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Abstract
Indentation testing has played a major role for many materials design processes as a convenient and relatively cheap experi-
ment. However, extracting the data from indentation tests requires complex post-processing or an integrated simulation and 
experiment framework. Accordingly, the simulation of indentation has become a post-processing routine for indentation tests. 
Providing a highly efficient, computationally scalable, and open-source platform for indentation simulation provides invalu-
able machinery for materials design process. An open-source PRISMS-Indentation module is presented here as a multi-scale 
elasto-plastic virtual indentation framework. The module is implemented as a part of PRISMS-Plasticity software which 
covers length scales of macroscopic plasticity and crystal plasticity. The contact problem is handled using a primal–dual 
active set method. The framework is first tested against analytical solution of Hertzian theory for contact using an isotropic 
elasticity model. The robustness of the framework is then investigated in simulations of indentation of annealed Cu micro-
structures. Unstructured meshes with hexahedral elements and variable mesh density are used to demonstrate potential for 
speedup in indentation simulations.
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Introduction

Indentation is a very powerful technique to characterize the 
hardness of metals and alloys. The experiment can generate 
high-throughput data with low costs. Using indentation has 
a very long history to characterize the mechanical properties 
of materials [1]. In the case of metals and alloys, the inden-
tation has found new applications. For instance, it has been 
used to characterize the spatial variation in the microstruc-
ture. Relating the indentation to other mechanical proper-
ties is still a challenge, considering the complex relationship 
between indentation load/displacement and stress/strain. 
Simulations of indentation experiment provide a method 
to investigate the relation between indentation test results 

and other mechanical properties. Accordingly, integrated 
experimental and numerical frameworks for indentation 
have gained a lot of attention [2–4]. Indentation testing has 
been combined with finite element method (FEM) simula-
tions to determine yield strength and hardening response of 
polycrystalline metals with increased accuracy [5–8]. This 
requires an inverse method, i.e., calibrating the plasticity 
model parameters to reproduce the indentation test data [9]. 
Whereas most indentation work has used the load–displace-
ment curve as the key data, recently, profilometry-based 
approaches have been increasingly considered [10–12] for 
determining macroscopic plasticity. These profilometry-
based methods rely on FEM simulations. An open-source 
framework for multi-scale indentation FEM simulations is 
well situated to accelerate indentation-based research on 
metal deformation.

Indentation testing of metals and alloys has been simu-
lated at different length scales from atomistic simulations 
to macroscopic plasticity models. At the atomistic level, 
parallel MD code LAMMPS is an open-source software 
developed at Sandia National lab which has built-in fea-
tures to simulate the response of the metals and alloys 
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during indentation [13–17]. This simulation can provide 
insight about defect structures beneath the indenter along 
with the correlation between the hardness with dislocation 
network, grain size, strain rate, temperature, etc. The inden-
tation has been modeled at the mesoscale using crystal plas-
ticity finite element (CPFE) method. However, most of the 
indentation crystal plasticity simulations are single crystal 
samples [18–25] or samples with only a few grains [26]. The 
CPFE indentation framework requires very high efficiency 
and scalability to be abe to model indentation in polycrystal 
sample. Lack of a very efficient and scalable indentation 
module for CPFE framework leads to the scarcity of inden-
tation simulations of very large polycrystals in literature. 
At macroscale plasticity, many studies have been conducted 
on indentation [10, 27–29]. Although these simulations can 
model larger indentation depth with lower costs, they gener-
ally do not provide much information regarding the underly-
ing microstructure.

In order to simulate the indentation experiment, the con-
tact between the indenter and sample should be accurately 
captured. This contact problem has been solved with dif-
ferent techniques, of which the most common ones are the 
penalty methods, Lagrange multiplier methods, and Aug-
mented Lagrange methods [30]. Mortar method is a sur-
face-to-surface, Lagrange multiplier-type contact, which has 
recently gained a lot of attention within the computational 
contact mechanics community. Within the mortar method, 
the Lagrange multipliers are introduced to weakly impose 
the contact constraints [31–34]. A primal–dual active set 
strategy based on dual Lagrange multipliers has been effec-
tively incorporated along with the mortar method to han-
dle the contact problem [35–37]. A primal–dual active set 
strategy has been used to capture contact in both infinitesi-
mal and finite strain elasticity and elastoplasticity [37–40]. 
However, the mortar framework has not been incorporated 
to model the contact for mesoscale simulation of metals and 
alloys using crystal plasticity.

Development of open-source software has contributed 
to the materials community at various levels. The com-
munity can use open-source codes for their applications 
without spending tremendous resources on development of 
redundant functionality. Instead, they can use resources to 
contribute to the features of shared software. Furthermore, 
shared software eases the reproducibility of the results, and 
model and code documentation. PRISMS-Plasticity has been 
introduced as an open-source CPFE software that has been 
successfully incorporated for different applications of twin-
ning [41–45], grain size effects [46], processing sequence 
design using machine learning [47], and fatigue [48–52]. In 
the current work, the PRISMS-Indentation is presented as 
a multi-scale elasto-plastic virtual indentation module for 
metals and alloys which is integrated with PRISMS-Plas-
ticity software [53]. A primal–dual active set strategy is 

incorporated to model the contact between the indenter and 
the sample. The current indentation framework can provide 
various opportunities in any of the mentioned applications. 
The applications of the current PRISMS-Indentation module 
are shown at both mesoscale and macroscale using finite 
strain crystal plasticity and conventional macroplasticity 
models, respectively.

