapters of this paper are based on maximum
principal stress σ1.

3.1 Method by Yung and Lawrence

On the basis of Lawrence’ procedure [8] based on finite ele-
ment simulations, Yung and Lawrence described a refined
method in 1985, including a variety of data from other publi-
cations [9].

Their approximation formulae are valid for cruciform joints
with and without root face under tension and bending loading,
limited by the ranges as given in Table 4.

Yung and Lawrence are using the weld toe angle α, the
plate thickness t1, the notch radius r, the ratio of root face to
sheet thickness z, and the leg length l1 for their approximation
formulae given in Table 5. The factor y · sinα represents the
ratio between the weld thickness and wall thickness, convert-
ed to parameters y and α used in this paper.

3.2 Method by Rainer

Rainer conducted an excessive study on notch factors of
welded components in 1985 [10, 11]. The results of his study

Table 3 Simulated radii and corresponding stress concentration factor
ranges

Radius (mm) Stress concentration factor range
(MPa)

0.05 ≤17.07
0.3 ≤13.33
1 ≤18.27

Fig. 3 Exemplary schematic representation of the space-filling Latin hypercube sampling for two parameter combinations—analogous for all other
parameter combinations
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are summarized in Haibach’s BBetriebsfestigkeit^ [12]. His
stress concentration factors are derived from finite element
simulations with relatively high accuracy, using high-order
elements and fine meshing.

He is offering approximation formulae for cruciform
joints with and without root face under tension and bend-
ing loading, valid for parameter combination ranges giv-
en in Table 6.

Rainer is using the leg length l1, the notch radius r, the wall
thickness t1, and the ratio of root face to sheet thickness z in his
formulation. His formulae are given in Table 7.

3.3 Method by Radaj

Radaj also published stress concentration factors for a large
variety of welded joints [13–15]. His investigations are gener-
ally based on a boundary element simulation of nine different
parameter combinations and a worst-case consideration of the
results with a 1-mm replacement radius in the weld toe and root.

Therefore, Radaj’s formulae are restricted to cruciform
joints with root face and a constant weld angle of 45°.
Further restrictions by Radaj are given in Table 8. His formu-
lae are only valid for tension loading.

He uses the parameters leg length l1, wall thicknesses t1 and
t2, and notch radius r. Radaj’s formulae are given in Table 9.

3.4 Method by Anthes et al.

The method by Anthes et al. [16, 17] is based on boundary
element simulation results, being valid for tension and bend-
ing loading.

Anthes et al. restrict their method to certain parameter com-
bination ranges (see Table 10).

Their method uses the parameters leg length l1, wall thick-
ness t1, notch radius r, weld angle α, and ratio of root face
length to wall thickness z. Table 11 gives Anthes’ formulae.

4 Newmethods of notch factor determination

Metamodeling is an umbrella term for modern regression
methods. Among those methods, one can find linear models
as well as nonlinear ones like response surface methods, vec-
tor machines, kriging, random forests, neural networks, and
Gaussian processes. Usually, it is not possible to know which
method performs best for a specific problem.

From those, polynomial regressions involving coupling
terms to generate response surfaces and neural networks have
been selected for this study. The selection of polynomial re-
gression is a reasonable approach because the resulting for-
mulae can easily be applied with a pocket calculator only.
Neural networks have been chosen because some promising
results, e.g., in estimation of material properties, have been
recently made (see e.g. [20]). The results are presented in the
following.

4.1 Polynomial regression with coupling terms (PRC
method)

In optiSLang® 6.1.0, polynomial regression functions with
quadratic order and coupling terms are fitted using the numer-
ically calculated stress concentration factors from finite ele-
ment analysis [21]. The calculation is carried out according to
Eq. (17). The factors according to Table 14, Table 15, and
Table 16 can be chosen according to Table 13.

