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Abstract

The cross-sectional micrograph, microhardness profile, and microstructures of the resistance spot-weld (RSW) for QP980 steel
are shown to reveal the effects of the content and tempering of the martensite in the fusion zone (FZ) and the heat-affected zone
(HAZ) on the microhardness profile of the RSW. It is indicated that the transient peak temperature above the critical temperature
during the welding thermal cycle induces the significant variations of material and mechanical properties in the FZ and HAZ. The
quasi-static uniaxial compression stress-strain curve of the FZ martensite in the RSW for QP980 steel is obtained with digital
image correlation (DIC) and compared with that of two micropillars of martensite phase in the base material (BM) of the RSW for
QP980 steel which was given by Srivastava et al. It is attributed to the welding thermal cycle different from QP980 steel heat
treatment that the flow stress of the FZ martensite in the RSW is higher than that of the martensite phase in the BM. The dynamic
uniaxial compression experiments for the FZ martensite in the RSW for QP980 steel are performed on a modified split
Hopkinson pressure bar (SHPB), in which the reflected and transmitted waves are improved. A dynamic compression constitu-
tive equation is presented by analyzing the results of the quasi-static and dynamic uniaxial compression experiments. A Swift law
for martensite phase is extended to high strain rates to describe the weak strain-rate dependence of the dynamic compression
behaviors of the FZ martensite in the RSW for QP980 steel.
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1 Introduction for tensile split Hopkinson bar experiments. Transmission
electron microscopy and synchrotron X-ray diffraction were
conducted [19] to analyze the effects of strain and strain rate

on the martensitic transformation of retained austenite. The

In 2012, quenching and partitioning (QP) steel with a tensile
strength of 980 MPa was successfully commercialized by

Baosteel [15]. Wang and Speer [16] overviewed the excellent
balance between ultrahigh strength and high ductility of QP
steel. Srivastava et al. [12] developed a microstructure-based
model to study the mechanisms of deformation in QP980
steel. Yang et al. [19] investigated the histories of strain and
strain rate for QP980 steel by using an interruption mechanism
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QP980 steel can be successfully welded with resistance spot
welding (RSW). Wang et al. [17] performed the microstruc-
tural characterization, microhardness tests, and tensile and fa-
tigue tests of spot welded QP980 steel using tensile-shear and
cross-tension specimens. Ma et al. [7] investigated the
ultrahigh-speed tests for purely opening RSW of QP980 steel
by using plane tensile pulses. Fan et al. [4] reported the spall
strength of the RSW for QP980 steel.

In this paper, the uniaxial compression properties of the
fusion zone martensite in the RSW for QP980 steel at various
strain rates are investigated. The quasi-static uniaxial com-
pression stress-strain curve of the fusion zone martensite in
the RSW is obtained with digital image correlation (DIC)
technique and compared with the curves of two micropillars
of martensite phase for QP980 steel given by Srivastava et al.
[12]. It is indicated that due to the welding thermal cycle
different from QP steel heat treatment, the flow stress of the
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Table 1 Resistance spot welding parameters for QP980 steel
Welder Weld Thickness Electrode Welding Weld
electrode of base force current  time
metal (kN) (A) (ms)
(mm)
Medium-frequency ~ Copper 1.2 3.6 6000 170

direct current

fusion zone martensite in the RSW is higher than that of the
martensite phase in the base metal of the RSW for QP980
steel. The dynamic uniaxial compression experiments for the
fusion zone martensite in the RSW are performed on a mod-
ified split Hopkinson pressure bar (SHPB) in which the
reflected and transmitted waves are improved. A Swift law
for martensite phases is extended to high strain rates to de-
scribe the weak strain-rate dependence of the dynamic com-
pression behaviors of the fusion zone martensite in the RSW
for QP980 steel.
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1.1 Experiments

The resistance spot welding for 1.2-mm QP980 steel is ac-
complished using a medium frequency direct current welding
machine with the welding parameters listed in Table 1. In
order to investigate the yield strength of the materials in the
RSW for QP980 steel, the cross-sectional micrograph, micro-
hardness profile, and microstructures of the RSW for QP980
steel are shown in Fig. la—c, respectively. Figure 1c shows
that the microstructures in fusion zone (FZ) and heat-affected
zone (HAZ) are different from pre-existing microstructures in
base metal (BM) due to the rapid heating and subsequent
cooling during welding. In fact, the materials in the FZ and
HAZ of the RSW are martensite phases as shown in Fig. 1c.
The tempering of martensite has been documented as the main
cause of softening in martensitic steels. Hernandez et al. [5]
found that the decomposed martensite was the major contrib-
utor to measured softening at microscale. Figure 1b shows a
microhardness profile obtained across the welded region from