Methodology

Contact Model

The contact problem is implemented in the current work 
according to the primal–dual active set approach to mimic 
frictionless contact with a rigid obstacle [37]. The deform-
able body is indicated as Ω , with some subset of the surface 
on which contact may occur Γc . At each point � on that 
surface in the reference configuration, unit surface normal 
vector � = �(�) is defined. At each point in Ω there is also 
defined displacement � = �(�) . Each point of Γc has a posi-
tion in the reference frame of �Ω . The nearest point of the 
obstacle is �O and the gap between the surface and the obsta-
cle is defined as,

Two conditions are included in the strong form along-
side the governing equations of the elastoplastic deformation 
problem:

where σ = �PK2(�) is the Second Piola–Kirchhoff stress at 
each point, in what are known as the Signorini contact con-
ditions. The constraint of zero tangential contact forces pre-
sent in the conditions indicates a frictionless contact.

The application of this contact formulation to a flat sur-
face is numerically convenient. In the Lagrangian (refer-
ence) frame, the surface normal vector � is aligned with 
the z direction for the material volume defined in this case, 
i.e., � = [�, �, �]onΓc . As a result, the contact constraints 
are imposed without adding new degrees of freedom. Using 
Dirichlet conditions acting on uz alone, the inequality in 
Eq. (3) can be enforced for the nodes in contact. Enforcing 
the inequality in Eq. (2) is accomplished using an active set 
method, described in the following. Finding the active set 
of nodes in the presence of nonlinear elastoplastic response 
requires an iterative procedure. Once determined, the active 
set will meet the inequality constraints while allowing the 
solution to be found using equality constraints.

(1)g =
(
�O − �Ω

)
⋅ �

(2)σ� − [� ⋅ (��)]� = 0,� ⋅ (σ�) ≤ 0 on Γc

(3)[� ⋅ (��)](� ⋅ � − g) = 0,� ⋅ � − g ≤ 0 on Γc
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The variational formulation is based on the formulation 
elaborated in [37]. The novelty in the current work is the 
application of the active set method for the macroscopic 
plasticity and crystal plasticity finite element frameworks 
of PRISMS-Plasticity. In the current indentation framework, 
the inequality constraints are reconfigured as equality con-
straints using an active set method. Indeed, it is possible to 
state the discretized problem in matrix–vector form as,

where A is the Newton matrix, Λ contains the Lagrange mul-
tipliers, B is a diagonal matrix of ansatz functions, i.e., 
Bpq = ⟨� ⋅ �p,� ⋅ �q⟩Γc,h

 that couple the displacements with 
the Lagrange multipliers, with shape functions � , F contains 
the right-hand-side, and vector G contains the gap functions, 
i.e., Gp = ⟨g,� ⋅ �p⟩Γc,h

 . Ũi is the set of displacement solu-
tions for the current nonlinear iteration i.

In addition, the set of points on Γc , S , must be parti-
tioned into an active set Ai and inactive set Fi . Using the 
primal–dual method, the active set is determined as

Using nonlinear residual R from the previous itera-
tion and the penalty parameter c = 100E , where E is the 
Young’s modulus. Ultimately, the Lagrange multipliers are 
zero except for the nodes in the active set, for which they 
become Dirichlet boundary conditions. The values of these 
conditions are given as,

where p is a point, and the displacement solution of each 
point, Ũi

p
 in the active set is equal to the gap function value 

at that point. The determination of the active set is incorpo-
rated into the convergence loop used to solve the nonlinear 
plasticity problem, as described in Appendix C. Additional 
details of the mathematical spaces for this formulation are 
included in Appendix A.

Macroscopic and Crystal Plasticity Models

The PRISMS -Plasticity software includes two frameworks: 
one for crystal plasticity and one for macroscale plasticity. 
Both frameworks are compatible with the new boundary 
conditions and subroutines developed as a part of PRISMS-
Indentation. The constitutive model formulations for mac-
roscale and crystal plasticity used in the development of 
PRISMS-Indentation are included in Appendices B and C, 
respectively.

(4)
(
A
(
Ui−1

)
B

BT 0

)(
Ũi

Λ

)
=

(
F
(
Ui−1

)
G

)

(5)
A

i ∶=
{
p ∈ S

i
c
∶
[
R
(
ui−1

)
p
+ c

([
B̄TUi−1

]
p
− Gp

)] ≤ 0
}

(6)Ũ
i

p
= g

(
�p

)
∀p ∈ A

i

The rate-dependent crystal plasticity model employed in 
the current work is the more novel capability. The model 
uses finite deformation framework in which the deformation 
gradient tensor � is multiplicatively decomposed to elastic 
and plastic parts, i.e., �e and �p , respectively. The details of 
the model are included in Appendix C.

Code Convergence and Structure

PRISMS-Indentation is a fork of PRISMS-Plasticity that 
includes additional routines for solving frictionless contact 
and finding convergent solutions to both the active set and 
the stiffness matrix within the same iterative loop. A New-
ton–Raphson method is used to solve the weak form of the 
equilibrium equation, for each time increment of the inden-
tation simulation. The active set is updated at each iteration 
of the Newton–Raphson loop. If the active set changes, the 
active set is held fixed for one additional iteration, to allow 
the residuals of the stiffness matrix to reduce (and adjust for 
the changing boundary condition). This allows both non-
linear aspects of the simulation to be addressed at once in 
a combined iterative loop. An algorithmic tangent modulus 
is used to assemble the stiffness matrix. The solution to the 
linear equation is obtained using the PETSc library [54] 
included in deal.ii [55]. Preconditioning of the sparse stiff-
ness matrix is also used to improve iterative convergence.

