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Abstract
Austenitic 347H stainless steel offers superior mechanical properties and corrosion resistance required for extreme operating 
conditions such as high temperature. The change in microstructure due to composition and process variations is expected 
to impact material properties. Identifying microstructural features such as grain boundaries thus becomes an important task 
in the process-microstructure-properties loop. Applying convolutional neural network (CNN)-based deep learning models 
is a powerful technique to detect features from material micrographs in an automated manner. In contrast to microstructural 
classification, supervised CNN models for segmentation tasks require pixel-wise annotation labels. However, manual labe-
ling of the images for the segmentation task poses a major bottleneck for generating training data and labels in a reliable 
and reproducible way within a reasonable timeframe. Microstructural characterization especially needs to be expedited for 
faster material discovery by changing alloy compositions. In this study, we attempt to overcome such limitations by utilizing 
multimodal microscopy to generate labels directly instead of manual labeling. We combine scanning electron microscopy 
images of 347H stainless steel as training data and electron backscatter diffraction micrographs as pixel-wise labels for grain 
boundary detection as a semantic segmentation task. The viability of our method is evaluated by considering a set of deep 
CNN architectures. We demonstrate that despite producing instrumentation drift during data collection between two modes 
of microscopy, this method performs comparably to similar segmentation tasks that used manual labeling. Additionally, 
we find that naïve pixel-wise segmentation results in small gaps and missing boundaries in the predicted grain boundary 
map. By incorporating topological information during model training, the connectivity of the grain boundary network and 
segmentation performance is improved. Finally, our approach is validated by accurate computation on downstream tasks of 
predicting the underlying grain morphology distributions which are the ultimate quantities of interest for microstructural 
characterization.

Keywords Computer vision · Deep learning · Steel microstructure · Microscopy

Introduction

Austenitic stainless steels [1–3] are pervasively used in 
extreme operating conditions including high temperature, 
high pressure components of fossil energy power plants. The 
efficiency of these power plants highly depends on the avail-
able materials. Computational modeling provides unique 
opportunities to devise new high temperature resistant mate-
rials [4, 5]. When designing heat resistant alloys for high 
temperature applications, one of the challenges is to tailor a 
microstructure that is stable in the power plant environment 
to increase the lifetime of the alloy. Various microstructural 
features contain valuable information and connections with 
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their chemical and mechanical properties. Defects such as 
grain boundaries act as weak spots for corrosion and fatigue 
fracture [6–8], which are expected to be more influential 
at high temperature. Therefore, it is important to know the 
size and shape of the grain boundaries and their distribution 
in order to shed light on process-microstructure-property 
relationships.

Usually, scanning electron microscopes (SEM), scanning 
tunneling electron microscopes (STEM) and transmission 
electron microscopes (TEM) are widely used to study the 
microstructural and atomic level features of a given mate-
rial. Until recently, most imaging techniques have relied 
on semiqualitative analysis, where human experts interpret 
two-dimensional (2D) images or individual one-dimensional 
(1D) spectra. However, data collected by electron and probe 
microscopes are often intrinsically quantitative and encoded 
across various modalities and dimensionalities. This charac-
teristic requires subsequent extraction of features and corre-
lations at various lengths and time scales. Additionally, data 
interpretation has been largely driven by human insights. 
This includes identifying features in images or spectra and 
qualitative interpretation, in some cases followed by quan-
titative analysis, ultimately connecting results to physical 
models and prior knowledge. This approach is inherently 
limited by human perception and bias. For example, the 
human eye is remarkably good at identifying well-localized 
objects but struggles to detect the emergence of correlated 
signatures in different parts of the image field or to detect 
small or gradual changes in periodicity. Furthermore, the 
eye is extremely sensitive to color scales and can regularly 
be deceived by the perception of contrast. Even more impor-
tantly, interpretation of the data in terms of relevant physics 
is highly dependent on prior knowledge [9, 10].

Advancements in computational tools, accessibility to 
experimental testing data and the growing field of integrated 
computational materials engineering (ICME) provide a use-
ful basis for the application of data science and machine 
learning for optical and electron microscopy images. For 
instance, deep learning models were implemented to iden-
tify surface defects in steels [11]. Convolutional neural net-
work (CNN) models have shown unprecedented success for 
microstructural characterization such as classification of sev-
eral steel materials from microscopic images [12, 13]. Deep 
CNN models were applied to characterize different phases, 
such as martensite, ferrite and pearlite in low carbon steels 
[14]. DeCost et al. utilized ultrahigh carbon steel microstruc-
tures to calculate important feature vectors for segmenta-
tion tasks [15]. Deep convolutional neural networks have 
been successfully used to segment microstructural constitu-
ents of ultrahigh carbon and ferrite-martensite dual phase 
steels from microscopic images [16, 17]. To the best of our 
knowledge, there is no significant literature on automated 
image segmentation for 347H stainless steel, which is an 