For HAZ
(¢) Microstructures for BM, FZ and HAZ

Fig. 1 The spot-weld cross-sectional micrograph, microhardness profile, and microstructures for 1.2-mm QP980 steel. MA (martensite-austenite), RA

(retained austenite), and F (ferrite)
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the BM through the HAZ and FZ. In the literature [5, 8, 9, 18],
the reduction in Vicker’s microhardness has been studied in
dual phase (DP) steel when subjected to rapid thermal cycles
during resistance spot welding. During the welding thermal
cycle, the martensite and part of the ferrite are briefly trans-
formed to austenite at a critical temperature 7. and then re-
transformed to new martensite during cooling. The local post-
weld martensite content in the critical HAZ could be above the
level in the BM, leading to higher local hardness. A reduction
in hardness with respect to BM could be observed in the sub-
critical HAZ. Maximum softening at ¢ in Fig. 1b is located just
below the line of the critical temperature 7..

The significant variations of material and mechanical prop-
erties in the FZ and HAZ render extremely challenging to the
development of material models capable of capturing the be-
havior of the FZ and HAZ. Some test results [13] of the FZ
and HAZ of the RSW for DP steel have been obtained with a
novel strain-mapping technique based on DIC. The newly
developed DIC technique is used to measure the strains of
the FZ martensite specimen in the RSW for QP980 steel as
shown in Fig. la during quasi-static uniaxial compression
testing as shown in Fig. 2a. The shape of specimens is cylin-
der. The specimen height is 2.10 mm and has a bore diameter
of 3.0 mm. The material of special blocks is tungsten carbide
with a thickness of 7.85 mm and a diameter of 19.5 mm. The
quasi-static uniaxial compression stress-strain curve of the FZ
martensite in the RSW for QP980 steel is presented in Fig. 3.
The dynamic uniaxial compression experiments for these
specimens are performed on a modified SHPB. These
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Fig. 2 The designed proper sandwich of the quasi-static and SHPB tests
for the FZ martensite specimen in the RSW of QP980 steel

Incident bar Transmitter bar

specimens with smaller diameter than the bars and higher
hardness than the bars are to indent the bars in the SHPB tests
producing a type of bar misalignment. Kariem et al. [6] stud-
ied the distorted signal generated by different misalignments
in SHPB experiments. We design proper sandwich (as shown
in Fig. 2b) between the specimen and the bars to improve the
reflected and transmitted waves as shown in Fig. 4, in which
the yellow signal is the incident and reflected wave, the blue
signal indicates the transmitted wave, X-axis indicates time,
and Y-axis is electric voltage. The dynamic uniaxial compres-
sion stress-strain curves of the FZ martensite specimen in the
RSW for QP980 steel at various strain rates are shown in
Fig. 5. It is revealed that the strain-rate dependence of the
dynamic uniaxial compression behavior of the FZ martensite
in the RSW for QP980 steel is rather weak according to Fig. 5.

2 Analyses

We [4] have revealed the martensite phases in the FZ and HAZ
of the as-received RSW for QP980 steel in all details with a
number of micrographs. Srivastava et al. [12] have given the
experimental and calculated uniaxial compression stress-
strain curves of two micropillars of martensite phase in
QP980 steel, which are also shown in Fig. 3. The experimental
compression stress-strain curves of micropillar extracted from
the individual martensite particles were obtained [12] using a
flat-punch nanoindenter while calculated using five material
parameters including the initial dislocation density. It is obvi-
ous from Fig. 3 that the quasi-static uniaxial compression
stress-strain curve of the FZ martensite in RSW for QP980
steel is different from that of the micropillars of martensite
phase in QP980 steel. Obviously, it is due to the welding
thermal cycle different from the QP980 steel heat treatment
that the flow stress of the FZ martensite in the RSW is higher
than that of the martensite phase in the BM. The behavior of
martensite phase can be determined by tests on steels
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------- Quasi-static Compression of FZ(Exp)
0
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Fig. 3 The quasi-static uniaxial compression stress-strain curve of the FZ
martensite in the RSW for QP980 steel and the experimental and calcu-

lated compression stress-strain curves[3] of two micropillars of martensite
phase in QP980 steel
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Fig. 4 Typical oscilloscope record of the modified SHPB test for the FZ martensite specimen in the RSW for QP980 steel

consisting of martensite phase. This is achievable by heating
the steel to the required temperature and then cooling at con-
trolled rates using the time-temperature transformation dia-
gram to get the martensite phase. The martensite-phase steel
can be tested in compression or tension to obtain the charac-
teristic behavior of the martensite phase. However, the report-
ed martensite phase properties vary significantly in the open
literature [2, 3]. Tomata et al. [14] represented a Swift law for
martensite phase:

Je:a(b+6p)N (1)

where o is the plastic flow stress, €, is the accumulated plastic
strain. The parameters a, b, and N are derived systematically
from the stress-strain curve of martensite phase [10, 11]. a=
8590c¢ + 1830MPa, b=0.0001, N=0.763c +0.153, and c is
carbon composition (mass %). For martensite in QP980 steel,
¢=0.06%, a=2380MPa, b=0.0001, and N=0.2, the stress-
strain curve calculated from Eq. (1) is also shown in Fig. 3.
The relation of Vicker’s hardness to the o og is given [1] by

HV = 30’0408 (2)

We can calculate uniaxial 7 og for the FZ martensite in the
RSW for QP980 steel as follows:

To.0s =— 2 (00.08); = 1750MPa (3)
=

1

n;
where (09 0g); 1S 0008 at the indentation points, n=1, 2...25,
26, and(og og); = 1667~1840MPa in the FZ. The calculated
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09,08 18 also shown in Fig. 3.

Most metallic material’s plastic behaviors can be expressed
by a power law. Material’s elasto-plastic behavior can be de-
scribed as:

Ee .
Jor o<oyg

; r o>

(4)

g =

where £ is the elastic modulus, oy is the initial yield strength,
and m is the hardening exponent. We assume the elasto-plastic
behavior & of the FZ martensite in the RSW for QP980 steel to
satisfy Eq. (4), then m can be determined from & o3, £, and
oyo- According to Fig. 3, £=200 GPa, and o,(=1310 MPa for
the FZ martensite in the RSW for QP980 steel. Therefore,
m=0.112 and & can be described as:

200000

(MPa) — Sfor 0<1310MPa
oMPa) =\ 1310(1 + 153¢,)"'"

for 0>1310MPa )

which is shown in Fig. 3.

In fact, Eq. (5) is a Swift law, and we extend the Swift law
to high strain rates. Taking strain rate effect into consideration,
a strain rate effect term is added to Eq. (5), and the dynamic
compression constitutive equation of the FZ martensite in the
RSW for QP980 steel is obtained, that is Eq. (6), which is
presented by analyzing the quasi-static and dynamic uniaxial
compression experimental results:
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Fig. 5 The dynamic uniaxial compression stress-strain curves of the FZ martensite in the RSW for QP980 steel at various strain rates
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oe =A(1 + Bep)" (1 + Clni—p) (6)

0

where A=1310 MPa, B=153, n=0.112, and &, is the strain rate,
=10 s 1, C=0.015. The stress-strain curves at high strain
rates described with Eq. (6) are compared with the experimen-
tal results in Fig. 5.

3 Conclusions

1y

2)

3)

The cross-sectional micrograph, microhardness profile,
and microstructures of the RSW for QP980 steel are
shown to reveal the effects of the content and tempering
of the martensite in the FZ and HAZ on the microhard-
ness profile of the RSW. It is indicated that during the
welding thermal cycle, the transient peak temperature
above the critical temperature induces the significant var-
iations of material and mechanical properties in the FZ
and HAZ.

The quasi-static uniaxial compression stress-strain curve
of the FZ martensite in the RSW for QP980 steel is ob-
tained with DIC technique and compared with the exper-
imental and calculated uniaxial compression stress-strain
curves of two micropillars of martensite phase in the BM
of the RSW for QP980 steel, which was given by
Srivastava et al. [12]. It is attributed to the welding ther-
mal cycle different from the QP980 steel heat treatment
that the flow stress of the FZ martensite in the RSW is
higher than that of the martensite phase in the BM.

The dynamic uniaxial compression experiments for the
FZ martensite in the RSW for QP980 steel are performed
on a modified SHPB in which the reflected and transmit-
ted waves are improved. A dynamic compression consti-
tutive equation for the FZ martensite in the RSW for
QP980 steel is presented analyzing the results of the
quasi-static and dynamic uniaxial compression experi-
ments. A Swift law for martensite phase is extended to
high strain rates to describe the weak strain-rate depen-
dence of the dynamic compression behaviors of the FZ
martensite in the RSW for QP980 steel.
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