The contact Lagrange multipliers are either Dirichlet 
conditions or zero, as described in Eq. (6). As a result, no 
new degrees of freedom need to be introduced. However, 
the determination of the active set must be convergent. The 
methods used to support a convergent active set of nodes are 
embedded within the existing convergence loops. The full 
convergence diagram is shown in Fig. 1. The convergence 
of the typical plasticity simulations in PRISMS-Plasticity 
includes a loop of nonlinear iterations and a nested loop 
of linear iterations. The active set is solved (and Dirichlet 
conditions updated) on each nonlinear iteration. Two adjust-
ments of the active set criterion are made to promote active 
set convergence in the simulation of heterogeneous and non-
linear material response: (1) if the active set changes size in 
a nonlinear iteration, the active set is frozen for the next non-
linear iteration. This prevents oscillations in the active set 
from interfering with convergence in the elastoplastic prob-
lem. (2) a very small positive bias is added to the active set 
criterion. In many meshes, small machine precision errors 
cause there to be nearly negligible variations in the stresses 
that are calculated when no deformation has occurred. When 
these variations are negative, they can prevent the initial 
contact from occurring (given the primal–dual active set cri-
terion, in which the gap must be zero or less, and the stress 
must be zero or greater in compression). The small (around 
0.1) biasing term allows the active set to be insensitive to 
these numerical errors.
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The PRISMS-Indentation module relies on input files to 
provide all the specific details of a simulation. Primarily, 
these input files are identical to the inputs for PRISMS-Plas-
ticity. There have been updates to the macroscale plasticity 
code to allow input files to be similarly structured to the files 
required for CPFE simulations. Both length-scales use files 
to determine the boundary conditions. BCinfo.txt contains 
the non-contact boundary conditions. Details needed for the 
indentation boundary condition are provided in Indentation-
BCsConstraints.txt. Within, the indenter displacement over 
time is controlled using ‘key frames’, i.e., a sequence of (x, 
y, z) coordinates. An equal proportion of time steps are used 
moving the indenter from each defined coordinate to the 
next in the sequence. The indenter shape, size, the face ID of 
the sample being indented, and the option for frictionless or 
rough contact are also provided there. Also, the parameters.
prm file for each simulation provides the bulk of the infor-
mation, including the constitutive model parameters and the 
dimensions of the simulated volume, the time-step size and 
number, and often the mesh. In cases that use an externally 
defined mesh, the mesh must be defined in a.msh format, and 
the file name becomes a parameter as well.

The files used only for CPFE describe microstructure: 
(1) orientation.txt defines the grain orientations in the Rod-
rigues space and phases (for multiphase simulations) and 

(2) grainID.txt, which defines the grain ID map inside the 
sample. A latent hardening matrix, which can accommodate 
complex cases of latent hardening ratios in a matrix format, 
crystallographic information for slip (twin) directions and 
normal to the slip (twin) planes are also included. The out-
puts of the simulations can be observed using Paraview [56].

Application Examples

Hertzian Elasticity

The Hertzian analytical solution of elastic contact is used as 
a verification of the PRISMS-Indentation implementation 
of the contact formulation. For purely elastic, infinitesimal 
strain, frictionless contact between a spherical indenter and 
a flat surface, the indentation load can be written as follows 
[57]:

where P is the indentation load, E is the effective stiffness 
modulus, � is the displacement, and R∗ is the effective inden-
tation radius, determined as,

(7)P =
4

3
E
√
�3R∗

Fig. 1  A diagram of the convergence algorithm used in the PRISMS-Indentation routine
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using the radius of the indenter, Ri , and the radius of the 
surface, Rs , which is infinite for a flat sample and negative 
for a concave sample.

For verification, the macroscopic plasticity and crystal 
plasticity frameworks are both compared with the Hertzian 
solution. The material properties in all cases are isotropic 
elasticity, with Lamé parameters of � = 100.6582 GPa and � = 
45.6473 GPa. The indenter radius was set as r = 2000 , and 
the maximum indentation depth was set at � = 0.0005 . The 
elastic deformable volume was a hexahedral volume with size 
of 8 mm in all dimensions, to examine the effect of the finite 
mesh. A mesh of 64 by 64 by 64 elements was used. The face 
opposite the indentation was fixed in translation on x, y, and z.

The numerical indentation load follows the Hertzian load 
quite closely, as is shown in Fig. 2a. To see deviations in 
greater detail, the FE calculated load relative to the analytical 
load is shown in Fig. 2b. Limited mesh resolution and finite 
simulated volumes complicate the comparison between the 
3D FEM simulation and the analytical solution. The contact is 
only enforced at nodes, leading to discrepancy with the Hert-
zian load at lower displacements while few nodes are in the 
active set. Indeed, this trend can be observed in Fig. 1b.