Kt;PRC ¼ ∑
15

k¼1
ck � f k α; t1; y; zð Þ ð17Þ

Since four parameters (α, t1, y, z), their squares, each com-
bination of two parameters, and an additional constant term
are used, a total number of 15 terms is used in the regression
formulas. In order to simplify the regression model, an auto-
matic variable reduction is done during regression. Only

Table 4 Restrictions of Yung and Lawrence’s method

Parameter combination t1
t2

t1
r

α z
y z y · sinα y r

Restriction 1 1… 300 15 ° … 80° 0.5… 4 – – – –

Table 5 Method by Yung and Lawrence

Root face Position Loading Equation

Yes and no Weld toe Tension
Kt;YL;toe;tens ¼ 1þ 0:35 tanαð Þ14 1þ 1:1 z

2y

� �1:65� � ffiffiffi
t1
r

q (1)

Bending Kt;YL;toe;bend ¼ 1þ 0:21 tanαð Þ16
ffiffiffi
t1
r

q
(2)

Weld
root

Tension Kt;YL;root;tens ¼ 1þ 1:15 tanαð Þ−14
ffiffiffiffiffi
zt1
2yr

q
(3)

Bending Kt;YL;root;bend ¼ 1þ 3:22 z
2

� �0:12 ffiffiffi
t1
r

q
(4)
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variables which meet the conditions of the significance and
importance filter are considered in the regression function
[22]. The standard filter setting of optiSLang is used.
Therefore, an easier applicability while maintaining almost
the same predictive quality is achieved. In total, 18 regression
formulas have been developed, one for each combination of
stress location (weld root or weld toe), loading (tension or
bending), and reference radius (see Table 13).

Also, the PRC method has to be restricted to certain geom-
etry parameters according to the simulated parameter combi-
nations which were used for regression (see Table 12).

4.2 Application of artificial neural networks (ANN
method)

Data fitting of the calculated finite element results was done
with Matlab’s Neural Network Toolbox. The classical feed-
forward neural network used consists of three hidden layers.
Each hidden layer consists of six neurons in accordance with
the number of input variables (t1, t2, l1, α, z, r). The output
layer consists of four neurons for each output variable in the
case of partial penetration (kt = (Kt, ANN, root, b,Kt, ANN, root, t,
Kt, ANN, toe, b,Kt, ANN, toe, t)), respectively, two neurons for
each output variable in the case of full penetration (kt = (Kt,

ANN, toe, b,Kt, ANN, toe, t)) (see Fig. 4).
After normalization of the input variables to avoid overes-

timation or underestimation of the inputs influence, each layer
multiplies its inputs with a weight matrixWi and shifts it by a
bias bi, which results in the layers potential ϕi. The potential
is then put into a hyperbolic tangent sigmoid transfer function
in the case of the three hidden layers or a linear transfer func-
tion in the case of the output layer, which finally gives a vector
of outputs in terms of stress concentration factors after
renormalization.

One of the most important benefits of this method is that
the neural network is able to handle all load cases at once and
to give all results at once, making it only necessary to choose
between the neural network for fully penetrated welds or par-
tially penetrated welds. Nevertheless, restrictions in terms of
parameter ranges according to Table 17 have to be given,
defined by the parameter ranges of the training data.

For more information on the mathematics of neural net-
works, see for example Hagan et al. [23]. The multilayer ap-
proach with a low number of neurons in each hidden layer
resulted in better estimation of stress concentration factors
than a single-layer approach with a high number of neurons

in the layer. Additionally, benefits in training and evaluation
time could be accomplished.

The mathematical expressions for the used network can be
found in Table 18;3 the corresponding normalization vectors,
weighting matrices, and bias vectors can be found in Table 19
and Table 20.

4.3 Comparison of notch factor determination
and quality

All aforementioned existing and new methods have been ap-
plied to the data taken from the finite element simulation and
compared with its results. Keep in mind that limitations to the
methods were given:

– All authors give limitations to their methods, summarized
in Table 21. Some of them are significantly restricting the
allowable design space compared to the new approaches
as presented in this paper.

– As a further restriction, the method by Yung and
Lawrence was not used for calculation of stress concen-
tration factors at the root face in the case of bending
loading. This is because resulting stress concentration
factors obtained by this method and compared with the
finite element simulations have gained results differing
by a factor 3 and higher.

– Stress concentration factors below unity were neglected.
Please be advised that the ratio of notch stress to structural
stress Kw = σe/σw has to meet a lower limit Kw, min for the
corresponding stress concentration factor to be permissi-
ble for use in the notch stress concep; see Rother and
Fricke [24]:

& Kw, min = 1.6 for r = 1 mm
& Kw, min = 2.13 for r = 0.3 mm
& Kw, min = 3.56 for r = 0.05 mm

These ratios have been exceeded by 58.1% for the bending
load case and 79.3% for the tension load case of the data with
structural stresses derived by quadratic extrapolation accord-
ing to [1]. Nevertheless, samples not exceeding these ratios
were used in regression as well, since these ratios always have
to be checked by the user himself, depending on parameter
combination and loading.

