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Abstract

In this paper, the effect of initial tensile strength on the explosive welding interface morphology and welding quality was studied.
The plates with different initial tensile strength were fabricated via the explosive welding method under the same parameters.
Microstructure and hardness at the interface were obtained. According to the characterization, the results demonstrated the
morphology of the cross sections is greatly influenced by the strength of the plates. Microhardness analysis confirms that the
explosive joining section has work hardening and thermal softening effect occurred. Furthermore, the explosive welding process
was numerically simulated by AUTODYN and the temperature distribution of the interfaces was obtained, and it reveals that the
strength is negligible and the interface can only be considered as incompressible flow when the pressure ratio & is large enough.

Otherwise, the strength of the plates cannot be neglected.

Keywords Explosive welding - Material initial strength - Numerical simulation - Wavy interface

1 Introduction

Explosive welding is well known in welding similar or dis-
similar metals that cannot be joined by any other techniques
[1-4]. Compared with other techniques, a characteristic of
explosive welding is that a wavy interface even with vortex
always formed instead of a linear interface. A lot of works
tried to identify the formation mechanism of the wavy inter-
face. Kowalick [5] recognized that the wavy interface is sim-
ilar to the Karman vortex streets when the liquid-like interface
was disturbed. Bahrani [6] neglected the effect of material
strength and considered the wavy interface is formed by the
interpenetration of two jet flows. Other authors [7] observed
that the Helmholtz instability due to discontinuity in the fluid
is similar to the mechanism of interface waves. These studies
all considered that the plate is incompressible fluid in the
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welding process and ignoring the effect of material initial
strength.

Z.M. Zheng [8] studied the explosive welding mechanism
by combining theory with metallographic examination; the
results indicated that the strength of plates has a great influ-
ence on the interface morphology under a low collision veloc-
ity. But there are few reports about the influence of the initial
strength of welded plates on the interface characteristics. In
this study, significant attention is paid to estimate the effect of
initial tensile strength on explosive welding in order to better
understand how it is affecting the explosive welding.
Therefore, the plates with different initial tensile strength were
prepared as base plates and welded with a flyer plate under the
same explosive welding parameter. The interface morphology
and defects were characterized by optical microscopy and
SEM. The variation of interface hardness was determined by
hardness test. Meanwhile, the explosive welding process was
reproduced by numerical simulation to analyze temperature
distribution near the welding interface.

2 Materials and methods

Figure 1 presents a schematic illustration of the experiment.
Four S45C steel plates with the dimensions of 60 x 40 x
10 mm were treated with different tensile strength as the base
plates, and a cold rolled Q234 steel plate with the dimension
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Fig. 1 Schematic illustration of
explosive welding condition

/\/]/

0f 400 x 150 x 2 mm was placed parallel to the base plates as
the flyer plate. Table 1 shows the chemical compositions of
the plates, Table 2 shows the heat treatment processes of the
base plates, and Table 3 shows the strength and Vickers hard-
ness of the base plates.

Because of the large span of base plate tensile strength, it is
much difficult to select the parameter to weld the four base
plates with the same parameter successfully. According to Eq.
(1) given by [9-11]:

5c:K\/HV/pV}7 (1)

where (3. is the low limit collision angle of “re-entry jet”; K is
determined by the degree of surface finish of the plates; H,, is
the Vickers hardness; and p is the density. When the flyer plate
is parallel to the base plate, Vris equal to the detonation ve-
locity of explosive V. And,

V, = 2V,sin(3/2), (2)

then,

K\/H,/p = .va, 3)
2sin(f3,./2)

in explosive welding, the collision angle 3, ~ 5~25", so 3, ~2
sin((./2), then,

mein =K V Hv/p (4)

According to Eq. (4), in order to weld all the base plates
successfully, the terminal flyer velocity was selected as about
700 m/s. In this experiment, the ANFO explosive with the
density of 0.99 g/cm® was chosen with the thickness of
30 mm, and the velocity of which was 2311 m/s measured
by a continuous velocity probe as shown in Fig. 2 [12]. The
collision velocity V,, was 744 m/s when the collision angle 3
was 18° according to Eq. (2) The standoff distances were
calculated by the program of the material point method [13];
as a result, 6 mm was used.