According to the Hertzian formulation, the contact pressure 
should vary across the contact patch. The pressure at a given 
point drops off toward the edges of the contact patch from a 
maximum in the center, as follows [58]:

where �zz is the component of the Cauchy stress tensor nor-
mal to the contact surface in the reference frame, pm is the 

(8)
1

R∗
=

1

Ri

+
1

Rs

(9)
�zz

pm
= −

3

2

(
1 −

r2

a2

)0.5

mean pressure defined as load, P , divided by contact patch 
area, and r is the distance from the contact patch center. A 
comparison of the numerical and analytical contact pressure 
as a function of radial distance from the center of the contact 
patch is shown in Fig. 3. The Hertzian solution is shown to 
agree closely with the numerical implementation.

Fig. 2  The elastic spherical indentation simulation, using PRISMS-Indentation compared with the Hertzian analytical solution (shown as a 
dashed line). The number of elements in each simulation is used to indicate the two sizes of mesh compared

Fig. 3  The comparison of the nodal contact pressure to the Hertzian 
solution for the purely elastic case
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CPFE Plasticity

Indentation of a polycrystalline sample is challenging to 
simulate using CPFE. However, it provides microstructure 
sensitive information that is not available using a macroscale 
simulation. To demonstrate the capability of the developed 
framework, indentation of polycrystalline Cu samples with 
initial random texture are simulated. Two representative vol-
ume elements are generated using Dream3D software [59] 
as presented in [48–50] with the length of 1 mm, which con-
sist of ~ 7500 grains with mean grain diameter of 0.06 mm 
(Fig. 4). These are referred to as microstructure 1 (MS1) and 
microstructure 2 (MS2). The meshes are 90 × 90 × 90 hexa-
hedral C3D8 linear brick elements. A frictionless spherical 
indenter with the radius, Ri , of 0.2 mm is used. The centers 
of the sample and indenter are aligned in the x–y plane, and 
the sample is indented up to the depth of 0.06 mm paral-
lel to the z-axis. Nodes on the bottom face of the sample 
are fixed in z. Nodes on the x–z faces are fixed in y and 
nodes on the y–z faces are fixed in x. The constitutive model 
employed is the rate-sensitive formulation defined in Appen-
dix C, calibrated by Bronkhorst et al. [60] and Annand and 
Kothari [61] for polycrystalline Cu. Material parameters 
are given values of h�

0
= h0 = 180MPa , s�

0
= s0 = 16MPa , 

s�
s
= ss = 148MPa , and a� = a = 2.25 along with the latent 

hardening parameter of q = 1.4 . The elastic constants of 
C11 = 170GPa,C12 = 124GPa, andC44 = 75GPa are incor-
porated [61]. Reference shearing rate of �̇�0 = 0.001s−1 and 
inverse strain rate sensitivity exponent of m = 25 are used.

Indentation imposes stresses unequally within the test 
specimen. As a result, determining material properties from 
indentation results is not trivial. The plastic zone associated 
with an indentation test is often used to help describe the 
volume of material primarily involved in the test. The plastic 
zone is determined for each simulation according to a thresh-
old of effective plastic strain, �thr = 0.001 . The simulated 
plastic volume is determined as,

where zpl is a Boolean threshold function of the effective 
plastic strain, �pl . This plastic volume is shown for the CPFE 
simulations in Fig. 5a as a function of indentation displace-
ment. The indentation load is shown in Fig. 5b. The two 
simulations show similar load–displacement curves and 
similar plastic zone volumes as a function of indentation 
displacement. The effective strain at the maximum indenta-
tion depth is shown for cross-sections of MS1 and MS2 in 
Fig. 6. While the plasticity is isochoric, the high compres-
sive pressure present at the timestep shown in Fig. 6 presents 
a notable elastic volume change. Despite the broad similar-
ity of the strain distributions shown in Fig. 6, local varia-
tions in response due to the microstructure are observable. 
It is noted that the indentation load curve provides limited 
information about the spatial distribution of strain during the 
indentation. The displacement in z of the indented surface 
for both simulations is shown in Fig. 7. It is emphasized 

(10)

Vpl = � zpl
(
𝜀pl

)
dV , where

{
zpl
(
𝜀pl ≥ 𝜀thr

)
= 1

zpl
(
𝜀pl < 𝜀thr

)
= 0

,

Fig. 4  The microstructures used in the crystal plasticity FEM simulations. Microstructure 1 (a) is used for a tensile simulation in addition to the 
indentation simulations
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that, although spherical indentation is demonstrated in this 
work, support for octahedral (sharp) indenter shape is also 
included in the module.

It is desirable to obtain an effective stress–strain curve 
from an indentation, either to estimate material proper-
ties or to compare an indentation result with tensile test 
stress–strain curves. Many analytical approaches to derive 
an indentation stress and strain exist [8], however numerical 
approaches are not as common. In general, the analytical 
approaches assume a homogeneous and isotropic material. 
It has not been shown how heterogeneity influences the rela-
tionship between tensile stress–strain curves and indentation 
stress–strain curves. A numerical estimate of indentation 

stress and strain is useful in conjunction with the CPFE 
framework, to allow exploration of the effect of heteroge-
neity on effective properties as determined by indentation 
test. To support this, an analytical indentation stress–strain 
measure is compared to a numerical estimate of the effective 
stress and strain.