Additionally, linear extrapolation with two support points
and the determination methods in a distance of 1 mm and
2 mm from the weld toe for structural stress identification
were considered. It was found that the quadratic extrapolation
method leads to the lowest structural stresses and therefore to
the most nonconservative results for Kw, min.

3 ∘ indicates the elementwise Hadamard product, ⊘ the elementwise
Hadamard division

Table 6 Restrictions of Rainer’s method

Parameter
combination

t1
t2

t1
r

α z
y z y · sinα y r

Restriction – 0… 400 45° – 0… 1 0.1… 0.9 – –
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Table 8 Restrictions of Radaj’s method

Parameter combination t1
t2

t1
r

α z
y y · sinα y r

Restriction 0.2… 5 Toe: 1.67… 12.5
Root: 4… 25

45° – 0.2… 5 – –

Table 9 Method by Radaj

Root
face

Pos. Loading Equation

Yes Weld toe Tension
Kt;RAD;toe;tens ¼ 1:192 ysinαð Þ−0:311 t2

t1

� �−0:004
z0:13 r

t1

� �−0:392 (11)

Weld
root

Tension
Kt;RAD;root;tens ¼ 1:155 ysinαð Þ−0:72 t2

t1

� �−0:047
z0:433 r

t1

� �−0:371 (12)

Table 10 Restrictions of Anthes’ method

Parameter combination t1
t2

t1
r

α z
y z y · sinα y r

Restriction 1 4… 200 15 ° … 85° 0; 0.5… 1 0… 1 0.3… 1 – –

Table 7 Method by Rainer

Root
face

Position Loading Equation

No Weld toe Tension

Kt;nrf ;RAI;toe;tens ¼ 1þ 0:55

y t1ffiffi
2

p
r
sinα

� �0:8 þ 1:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r
t1

� �3
þ 2r

t1

� �r !2:2

þ 0:2
t1
2r

t1
2rþ

y t1ffiffi
2

p
r
sinα

� �
y t1ffiffi
2

p
r
sinα

� �1:33

8><
>:

9>=
>;

−12 (5)

Bending

Kt;nrf ;RAI;toe;bend ¼ 1þ 0:4

y t1ffiffi
2

p
r
sinα

� �0:66 þ 3:8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r
t1

� �3
þ 2r

t1

� �r !2:25

þ 0:2
t1
2r

t1
2rþ

y t1ffiffi
2

p
r
sinα

� �
y t1ffiffi
2

p
r
sinα

� �1:33

8><
>:

9>=
>;

−12 (6)

Yes Weld toe Tension
Kt;RAI;toe;tens ¼ Kt;nrf ;RAI;toe;tens 1þ 0:5 z

2ysinα

� �2� �
(7)

Bending
Kt;RAI;toe;bend ¼ Kt;nrf ;RAI;toe;bend 1þ 0:1 z

2ysinα

� �2� �
(8)

Weld
root

Tension Kt;RAI;root;tens ¼ 1þ 1:6 z0:3

1:1−1:1zþ2ysinαð Þ0:66
ffiffiffiffi
t1
2r

q
(9)

Bending Kt;RAI;root;bend ¼ 0:3 z0:1

1ffiffi
2

p − 1ffiffi
2

p zþ2ysinα

� �1:4

ffiffiffiffi
t1
2r

q
(10)

Table 11 Method by Anthes et al.