Table 1 Chemical composition of experiment materials (%)

Materials C Ni Cr Fe Mn P Si S
S45C 05 025 025 Rest 06 0035 03 -
Q235 02 - - Rest 0.6 0045 03 0.05

Detonater

Explosive

/ Flyer plate

/

stand-oft 6mm Base plate

T Anvil

The explosive welding specimens were cut at the place
45~50 mm from the detonation point where stable wave inter-
face was formed, and the cutting direction parallel to the det-
onation direction. Then, the specimens were polished using
240, 400, 800, and 1500 grit waterproof SiC paper. Finally, the
polishing was finished using a cloth and diamond paste. After
polishing, 4% nitric acid alcohol solution was used to etch the
specimens. The morphologies of the specimens were charac-
terized by optical microscopy using a Carl Zeiss Axio
Observer Z1m metallographic microscopy and SEM(Quanta
450), and the hardness was measured via a HVS-1000S
Vickers hardness tester.

3 Numerical simulation

The simulation of explosive welding was carried out by the
smoothed particles hydrodynamics (SPH) method combined
with the finite element method. This method not only guarantees
the accuracy of calculation but also improves the computational
efficiency. The SPH method has obvious advantages in dealing
with large deformations and moving discontinuities such as
high-velocity impact welding even accompany with metal jets
formed. The conservation equation of particle motion is given as:

[/ () = I, £ 0)W Gy, W), (5)
where x and y are the spatial locations of the interest particle, and
its neighboring particles within the smooth length / from it. The
entire SPH model was dynamically divided into several zones
with a radius of 2 /4 to control the number of particles in each
region. By this way, the computational efficiency was improved
under the permission of the accuracy of the calculation [11]. Wis
the Kernel function. The SPH particles with density increased
were placed on the inner side of the plates, besides that the flyer
plate was filled with sparse particles and the base plate was used
a finite element grid. Adiabatic model was used because the

Table 2 Heat treatment of the 1045 steel

Base plates NO.1 NO.2 NO3 NO.4
Heat treatment ~ Tempering  Tempering  Tempering  Tempering
Temp., °C 550 500 400 200

Time, min 30 40 50 60
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Table 3 Tensile strength of the base plates

Base plate NO.1 NO.2 NO.3 NO.4
Tensile strength/MPa 357 895 1529 2588
Vickers hardness 105 268 449 760

interface waves only formed and developed within a few wave-
lengths behind the collision point in explosive welding; there-
fore, the result of adiabatic model is similar to heat conduction
model in this space scale [14].

The simulation was carried out by using Ansys
AUTODYN; the model of numerical simulation is shown in
Fig. 3. According to the experimental data, the flyer plate was
rotated 18° and a speed of 744 m/s was applied on the flyer
plate. The plates were treated as Johnson-Cook type plastic
materials, and the Mie-Gruneisen equation of state was used
to calculate the temperature distribution. The parameters of
the flyer plate are shown in Table 4. The influence of strength
of the base plate on explosive welding was studied.

4 Results and discussions
4.1 Effect of strength pressure ratio &

The interface optical micrograph of the four groups of the
explosive welding specimens are presented in Figs. 4, 5, 6,
and7, and Table 5 shows the statistics of the amplitude and
wavelength. The typical wave interface can be seen in all the
specimens. However, due to the various strengths of the base
plates, the morphology and the dimension of the interface are
different obviously. The wave amplitude and wavelength can
be used to estimate the state of the plates in the welding pro-
cess. According to Eq. (6),

5=o/p (6)
1

P=507V; (7)
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Fig. 2 The determination of explosive velocity

Vp,=T44m/s

Base plate (Lagrange)

Fig. 3 The model of explosive welding in the simulation

where & is the pressure ratio and o is the strength of plates; p is
the dynamic pressure of the collision point, which can be
calculated by Eq. (7). The pressure ratio & of specimen
NO.1 is nearly 228, which is much higher than those of the
other specimens (91 0of NO.2; 52 0f NO.3; 31 of NO.4). In this
case, the material strength is negligible and the interface can
be considered as incompressible flow [15, 16], which caused
large molten region to form on the interface and made the
wave interface hard to measure.

To the other three specimens with higher strength and low-
er ¢ than specimen NO.1, there is no continuous molten re-
gion formed on the interface. The largest amplitude and the
shortest wavelength formed on the interface of specimen
NO.2, and the amplitude decrease while the wavelength rise
from specimen NO.2 to NO.3, which can be concluded by
Bahrani mechanism [8] that the flyer plate penetrates deeper
pits on the base plate with lower strength; this pit blocks the
growth of the wavelength. When the strength of the base plate
exceeds specimen NO.3, the wavelength appears a significant
downward trend, which indicates that the strength of the plate
inhibits the growth of interface waves. In this case, the cross
section cannot be treated as flow and ignore the strength.