An analytical approach suitable for property identifica-
tion from elastoplastic indentation is employed. Many 
analytical derivations of indentation stress and strain exist. 
Here, the formulation follows the work in [8]. While elas-
tic indentation follows the Hertzian formulation in Eq. 7, 
plasticity requires modifications to the parameters, includ-
ing the adjustment of effective radius, R∗ , as plastic 

Fig. 5  The indentation displacement-load curves (left) and plastic zone volume (right) as a function of indentation displacement for the two 
microstructures simulated

Fig. 6  The von Mises effective strain of the indentation simulations 
at indentation displacement of 5.2 mm. For visual clarity, only a 2D 
cross-section of the 3D simulated volume is shown for each of the 

two microstructure instantiations. Microstructure 1 is on the left, 
microstructure 2 is shown on the right
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deformation changes the residual shape of the sample sur-
face (and thus Rs ). Rs can be measured by unloading peri-
odically during the indentation. Here, the value is esti-
mated as Rs = −kRi, k ≅

�tot
�pl

= 1.001 . This value of R∗ is 

assumed to be constant for the simulation. The contact 
radius, a , is defined as

The indentation stress and indentation strain are cal-
culated as

The indentation stress and strain calculated in this man-
ner are presented as a point of comparison.

A novel approach to the numerical effective indenta-
tion stress and strain is proposed here. To usefully esti-
mate the material response associated with an indentation 
test, requirements must be met: (1) the effective stress 
and strain should summarize the distributions of stress 
and strain states present at each timestep of the simula-
tion with scalar quantities, (2) the summary formulation 
should discriminate between the local stress–strain states 
that are physically relevant to the observed indentation 
load–displacement and those states that are not physically 
relevant, (i.e., it should not assume all material points in 
the simulated volume are equally involved in the inden-
tation result) and (3) the formulation should distinguish 
relevance of a local state without relying on an arbitrary 
threshold parameter, if possible. A formulation that meets 
all of these requirements is given as follows.

(11)a =

(
4PR∗

3E

)1∕3

(12)�̃�ind =
P

𝜋a2
, �ind =

4𝛿

3𝜋a

For the numerical calculation of indentation stress and 
strain, the contributions of each grain are incorporated in 
a weighted average. Weights are defined as incremental 
strain-work density, grain-wise, i.e.,

where ws
i
 is the statistical weight of grain i , Vi is the grain 

volume, and ΔU(t) is the increment of strain work density 
at time t . The strain work density increment is calculated as

where F is the deformation gradient and P is the first 
Piola–Kirchhoff stress tensor. The weighting imposed by 
the work increment is thus able to evolve and include strain 
energy dissipation.

The numerical estimate given here is compared against 
a commonly used analytical method. It is not clear whether 
the quantities should match, given the difference in their 
formulations. However, if the potential uses of the methods 
are aligned (for instance, to evaluate correspondence to 
tensile stress–strain curves), discussion of the differences 
between the two methods is necessary. The numerical and 
analytical indentation stress–strain curves are shown in 
Fig. 8. It is shown that the numerical method predicts a 
higher stress value at a given strain than the analytical 
method. The cause of this could be due to an inaccurate 
value of Rs , or due to the effect of incompatibility stresses. 
Some other considerations about the influence of stress 
and strain incompatibility on the numerical estimate are 
expanded on in the discussion section.

(13)ws
i
(t) = ∫ Vi

ΔU(t)dV for i in Ngrains

(14)ΔU(t) = P(t−Δt)ΔF +
1

2
ΔPΔF

Fig. 7  The top surface displacements from the elastoplastic indentation simulations. It is noted that the surface displacements shown are taken at 
the peak indentation stress
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Although micromechanical interactions are complex, it is 
reasonable to assume that the effective weighting imposed 
by the mechanical test is proportional to the mechanical 
work increment of each grain. It is noted that incompat-
ibility stresses and strains (that do not show up in boundary 
condition-based stress and strain determinations) influence 
the result of this weighted averaging when von-mises stress 
or strain are used. Incompatibility does not influence the 
volume average of axial stress and axial strain in a tensile 
test simulation; the weighted average produces accurate 
results for axial stress and strain. Some other considerations 
about the influence of stress and strain incompatibility on 
the numerical estimate are expanded on in the discussion.

Indentation tests are most heavily influenced by a smaller 
volume of the simulated sample near the indenter. Often, 
unstructured meshes are used to increase the mesh density 
in the plastic region while leaving most of the mesh coarse. 
Unstructured meshes are compatible with PRISMS-Inden-
tation. To demonstrate the capability, one microstructure is 
simulated with three different meshes. The meshes have the 
same density around the indenter contact region in a hexa-
hedral volume. Geometric scaling is used to increase the 
size of elements as they move away from the indenter tip. A 
cross-section of the unstructured meshes used is shown in 
Fig. 9. The number of elements is reduced to 32% of the full 
mesh in the reduced mesh shown in 4 (a) and to 6.2% in (b).

Grain orientations in the new meshes are obtained from 
the microstructure of the full resolution mesh. The orien-
tation for a given element was determined by the element 

center and by consulting the orientation of the original ele-
ment containing the center. The new meshes had slightly dif-
ferent microstructures as a result. Determining the effect of 
the microstructure differences on the results is left to future 
work. The indentation stress–strain curves for the same 
simulations are shown in Fig. 10. The numerical estimate 
of the indentation stress and strain was much more sensitive 
to the mesh resolution than was the analytical estimate based 
on the load–displacement curve. The indentation load–dis-
placement curves are shown in Fig. 11. It is shown that as 
the plastic volume expands, the coarsened mesh has a larger 
influence on the simulation.