Root face Position Loading Equation

Yes and
no

Weld
toe

Tension Kt;AKS;toe;tens ¼ 1:538þ 1þ 0:621 ysinαð Þ−1:655z2:474 þ 1:455 t1
r

� �0:208−2:933 sinαð Þ1:213
h i

sinαð Þ2:086 t1
r

� �0:207 (13)

Bending Kt;AKS;toe;tens ¼ 1:256þ 1þ 0:023 ysinαð Þ−3:09z2:412 þ 2:153 t1
r

� �0:154−3:738 sinαð Þ0:481
h i

sinαð Þ1:723 t1
r

� �0:172 (14)

Weld
root

Tension Kt;AKS;toe;bend ¼ 0:947þ 1þ 0:77 ysinαð Þ−1:054z1:198 þ 1:307 t1
r

� �0:093−2:315 sinαð Þ−0:029
h i

sinαð Þ0:41 t1
r

� �0:37 (15)

Bending Kt;AKS;toe;bend ¼ 0:202þ 1þ 0:19 ysinαð Þ−1:361z0:953 þ 0:001 t1
r

� �0:867−1:046 sinαð Þ−0:104
h i

sinαð Þ0:55 t1
r

� �0:353 (16)
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Due to the given limitations, summarized in Table 21 and
shown in Fig. 5, some of the results have to be neglected. The
graphical overview shows the minimum and maximum
allowed value of each parameter or parameter ratio on the x-

axis (0–100%) and each limited parameter range true to scale.
If a method does not give restrictions for the parameter or
parameter ratio, it is not shown for these parameters. The
method by Radaj restricts the value for z in a way that also

Table 12 Restrictions of the PRC method

Parameter combination t1
t2

t1
r

α z
y z y · sinα y r

Restriction 0.05… 20 for r = 1.00
0.144… 6.944 for r = 0.30
0.067… 15 for r = 0.05

5… 100 for r = 1.00
12… 83.33 for r = 0.30
10… 150 for r = 0.05

25 ° … 80° – 0; 0.5… 1 – 0.5… 2 0.05; 0.3; 1

Table 13 Stress concentration factor for maximum principal stress formulae according to the new method

Weld root face ratio z Restrictions Loading Sheet thickness
t1, t2 (mm)

Radius
r (mm)

Weld toe R2 Weld root R2

Full penetration:
z = 0

Dimensions acc. to 2 Tension 1: [0.5; 7.5] 0.05 K f :p:
t;PRC;t;1

98.8%

2: [3.6; 25] 0.3 K f :p:
t;PRC;t;2

99.0%

3: [5; 100] 1 K f :p:
t;PRC;t;3

98.6%

Bending 1: [0.5; 7.5] 0.05 K f :p:
t;PRC;b;1

99.5%

2: [3.6; 25] 0.3 K f :p:
t;PRC;b;2

99.7%

3: [5; 100] 1 K f :p:
t;PRC;b;3

99.4%

Partial penetration: z = [0.5; 1] Dimensions acc. to 2 Tension 1: [0.5; 7.5] 0.05 Kp:p:
t;PRC;t;1 98.3% Kp:p:;r

t;PRC;t;1 99.0%

2: [3.6; 25] 0.3 Kp:p:
t;PRC;t;2 98.2% Kp:p:;r

t;PRC;t;2 99.1%

3: [10; 100] 1 Kp:p:
t;PRC;t;3 98.3% Kp:p:;r

t;PRC;t;3 99.1%

Bending 1: [0.5; 7.5] 0.05 Kp:p:
t;PRC;b;1 99.0% Kp:p:;r

t;PRC;b;1 97.1%

2: [3.6; 25] 0.3 Kp:p:
t;PRC;b;2 98.8% Kp:p:;r

t;PRC;b;2 97.9%

3: [10; 100] 1 Kp:p:
t;PRC;b;3 99.0% Kp:p:;r

t;PRC;b;3 97.6%

Table 14 Regression formulae for the PRC method for fully penetrated welds

k fk ck

K f :p:
t;PRC;t;1 K f :p:

t;PRC;t;2 K f :p:
t;PRC;t;3 K f :p:

t;PRC;b;1 K f :p:
t;PRC;b;2 K f :p:

t;PRC;b;3

1 1 − 0.13537 0.19436 0.07171 0.31272 0.56389 0.47062

2 α 0.09274 0.07373 0.07442 0.05613 0.04155 0.04281

3 t1 0.34768 0.07893 0.02698 0.33672 0.07653 0.02453

4 y − 0.07992 − 0.05537 − 0.06121
5 z

6 α2 − 0.00085 − 0.00069 − 0.00072 − 0.00049 − 0.00038 − 0.00039

7 t21 − 0.04924 − 0.00283 − 0.00026 − 0.03559 − 0.00203 − 0.00018

8 y2 − 0.20701 − 0.169 − 0.16891
9 z2

10 t1α 0.00813 0.00163 0.00049 0.00597 0.00119 0.00035

11 t1y 0.07208 0.01662 0.00432

12 t1z

13 αy 0.01073 0.00832 0.00892

14 αz

15 yz

Weld World (2019) 63:1339–1354 1347



constructively impossible parameter combinations (z > 1) can
occur.