4.2 Interfacial Microstructures

The amplitude and wavelength of the interface wave cannot
be measured accurately in specimen NO.1 as shown in Fig.
4(a),; instead, continuous as-cast structure formed on the in-
terface as shown in Fig. 4(b). The molten regions were attrib-
uted to the adiabatic heating [17]. Due to the low strength, the
shear strain on the interface was larger, which makes more
strain energy converted into thermal energy than other speci-
mens with higher strength.

As the initial strength of the base plate increased to
895 MPa, the over-melted phenomenon is obviously relieved.
Figure 5(a) shows that only a small amount of as-cast structure
can be observed at the crest of the base plate. Under this
condition, the obvious wave interface formed. The grains near
the wavy interface is obviously elongated under the effect of
crimping and punching shear. A small amount of the jet can-
not escape and be wrapped in the vortex of the wave and
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Table 4 The parameters of the flyer plate

Material ~ Shear modulus/  Yield stress/  Hardening constant/  Hardening Strainrate ~ Thermal softening ~ Melting Ref. strain
GPa GPa GPa exponent constant exponent temperature  rate/s
Q235 71.3 0.325 0.220 0.16 0.015 1.03 1795 1.16

formed as-cast structure as shown in Fig. 5(b), eventually.
These residual jets declined the cleaning effect on the interface
and may have affected the bonding strength.

With the initial tensile strength of the base plates increased
to 1592 MPa, the plastic deformation is decreased gradually as
displayed in Fig. 6. The periodic waves are formed at the
interface. The crest of the base plate interface wave is sheared
into an “isolated island” by a continuous band as indicated by
the arrow in Fig. 6(b). It can be concluded that the plate is
softened by thermal generated from the severe plastic defor-
mation and sheared by flyer plate.

As illustrated in Fig. 7, NO.4 specimen shows an inappar-
ent wavy morphology compared with other specimens. In
addition, no apparent molten region and “isolated island”
formed on the interface. The cracks and adiabatic shear bands
(ASBs) is observed in the NO.4 specimen, as indicated in Fig.
7(a, b). The shear bands with an angle of about 45° appear on
the base plate along the interface. The cracks only appeared on
the base plate side with the direction parallel to the interface
wave tangent; it reveals shear stress concentrated in these
places. No adiabatic shear band and crack are observed on
the flyer plate. The severe plastic deformation under high
strain rate induces the dramatic temperature rise near the in-
terface, which leads to the flow stress decreased and localized
plastic instability, and eventually formed ASBs [18].

4.3 SEM analysis of interfaces

To achieve high-resolution images, the interfaces of the spec-
imens were tested by SEM.

Figure 8 presents the SEM images of NO.1 specimen. It
can be seen from Fig. 8(a) that hollow pores and cracks ap-
peared in the molten region. The diameters of the pores are
larger in the center of the as-cast structure and smaller in the
edge. The dendritic structures are observed around the as-cast
structure as shown in Fig. 8(b). Under the explosive welding
conditions with a 2296 m/s detonation velocity, the gas be-
tween the two plates is drawn and enclosed in the molten

Fig. 4 Microscopy images of the
cross section of specimen NO.1
(a) interface, (b) high-resolution
image of position b in (a)
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vortex, which formed the hollow pores. The high cooling rate
during the solidification process creates interior stress in the
molten region, which leads to the formation of cracks [1].

The shear bands and cracks can be observed on the base
plates of NO.3 and NO.4 specimens as shown in Fig. 9(a, b),
respectively. No shear bands or cracks were observed on flyer
plates. The shear band cut through the vortex and formed the
“inland area” as presented in Fig. 9(a). The adiabatic shear
bands and cracks can be observed along the interface in NO.4
specimen as shown in Fig. 9(b). Once the cracks are generat-
ed, they are free to grow in the plate even parallel to the
interface. Experienced the dramatic temperature rise and high
cooling rate process, the grains in shear bands are defined and
formed fine equiaxed grains resulting from dynamic recrystal-
lization [18]; consequently, the hardness and strength of the
bands are increased enough to shear the plate.

4.4 Interface hardness distribution

The hardness of the interfaces was made under an indenter
load of 150 g. The indentations were located 300 pm from
each other to allow the smaller distance intervals from the
bond line and each indentation not affect each other. The
hardness values of interface profile are shown in Fig. 10.