important candidate material for extreme environment appli-
cations. With that motivation under the Pacific Northwest 
National Laboratory (PNNL) and National Energy Tech-
nology's (NETL) effort on Extreme Environment Materials 
(XMAT) research, a database was developed comprising 
of many relevant data streams, including SEM and EBSD 
images of 347H stainless steel manufactured via casting and 
rolling at different processing conditions. In this work, we 
utilized the database to build several deep learning models 
for microstructural analysis by detecting grain boundaries 
and resulting grain morphology directly from SEM images. 
One existing drawback in using supervised deep learning 
models for microstructure analysis is that they require man-
ual labeling for training. For segmentation tasks, generating 
training labels is expensive as hand annotations by human 
experts is needed. Additionally, it is often subjected to bias 
which negatively impacts the training data. We propose to 
combine SEM and EBSD images to directly generate labels 
for training deep learning models as a solution to that prob-
lem. This research critically investigates the advantages and 
limitations associated with such multimodal microscopy 
approach by using several popular deep learning models for 
segmenting grain boundaries. We found that applying CNN 
and label generation by multimodal microscopy showed 
great promise in automated microstructure segmentation and 
predicting grain size and shape from micrographs. Although 
the choice of material is 347H stainless steels, the data gen-
eration, model training, and performance evaluation used in 
the current work can easily be applied and extended to other 
similar materials as well.

Methods

Micrograph Collection

The specimens for this study are several 347H stainless steel 
alloys with composition and process variations that were 
provided by NETL. The specimens were cast with varying 
boron compositions. Once the cast samples were cooled 
down, they were rolled into thick sheets and annealed to 
relieve the residual stresses. Following this, specimens were 
obtained from each of the rolled sheets for microstructural 
characterizations. The specimens were mounted in epoxy 
and polished with silica. They were characterized in a JOEL 
7600F SEM equipped with a high-speed Oxford Symmetry 
EBSD detector. EBSD data were analyzed using the Oxford 
AZtec Nanoanalysis Suite software. EBSD mapping of the 
specimens was done with an accelerating voltage of 20 kV, 
at a working distance of 24.5 mm, and a tilt of 70°. Only 
the steel matrix was mapped for these images to obtain the 
grain boundaries. Indexing was performed using a cubic 
crystal system, with 3.6599 Å lattice parameter. EBSD data 
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post-processing was performed using Oxford AZtecCrystal 
software. The grain size was evaluated using the linear inter-
cept method, and grain differentiation was performed at a 
misorientation of 2° and 10°. The images used were acquired 
from the forward scattering detector.

Image Pre‑processing and Data Augmentation

A total of 298 SEM images were collected for this study 
out of which 269 images had a size of 2048 × 1536 pixels 
(width vs height) and the rest (29) were of size 2048 × 1408 
pixels. Each SEM image was split into smaller non-over-
lapping square patches of 128 × 128 pixels to create the 
image dataset. Each image patch is then divided into either 
train/test (or validation) sets randomly with a 90–10% prob-
ability. This strategy ensured stratified sampling on the test 
set from specimens with different conditions. Five differ-
ent deep learning model architectures, namely U-Net [18], 
DefectSegNet [19], Holistic-nested edge detection HED 
[20], Richer Convolutional Features (RCF) [21], and Deep-
Crack [22], were first trained, and their performance was 
evaluated on this dataset of image size 128 by 128 pixels. 
A dataset with a larger 512 × 512 image size was created in 
a similar manner to train the best model architecture identi-
fied in the previous step and for downstream microstructural 
analysis. Figure 1a shows an example SEM image with grain 
boundary overlayed acquired using EBSD. Figure 1b shows 
the process of dividing the original SEM image into a grid 
of 512 × 512 image patches. All the SEM images were pre-
processed before feeding into the deep learning models. The 
electron images were median filtered to remove any local 
noise [23]. To increase the size of training set and reduce 
possible overfitting, training data were augmented to four 
times in size by flipping the images (and labels) along the 
horizontal, vertical, and both horizontal and vertical axis. 

Additional data augmentation in the form of rotations in 
 900 intervals were also performed but did not improve the 
model performance. No data augmentation was applied to 
test images. Table 1 shows the size of train and test sets for 
different image patches considered.