Figure 6 shows boxplots for those restrictions with simula-
tion data fulfilling all restrictions given by the different au-
thors simultaneously as shown by the red boxes in Fig. 5. In
Fig. 7, the boxplots are generated with data fulfilling the re-
strictions the authors have given individually for eachmethod.
Additionally, Table 22 shows the percentage of data that had

to be neglected in comparison to the total data available for
evaluation. Remarkable are the low error values for the PRC
and ANN methods that demonstrate the much larger range of
application of those metamodels.

Both figures show the resulting relative errors for all
investigated methods as boxplots on the left side. The red
line in the central blue boxes indicates the median relative
error which should ideally be zero. The blue box around it

Table 15 Regression formulae for the PRC method for partially penetrated welds at weld toe

k fk ck

Kp:p:
t;PRC;t;1 Kp:p:

t;PRC;t;2 Kp:p:
t;PRC;t;3 Kp:p:

t;PRC;b;1 Kp:p:
t;PRC;b;2 Kp:p:

t;PRC;b;3

1 1 − 0.16463 0.20757 0.06986 0.32038 0.55508 0.48046

2 α 0.10564 0.08574 0.09415 0.05652 0.04279 0.04625

3 t1 0.42626 0.09666 0.02871 0.33611 0.07606 0.02167

4 y − 1.74877 − 1.7003 − 1.78996
5 z 2.08259 2.11079 1.99139

6 α2 − 0.00099 − 0.00084 − 0.00089 − 0.00049 − 0.00039 − 0.00042

7 t21 − 0.05523 − 0.00317 − 0.00025 − 0.03578 − 0.00203 − 0.00016

8 y2 1.43858 1.25562 1.31125

9 z2 0.82697 0.53009 0.85835

10 t1α 0.01018 0.00209 0.00059 0.00605 0.00121 0.00035

11 t1y − 0.08889 − 0.01915 − 0.00491
12 t1z 0.1953 0.04125 0.01026

13 αy − 0.00304 − 0.00157 − 0.00144
14 αz 0.02961 0.02333 0.02112

15 yz − 3.25794 − 2.72426 − 2.85430

Table 16 Regression formulae for the PRC method for partially penetrated welds at root face

k fk ck

Kp:p:;r
t;PRC;t;1 Kp:p:;r

t;PRC;t;2 Kp:p:;r
t;PRC;t;3 Kp:p:;r

t;PRC;b;1 Kp:p:;r
t;PRC;b;2 Kp:p:;r

t;PRC;b;3

1 1 2.06487 1.90087 1.67939 1.40047 1.22169 1.17886

2 α − 0.03197 − 0.02281 − 0.02184 − 0.01606 − 0.01281 − 0.01268
3 t1 1.81314 0.37978 0.10957 0.28615 0.05483 0.01697

4 y − 3.99088 − 3.22233 − 3.43013 − 2.45992 − 1.98477 − 2.12453
5 z 8.89388 6.98578 7.79274 2.66311 2.05937 2.34390

6 α2 0.00048 0.00035 0.00036 0.00018 0.00014 0.00014

7 t21 − 0.0753 − 0.00427 − 0.00032 − 0.00939 − 0.00045 − 0.00004

8 y2 2.25026 1.76820 1.88285 1.03127 0.82403 0.87761

9 z2 0.5784 0.36059 0.27056 − 0.06958 − 0.03293 − 0.13511
10 t1α − 0.00282 − 0.00063 − 0.00019 − 0.00076 − 0.00017 − 0.00006
11 t1y − 0.52798 − 0.11275 − 0.03187 − 0.14259 − 0.03004 − 0.00863
12 t1z 0.63553 0.13621 0.03716 0.13667 0.03250 0.00839

13 αy 0.00086 − 0.00004 0.00087 0.00388 0.00309 0.00341

14 αz − 0.03718 − 0.02751 − 0.03171 − 0.01413 − 0.01087 − 0.01187
15 yz − 4.51097 − 3.49761 − 3.73110 − 1.18704 − 0.95812 − 0.98861
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shows 50% of the data points with their upper and lower
boundaries indicating the 25% and 75% quantiles. The
black lines, so-called whiskers, embed 98% of the data
from the 1% to the 99% quantile. Finally, the red crossed

data outside of the whiskers indicate data points being
below the 1% or above the 99% quantile. On the right
side, both figures show probability plots of each method
for normally distributed data. Perfect normal distributed
data would adapt to the linear regression line.