The computational cost of a simulation depends on more 
than the mesh size. The costs of the indentation and other 
PRISMS-Plasticity-based simulations are included in this 
work. The CPU counts and wall times of each of the simula-
tions in this work are shown in Table 1. The simulations that 
employed reduced meshes (with 32% or 6.2% of the original 
number of elements) were executed in 51.3% and 5.9% of 
the CPU hours required for the uniform mesh, respectively. 
A uniaxial tension simulation using MS1 and reaching 5% 
strain is included to allow an estimation of the additional 
costs of the indentation boundary conditions. The indenta-
tion test required 2.38 times the cpu hours of a comparable 
uniaxial tension simulation. In the indentation simulations, 
additional nonlinear and linear iterations are often required 
to allow for determining a convergent active set, or due to 
the larger strain gradients present, relative to a uniaxial ten-
sion configuration.

Fig. 8  The numerical and ana-
lytical indentation stress–strain 
curves for the two microstruc-
ture instantiations with which 
indentation test simulations 
are performed. The effective 
radius of the indentation tests is 
estimated
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It is important that the indentation simulations are 
suitable for parallelization, to support larger meshes. 
PRISMS-Plasticity has been shown to have excellent per-
formance with respect to parallelization [53]. Figure 12 
compares the strong scaling of the indentation simulation, 

for number of processors from 9 to 579 to the ideal scal-
ing. The results show that the strong scaling of the inden-
tation simulation is comparable to those presented in [53], 
and indentation simulation does not introduce any over-
head for the scaling of the framework.

Fig. 9  The unstructured meshes used to demonstrate the speed up possible with the PRISMS-Indentation capability

Fig. 10  The numerical and ana-
lytical indentation stress–strain 
curves for the unstructured 
meshes, along with the original 
mesh for comparison
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Fig. 11  The indentation (a) displacement-load curves and (b) plastic zone volume as a function of indentation displacement for the reduced 
meshes and the full mesh as reference

Table 1  The number of 
processors and wall times for 
the simulations included in this 
work

Sample # of processors Wall time (hr) Dedicated 
CPU hours

Microstructure 1 288 96.67 27,841
Microstructure 2 288 90.0 25,920
Reduced mesh 1 (32%) 144 99.17 14,280
Reduced mesh 2 (6.2%) 144 11.4 1642
Uniaxial tension (5% strain) (MS1) 288 40.56 11,681

Fig. 12  The change in wall time corresponding to changes in the number of CPUs used in a single indentation simulation. The dashed line is the 
ideal scaling, given as a comparison
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Discussion

The simulations in this work were chosen to demonstrate the 
capability of the PRISMS-Indentation framework to investi-
gate the effects of microstructure on indentation test results. 
The material choice of Cu, the random crystallographic tex-
ture, and the indenter radius to grain size ratio of greater 
than 3.0 contribute to the simulation results being consistent 
between the two microstructure instantiations. Simulating 
multi-phase materials, strong anisotropic texture, or larger 
average grain size could provide much more variability in 
indentation test results. Nevertheless, the results in this work 
can demonstrate some implications of material heterogeneity 
in indentation testing. Here, the discussion will address (1) 
the expected variance of indentation tests, (2) the relation-
ship between indentation and tensile test stress and strain, 
and (3) the impact of the choice of data in interpreting inden-
tation tests.

For a given polycrystalline metal, the number of grains 
involved in a macroscale plasticity test determines its vari-
ability. The determination of how many grains influence an 
indentation test measurement is not trivial. However, the 
full-field simulation of the indentation allows the contri-
butions of individual grains to be evaluated. Indentation 
boundary conditions involve larger variation in how much 
each grain affects the measured mechanical response when 
compared to tensile test boundary conditions. In an inden-
tation test, grain-specific work increments vary by many 

orders of magnitude, even within the plastic zone. The une-
qual weighting of individual grain response may bias meas-
urement of effective properties and can affect the expected 
statistical error of those properties. Using the simulations, 
these effects can be shown for the case of the polycrystal-
line Cu constitutive model. The statistical variability of the 
indentation test can be estimated by calculating the standard 
error of the weighted mean of the tangent modulus, i.e.,

where �̂
T

 is the estimate of the standard deviation in the 
grain-specific tangent modulus Ti , and Pw is a factor that 
depends on the inequality among weights, specifically,

The value of Pw has a value of 1 if all weights are equal, 
and can increase to a value of 

√
Ngrains if only one weight 

is nonzero. The formulation can be used to translate the 
expected error of the measurement at each point in the 
indentation into an equivalent number of equally weighted 
grains, by calculating a factor: Ngrains ⋅ P

−2
w

 as a function of 
the indentation displacement. This is shown for the crystal 
plasticity indentation simulations in this work in Fig. 13. 
The simulations include over 7000 grains, but the effective 

(15)SE
�
T
�
=

�̂
T√

Ngrains

Pw if ws is independent of T

(16)Pw =

�
Ngrains

∑Ngrains

i=1

�
ws
i

�2
∑Ngrains

i=1
ws
i

Fig. 13  The equivalent number 
of grains in an equal weighted 
average that would have the 
same expected error as the 
effective weighted sampling 
determined by work-increment 
in the indentation simulations
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number of grains (when considering the effect on the ran-
dom error on mean estimated properties) is much lower.