The flyer plate far from the interface had a microhardness of
150 HV, and with the distance decrease from the interface, the
hardness of all flyer plates increased by work hardening effect.
The work hardening effect has various degree of influences on
the flyer plates; the higher initial strength formed, the stronger
the hardening effect. On the other hand, the microhardness on
the base plates decreased far from the interface. The work hard-
ening effect is mainly owing to grain refinement and plastic
deformation [19, 20]. The decrease of the hardness in the base
plates is mainly due to the softening effect caused by the tem-
perature rise, and the softening effect has greater influence on
hardness compared with the work hardening in the case of
explosive welding high strength plates [21].
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Fig. 5 Microscopy images of the
cross section of specimen NO.2
(a) interface, (b) high-resolution
image of position b in (a), (c)
high-resolution image of position
cin (b), (d) high-resolution image
of position d in (b)

Fig. 6 Microscopy images of the
cross section of specimen NO.3
(a) interface, (b) high-resolution
image of position b in (a)

Table 5 Interface wave
parameters of each welding
specimen

Fig. 7 Microscopy images of the
cross section of specimen NO.4
(a) interface, (b) high-resolution
image of position b in (a)

Specimen Parameter (pm) NO.1 NO.2 NO.3 NO.4
Amplitude - 180.2 148.8 70.0
Wavelength - 396.8 567.5 402.5

Shear cracks
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Fig. 8 SEM images of the NO.1
specimen. (a) hollow pores and
cracks, (b) dendritic structures

Fig. 9 SEM images of cross
section (a) shear band of NO.3
specimen, (b) adiabatic shear
bands and cracks of NO.4
specimen

—#—NO.1
800 | Interface —e—NO0.2
1 1 —4—NO.3
700 - NO.4

600 | Flyer plate Base plate
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400 |-
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500 1000 1500
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1
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Fig. 10 Microhardness distribution at the interface of the four specimens

Fig. 11 The numerical simulation
interface morphology, (a) NO.1
specimen, (b) NO.2 specimen, (c)
NO.3 specimen, (d) NO.4
specimen
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4.5 Numerical simulation

Figure 11 presents the simulation results of the interface
morphology of all specimens. Comparing with the inter-
face morphology in Figs. 4, 5, 6, and 7, the numerical
simulation results are close to the experimental results.
It demonstrates that the model and the material param-
eters are in line with the experiment and could be used
in numerical simulation.

The distributions of temperature are shown in Fig. 12.
Molten region formed in all the specimens during the
welding process, which makes the metal jet clean the
surface. The NO.1 specimen shows a larger high temper-
ature and molten region as displayed in Fig. 12(a). Under
the same explosive welding condition, the flyer plate
oblique collision, the base plates with the same velocity,
the plates with lower initial strength will generate larger
plastic deformation, which induces more thermal gener-
ated and accumulated on the interface and formed as-cast
structure.

High-temperature bands can be observed as indicated with
arrows in Fig. 12(c, d), and the site was the same with the
adiabatic shear bands as shown in Figs. 6 and 7. These bands
are always observed in the materials with higher initial
strength, which can be concluded as follows:

du o.de
dl = — = 8
Lok ®)
. dr
eT) =0, 9
o(eeT) i (9)
2
@> 0—»——>0
de de? (10)
do <0 ¢7 < 0,
el o
de de?

where T is the temperature, u is the internal energy generated
by the oblique collision, C, is the specific heat capacity, o is
the stress; ¢ is the strain, and ¢ is the strain rate. According to
Eq. (10), the materials with higher initial strength have a lon-
ger period before strength failure (Z—g > 0 ) and longer
temperature-accelerated period (Z%{ >0 ). The longer

1811 K

temperature-accelerated period leads to the temperature rising
more sharply, and the plates are subjected to greater pressure
when thermal softening occurs. Because of these results, the
adiabatic shear bands and cracks are always generated in the
materials with higher initial strength.

5 Conclusions

The effect of the initial strength of the base plates on explosive
welding was studied in this paper. The conclusions are as
follows:

1. The interface morphology of explosive welding is strong-
ly affected by the strength of the plates. The interface
transforms from the continuous as-cast structure interface
to wave interface and finally to the nearly linear interface
with the strength of the plates increase.

2. The strength is negligible and the interface can be consid-
ered as incompressible flow when the pressure ratio & is
large. Otherwise, the strength of the plates cannot be
neglected or considered as flow.

3. Continuous as-cast structure filled with pores formed
accompanied with cracks is observed in the molten
region of the plate with lower strength, which means
the plates with lower strength will undergo greater
plastic strain and generate more thermal during
welding, and the defects like cracks always form in
the as-cast structure.

4. The shear bands were observed in the plates with high
strength, which can even cut the vortex into “isolated
island” and formed cracks, which is due to the tempera-
ture rising faster in the plates with higher strength, and the
plates are subjected to greater pressure when thermal soft-
ening occurs.

5. Work hardening effect could be seen on the interface of all
the specimens, which is mainly due to plastic deformation
during the welding process. The decrease of hardness is
also observed at the base plates with higher initial
strength, and it is mainly due to heat softening effect.
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