For the following, the relative error is calculated by

errrel ¼ Kt;EST−Kt;FEM

Kt;FEM
ð23Þ

In Fig. 6 showing the simultaneous fulfillment of all
restrictions, the method by Anthes et al. as well as the two
new methods cluster the estimated stress concentration
factors around the correct values from finite element sim-
ulation. The method by Yung and Lawrence is clearly

Table 17 Restrictions of the ANN method

Parameter combination t1
t2

t1
r

α z
y z y · sinα y r

Restriction 0.05… 20
for r = 1.00
0.144… 6.944
for r = 0.30
0.067… 15
for r = 0.05

5… 100
for r = 1.00
12… 83.33
for r = 0.30
10… 150for r = 0.05

25 ° … 80° – 0; 0.5… 1 – 0.5… 2 0.05; 0.3; 1

Table 18 Formulae of
the ANN method ϕ1 = b1 +W1 · (((g − xi, offset) ∘ xi,

gain) − 1)
(18)

ϕ2 = b2 +W2 · tanh(ϕ1) (19)

ϕ3 = b3 +W3 · tanh(ϕ2) (20)

ϕ4 = b4 +W4 · tanh(ϕ3) (21)

kt = ((ϕ4 − yo, offset)⊘ yo, gain) − 1 (22)

Table 19 Neural network data for full penetration joints

xi;offset ¼

0:50350
0:50350
25:02750
0:05000
0:50075

2
66664

3
77775 xi;gain ¼

0:02011
0:02011
0:03640
2:10526
1:33467

2
66664

3
77775

yo;offset ¼ 1:54301
1:82822

� �
yo;gain ¼ 0:49368

0:32592

� �

b1 ¼

1:44415
1:96487
−1:41775
2:21037
−1:06790

2
66664

3
77775 b2 ¼

19:51871
−2:29983
4:68920
−2:60877
−10:57879

2
66664

3
77775 b3 ¼

41:36637
−0:08401
−9:71591
−2:06949
0:96881

2
66664

3
77775 b4 ¼ −15:38890

−18:23325

� �

W1 ¼

−0:97451 −0:00729 0:52807 1:37179 0:00245
0:69103 0:03878 −0:01999 1:04959 0:00574
0:24131 0:06084 −0:43048 1:19284 0:11362
0:77756 0:00558 −0:00083 −0:22590 0:00075
−0:02802 0:07485 −0:14740 1:46185 0:14892

2
66664

3
77775

W2 ¼

2:61564 2:89285 0:18344 −23:09273 0:53744
2:44083 1:44108 −0:21285 0:01852 0:20631
−5:74073 −3:19550 −1:88335 2:57733 1:97017
2:53830 −3:14660 −1:85276 1:43641 1:95465
−0:95894 −4:29670 −0:05396 14:66956 −2:05217

2
66664

3
77775

W3 ¼

1:54038 −3:99167 1:54059 3:58717 −39:83440
−5:49957 8:05423 1:79668 −1:92788 0:71428
26:66579 −15:81401 −1:50604 −9:69095 15:35596
−2:88912 3:39040 −0:22511 −0:02936 1:55800
8:65233 −7:96745 −0:86804 0:86781 3:81640

2
66664

3
77775

W4 ¼ 2:17043 15:82267 4:15978 2:16191 −5:33760
8:77705 12:66075 15:88296 2:62583 −17:36999

� �
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shifted to the unsafe side, mainly underestimating the cor-
rect stress concentration factors. Rainer’s and Radaj’s

methods are generally shifted to the safe side. The linear
regression line for the method of Yung and Lawrence on