Indentation tests are often used as a proxy for tensile tests 
in cases when material costs are prohibitive. It is not imme-
diately clear how heterogeneity impacts correspondence 
between the two tests. It is given that mechanical tests (e.g., 
a tensile test or indentation test) measure effective mate-
rial properties, attached to a length scale and/or boundary 
condition. Tensile test stress–strain curves are calculated 
under the assumption of homogeneous material response. In 
CPFE simulations of tensile tests, significant heterogeneity 
can be observed, as is shown in Fig. 14. Figure 14 displays 
the von Mises effective stress for a cross-section of a tensile 
test boundary condition, in which the Dirichlet condition is 
imposed on the top surface and the bottom surface is fixed 
in the z direction. It is shown that the stress levels vary from 
70 to 210 MPa at different points in the simulated micro-
structure. Clearly, there is a difference between the measured 
stress and strain of a tensile test and the stress–strain history 
of a single material point. The tensile test simulation is a 
special case in which the Hill condition is met [62], allowing 
mean stress and strain to be used in lieu of the local vari-
ations. It is the uniform displacement boundary condition 
that leads to this condition. In indentation testing, the Hill 
condition is not met.

Typically, to determine stress and strain, the traction and 
deformation at the boundary condition is measured, to be 

consistent with experimental tensile tests. Reproducing the 
boundary-measured effective response from the individual 
elemental solutions is not always a trivial process. For 
instance, an average of the elemental solutions for von Mises 
stress will be higher than the effective von Mises stress, as 
stress incompatibilities, i.e., stress-field eddies, contribute 
to the local stresses only, and not the effective stresses. This 
difference is shown in Fig. 15. The same weighted average 
used in Eq. 13 is also shown here. For comparison, the effec-
tive stress–strain curves for the uniaxial tension and inden-
tation simulations are both shown. Notably, the averaging 
is an overestimate of stress for the tension simulation. It is 
likely that the numerical estimate of the indentation stress 
is also an overestimate, as the heterogeneity in the material 
leads to strain incompatibility in the indentation simulation, 
similarly to that in the tension simulation. Not all estimates 
are accurate, as the effective response and the response of 
constituent material points do not necessarily correspond to 
the same quantities.

The deformation imposed in an indentation test leads to a 
distribution of stresses and strains at material points within 
the sample. Depending on heterogeneity in the sample, the 
distributions that arise may vary significantly, even for two 
indentations with similar load–displacement curves. This 
point is illustrated in Fig. 16. Considering the two micro-
structures simulated, the relative difference in the load, P , 
effective stress, �vm , and effective strain, �vm , as a function 

Fig. 14  The elemental solutions 
of von Mises effective stress 
during a uniaxial tensile simula-
tion. Only a 2D cross-section 
of the 3D simulation is shown, 
for clarity
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of the indentation displacement, �ind , is shown in Fig. 12a–c, 
respectively. Although the load shows relatively small vari-
ation, the strain and the stress histories are quite different, 
especially during the beginning of the indentation. The anal-
ysis of an indentation load–displacement curve to determine 
stress and strain would not detect this significant effect of 
heterogeneity unless a continuous stiffness measurement 
is used. Profilometry-based methods, in which an inden-
tation profile is measured and used to determine a stress 

strain curve, may provide more sensitivity to heterogeneous 
mechanical response.

Future Work and Summary

PRISMS-Indentation was presented as a newly developed 
module for crystal plasticity and macroscale plasticity finite 
element simulations with frictionless contact boundary 

Fig. 15  The effective stress–
strain measures for indentation 
and tensile test of a single 
microstructure instantiation. 
Not all estimates are accurate, 
as the effective response and the 
response of constituent material 
points do not necessarily  
correspond

Fig. 16  The relative difference 
in the load, P , effective stress, 
�
vm

 , and effective strain, �
vm

 , 
as a function of the indentation 
displacement, � . MS1 is the 
reference for the comparison
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conditions. The primal–dual active set method and a custom-
ized convergence loop enable robust convergence in indenta-
tion simulations with indentation depth to radius ratios of 
up to 0.3. The tool supports unstructured meshes with the 
ability to reduce degrees of freedom to less than 7% of a 
full mesh without loss of stability. The capability this tool 
provides will be instrumental to the analysis of indentation 
testing and the effects of highly heterogeneous microstruc-
tures on the interoperability of indentation test and tensile 
test data.

Finally, the PRISMS-Indentation module will be inte-
grated with the Materials Commons; it is anticipated that 
a broad community of practice will develop for application 
of this framework to a wide range of scientific studies on 
indentation testing of structural materials, especially regard-
ing additively and advanced manufactured metals. Ongoing 
development and future contributions will be accessible in 
the open-source PRISMS-Indentation github repository as 
updates are completed. Among other planned expansions, a 
graphical user interface (GUI) is under development to sim-
plify use of PRISMS-Indentation for educational purposes.

Appendix A: The Variational Formulation 
of the Contact Problem

The spaces needed for the three-dimensional boundary value 
problem are given as:

V+ =
{
� ∈ V ∶ � ⋅ � ≤ gonΓc

}
,

In the presence of a discrete mesh, discrete versions of 
the spaces can be given. Based on piecewise polynomial 
functions of degree p,

where Qp are the tensor product polynomials on the hexahe-
dral reference element. FK is the mapping from the reference 
element to element K . The set of nodal points, N  , includes 
the values of �p of all shape functions �i

p
 of the finite ele-

ment space.