Table 20 Neural network data for partial penetration joints

xi;offset ¼

0:50350
0:50350
25:02750
0:50025
0:05000
0:50075

2
6666664

3
7777775

xi;gain ¼

0:02011
0:02011
0:03640
4:00400
2:10526
1:33467

2
6666664

3
7777775

yo;offset ¼
0:08616
1:69822
1:79839
2:21761

2
664

3
775 yo;gain ¼

0:52806
0:13008
0:49098
0:20582

2
664

3
775

b1 ¼

−0:30423
0:84337
−0:09717
3:63983
−1:46542

2
66664

3
77775 b2 ¼

1:04046
−1:17907
14:62056
−1:69741
−3:30794

2
66664

3
77775 b3 ¼

4:95979
−2:77982
−1:99197
3:03400
−0:55466

2
66664

3
77775

b4 ¼
4:98570
4:29725
4:57988
6:25976

2
664

3
775

W1 ¼

0:37693 −0:00796 −0:00188 −0:00103 0:00944 −0:00047
−0:09731 0:00593 0:87492 −0:03215 0:05466 −0:17512
0:15826 −0:00285 −0:00080 0:00410 −0:01445 −0:00993

−10:39964 0:19616 0:06385 0:02963 14:61003 −0:01595
−0:00599 −0:01057 −0:01573 0:06475 0:01061 −0:24444

2
66664

3
77775

W2 ¼

−1:72049 −0:38872 4:52723 −0:33563 3:23083
−2:83244 0:03516 7:25763 −0:63687 −1:25638
−14:55048 0:09257 −2:39257 −23:90288 1:04358
−3:03614 0:05047 7:79252 −0:67561 −1:80491
1:81403 −0:15149 −4:56299 −0:18443 −5:95592

2
66664

3
77775

W3 ¼

3:85941 −0:72341 −1:34688 2:76463 −2:17764
−3:00500 −3:57485 2:59845 −0:47870 0:54471
−3:17296 −2:07365 −2:33720 5:83822 −1:66412
0:45850 −5:21012 0:07036 −0:47830 0:36362
−1:45148 −0:62973 2:98137 4:04289 −6:40467

2
66664

3
77775

W4 ¼
7:81635 0:82499 −2:04207 1:60209 3:31059
5:46057 −0:56887 −1:93464 0:76291 2:53729
3:03196 3:58691 4:48448 1:06925 3:40806
7:06112 5:30575 3:99647 2:24086 4:69697

2
664

3
775

Table 21 Overview of all restrictions given by the authors

t1
t2

t1
r

α z
y z y · sinα y r

Yung and Lawrence 1 1… 300 15 ° … 80° 0.5… 4 – – – –

Rainer – 0… 400 45° – 0… 1 0.1… 0.9 – –

Radaj 0.2… 5 Toe:
1.67… 12.5
Root:
4… 25

– – 0.3… 1.6 0.2… 5 – –

Anthes et al. 1 4… 200 15 ° … 85° – 0… 1 0.3… 1 – –

PRC and ANN 0.05… 20
for r = 1.00
0.144… 6.94
for r = 0.30
0.067… 15
for r = 0.05

5… 100
for r = 1.00
12… 83.33
for r = 0.30
10… 150
for r = 0.05

25 ° … 80° – 0; 0.5… 1 – 0.5… 2 0.05;
0.3;
1
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the right hand side show that most of the data is clustered
in the area from − 25 to − 12% relative error, resulting in
the linear regression going mainly through that area.

In terms of scattering, the new ANN method shows the
lowest scattering comparing to 25% and 75% quantiles,
followed by the PRC method and the method by Anthes

Table 22 Statistical data of all
evaluated parameter combination,
sorted by evaluation method,
quantiles counted, and percentage
of samples used for the respective
method

Yung and
Lawrence

Rainer Radaj Anthes

et al.

PRC ANN

By restrictions
neglected
results

80.64% 78.54% 93.13% 79.78% 2.06% 0.00%

Total number
of samples
used by this
method

1590 1762 564 1660 8042 8211

Statistical
data:
relative
error

Mean −13.92% 7.32% −1.17% −0.08% 0.00% −0.20%
Standard

deviation
8.26% 7.78% 11.03% 4.74% 5.37% 2.80%

1% quantile −27.91% −9.70% −20.21% −11.67% −18.19% −11.05%
10% quantile −22.49% −2.06% −16.13% −5.88% −3.93% −2.28%
Median −15.04% 6.76% −1.70% −0.08% 0.13% −0.14%
90% quantile −2.14% 17.40% 11.92% 5.98% 4.26% 1.95%

99% quantile 10.04% 26.18% 30.54% 13.87% 15.27% 8.06%
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Fig. 4 Schematic structure of the artificial network

Fig. 5 Graphical overview of the methods’ restrictions—overlapping, joint areas marked in red
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et al. The methods by Yung and Lawrence as well as Radaj
and Rainer clearly show higher spacing between these two
quantiles. Comparing the 1% and 99% quantiles, the ANN
method and the method by Anthes et al. show the lowest
scattering, with 98% of the data only deviating about −12%
to the unsafe side and 10% to the safe side, followed by the
PRC method as well as the methods by Rainer and Radaj.
Yung’s and Lawrence’s method shows the highest deviations
from the mean.

When looking at the evaluation in Fig. 7 which only
shows samples fulfilling the individual restrictions for
each method, the general behavior is very similar. The
ANN and PRC method as well as the method by Anthes
et al. while clustering around a median of 0% relative

error show the lowest scattering for 50% and even for
98% of the data. Please be aware that the red crosses
outside of the whiskers always show only 2% of all sim-
ulated samples. Since The PRC and ANN methods can
evaluate almost all or all parameter combinations while
all other methods have to neglect at least 78.54% of the
data (see also Table 22), the presentation of the new
methods contains at least about five times more data than
the presentation of the known methods. This holds true
also for the number of outliers shown in the presentations.
In total numbers, 2% outliers of the evaluated data means
18 data points for Radaj’s method, 80 − 100 data points
for all other known methods, and over 400 data points for

Fig. 7 Boxplot and probability plot of the relative errors for normal distribution—generated with data fulfilling the individual restrictions given for each
method

Fig. 6 Boxplot and probability plot of the relative errors for normal distribution—generated with data fulfilling all restrictions simultaneously
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the new PRC and ANN methods, for only the latter using
almost 100% of all samples generated for this study.

Additional investigations for a fixed flank angle of 45° did
not show significant reduction in scattering.

These outliers could be evaluated in extreme parameter
combinations being less relevant in practice. These are very
small sheet thicknesses less than 1 mm in combination with
small leg lengths or radii.

The new methods using PCR and ANN have been pro-
grammed and made available to the community by http://
rother.userweb.mwn.de/scf-predictor.html [28]. With this
application, user-friendly and quick computations of stress
concentration factors using Eqs. (17) till (22) can be
performed.

5 Conclusion

To investigate the quality of selected existing analytical esti-
mation methods for stress concentration factors for cruciform
welded joints with full and partial penetration (with and with-
out root face) under tension and bending loading, numerical
simulation using many samples and a broad range of param-
eter variations were conducted. The resulting stress concentra-
tion factors with respect to maximum principal effective notch
stress were used as reference solutions for comparison of the
estimated factors.

Selected methods for the estimation of stress concentration
factors by empirical formulae have been investigated and pre-
sented in summary, also considering their respective ranges
for application as given by the authors for the geometrical
parameters. Additionally, two new methods for metamodeling
were introduced and suggested for future use: one analytical
method based on polynomial regression involving mixed
terms and one method using artificial neural networks. In both
cases, the ranges of application cover a significantly improved
versatility by allowing very large ranges of the different pa-
rameters involved. Using the two proposed methods, thin-,
medium-, and thick-walled welded cruciform joints are cov-
ered as well as three different notch radii and a varying flank
angle. Both methods yield stress concentration factors of sim-
ilar quality and low scatter with respect to error from numer-
ical reference values.

It can clearly be shown that using the new methods can
give a significant improvement on both the mean estimation
of stress concentration factors and on reducing the scatter in
estimated results by simultaneously increasing the range of
applicability significantly compared to existing approximate
methods. The methods suggested in this paper provide a reli-
able basis for an efficient, quick, and reliable estimation of
assessing relevant stress concentration factors for different
notch radii used in the effective notch stress concept according
to IIW and related guidelines. Thus, time-consuming creation

and analysis of numerical models can be avoided without
significant lack of accuracy. The new methods presented
might also be included in higher-level applications for design
and efficient optimization of welded structures involving cru-
ciform joints. The stress concentration values obtained by the
new methods are valid for plane strain conditions and maxi-
mum principal stress.
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