V =
{
� ∈

[
H1(Ω)

]3
∶ � = 0 on ΓD

}
,

W = L2
(
Ω,ℝ3×3

sym

)
,

(A.1)
Π
(
W × L2(Ω,ℝ)

)
=
{
(�, �) ∈ W × L2(Ω,ℝ) ∶ F(�, �) ≤ 0

}

Vi
h
=
{
�h ∈

[
H1(Ω)

]3
∶ �h |K◦F−1

K
∈ Qp∀K ∈ �

i, �h = 0 on ΓD

}
,

(A.2)V
+,i

h
=
{
�h ∈ Vi

h
∶ � ⋅ �h ≤ g on Γc ∩N

}

Appendix B: The Kinematic Framework 
and Constitutive Model for Macroscopic 
Plasticity

The finite strain macroscopic elastoplasticity is captured in 
the current work using a multiplicative decomposition of the 
deformation gradient into elastic and plastic parts i.e., �e and 
�p , respectively, as follows:

The elastic left Cauchy-Green tensors �e and plastic right 
Cauchy-Green tensors �p can be described as follows:

Accordingly, one can combine Eqs. B.2 and B.3 as follows:

The eigenvalues of �e are the squares of the principal 
elastic stretches λA

e
 , which can be derived using the follow-

ing spectral decomposition:

where �A is the eigenvector of �e.
The isotropic von Mises yield function is described as a 

function of Kirchhoff stress tensor �  as follows:

where �y is the yield stress, q defines the isotropic hardening 
as a function of equivalent plastic strain � , and dev

(
�
)
 can 

be defined as follows:

where tr
(
�
)
 is the trace of �  . In the current work, the linear 

isotropic hardening is incorporated which can be described 
as:

where K is a material constant.
An associated flow rule is incorporated here as:

(B.1)� = �e�p

(B.2)�e = �e�eT

(B.3)�p = �pT��

(B.4)�e = ��p−1�T

(B.5)�e =

3∑
A=1

(
λA
e

)2
�A ⊗ �A

(B.6)f
(
� , q

)
=
|||dev

(
�
)||| −

√
2

3

(
�y − q

)

(B.7)dev
(
�
)
= � −

�

3
tr
(
�
)

(B.8)q = −K�

(B.9)�p = �̇�
𝜕f

𝜕�

(B.10)�̇� = �̇�
𝜕f

𝜕q
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where �p is the plastic rate of deformation tensor, and 
�̇� ≥ 0 is the plastic multiplier. Finally, the Kuhn-Tucker con-
ditions can be introduced as follows to maximize the plastic 
dissipation:

Finally, the constitutive law can be defined as follows:

where �A are the eigenvalues of Kirchhoff stress tensor �  . 
One should note that the eigenvalues of �  is similar to those 
of �e , i.e., � =

∑3

A=1
𝛽A�A ⊗ �A . W  is the strain energy 

density function, which is defined in the current work as a 
St.Venant–Kirchhoff form:

where � and � are the Lamé parameters, �1, �2, and�3 are the 
principal stretches, � is the equivalent plastic strain, and K 
is the strain hardening parameter.

Appendix C: The Kinematic Framework 
and Constitutive Model for Crystal Plasticity

The velocity gradient tensor l can be defined and additively 
decomposed as follows (See, e.g., [61, 63]):

where le = �̇e�e−1 and lp = �e�̇p�p−1�e−1 = �e�p�e−1 in 
which �p is the isoclinic intermediate configuration. The key 
idea in crystal plasticity is relating �p as the macroscopic 
measure of deformation to the shearing rates of different slip 
systems as a microscopic measure of deformation, which can 
be written as follows:

where �̇�𝛼 and �� are the shearing rate and resolved shear 
stress, respectively, and �� is the Schmid tensor in the inter-
mediate configuration correspond to the �th slip/twin sys-
tem. The resolved shear stress on �th slip/twin system can be 
obtained using the Cauchy stress tensor � as below:

where S is the second Piola-Kirchoff stress tensor in the 
intermediate configuration. The slip system flow rule can 
be defined as follows:

(B.11)�̇�f = 0, �̇� ≥ 0, f ≤ 0

(B.12)�A =
�W

�λA
e

λA
e

(B.13)W =
1

2
�(tr(E))2 + �tr

(
E2

)

(C.1)l = �̇�−1 = l
e + l

p

(C.2)�p = �̇p�p−1 =

Ns+Nt∑
𝛼=1

�̇�𝛼�𝛼

(C.3)�� =
(
��eT�e�

)
∶ ��

where �̇�0 and m are the reference shearing rate and inverse 
strain rate sensitivity exponent, and s� is the slip resistance 
on �th slip system. Isotropic hardening is defined as the evo-
lution of slip resistance for each system as follows:

where h�� is the hardening moduli and can be defined as 
follows:

where q , h�
0
 , and s�

s
 are the latent hardening ratio, initial hard-

ening parameter, and saturation slip resistance, respectively. 
a� is a material constant governing the evolution of harden-
ing moduli.

Finally, the constitutive law can be defined as follows:

where C is the fourth order elastic stiffness tensor, and �e 
is the elastic right Cauchy-Green tensor, which is defined 
as follows:
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