CNN Model Architectures

We considered five different CNN model architectures 
designed for applications that are conceptually closely sim-
ilar to the task of grain boundary segmentation. The most 
popular model considered was the U-Net architecture origi-
nally developed for biomedical applications [18]. It con-
tains a contract path known as an encoder to learn context 
of images and a symmetric expanding path (decoder) for 
feature localization. The output features from each stage of 
the encoder are concatenated with the input to the decoder 
for better propagation of feature information. The model has 
demonstrated great success in applications like segmenta-
tion of neuronal structures and cell tracking with limited 
data. In this study, the code from reference [24] was used 
for implementing the U-Net architecture in Pytorch [25] and 
was trained on the available SEM images, and correspond-
ing grain boundary maps of the 347H steel acquired using 
EBSD. The second model tested was the DefectSegNet 
[19], which features an encoder-decoder architecture with 
building blocks of DenseNet [26] where the output from 

Fig. 1  a A sample SEM image with the GB map overlayed in red b Dividing a large SEM image into smaller size (512 × 512) patches to obtain 
stratified sampling in the train and test set

Table 1  Size of training and test sets

Image Patch size Training set size (after 
4 × augmentation)

Test set size

128 × 128 1,98,288 5566
512 × 512 12,464 344
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one convolutional layer was fed as inputs to all the other 
downstream layers. The model was initially designed to pre-
dict microstructural defects in transmission electron micros-
copy images. This model combines the idea of U-Net and 
DenseNet architecture where not only each dense block but 
also the feature maps with the same spatial resolution across 
the encoder and decoder are connected. The model was re-
implemented using Pytorch following the approach provided 
in [27]. The third and fourth models were developed specifi-
cally for edge detection. Grain boundaries are thin features in 
microscopic images akin to edges in natural images; there-
fore, we hypothesized these architectures would be suited 
for grain boundary detection. The third model explored was 
HED, which uses fully connected neural networks to learn 
hierarchical representation of edges [20]. The input image 
is processed at multiple scales and the results are then fused 
into a final output. Compared to conventional edge detection 
methods such as Canny edge detector [28], this method is 
typically more robust, suitable for learning hierarchical rep-
resentation of edges, and faster. Similar to HED, the fourth 
model used in this study, RCF model fuses features at dif-
ferent stages; however, in contrast to HED, multiscale hier-
archy is used to enhance edges in RCF [21]. HED and RCF 
models were implemented in Pytorch following [21, 29] and 
were trained using the EBSD + SEM images of 347H steels 
alone. Like edges, other type of thin features found in natural 
images are cracks in roads, pavements, walls etc. The final 
GB detection model we have tried is thus based on crack 
detection application called DeepCrack [22] and for this 
model both training from scratch and pre-trained weights 
in the form of transfer learning were adopted as the model 
trained parameters were readily available [30].

Model Training

Deep learning CNN models were initially trained with a 
small image patch size of 128 × 128 using Pytorch frame-
work with a batch size of 128 images. Training was car-
ried out on PNNL’s Institutional Computing Cluster using 
NVIDIA P100 GPUs in most cases when GPU memory 
permitted. For the DeepCrack model which has ~ 30.9 
million parameters (which is considerably larger than 
the other models used in this study), two RTX 2080 Ti 
GPUs with 384 GB memory were used for model train-
ing. Identifying grain boundaries in an SEM image is a 
highly class-imbalanced problem since grain boundaries 
class accounts for < 10% of all pixels in an SEM image, 
where the rest is made of the grain class. Therefore, we 
used a balanced binary cross-entropy loss (BCE) function 
with higher weight placed on the grain boundaries class. 
The weight ratio between two classes were kept consistent 
at 9.0 among different models for comparison. For the best 
performing model architecture (discussed in a subsequent 

section), the weight ratio between the classes was modi-
fied to observe its effect on model performance. ADAM 
optimizer [31] with a learning rate of  3e−4 was used across 
all the models. Early stopping of the training procedure 
was adopted to prevent overfitting. Other commonly used 
regularization methods such as Dropout [32] and L2 regu-
larization [33] were also adopted with no noticeable trend 
of impact on the model performance.

After the five CNN models (DefectSegNet, HED, RCF, 
U-Net, and DeepCrack) were trained, their performances 
were evaluated on test set images (train and test images of 
size 128 by 128 pixels) using various metrics as discussed 
in the next section. The best CNN architecture (among the 
five models considered) for the pixel-wise grain boundary 
segmentation task was then selected and trained in a similar 
manner and its performance was tested on a dataset hav-
ing image size of 512 × 512 pixels. The larger image size 
was selected to ensure that each image contained a suffi-
cient number of grains for grain size and shape statistics 
calculations. Additionally, the pre-trained model was further 
trained to improve boundary connectivity. A topological loss 
function TopoLoss [34, 35] was added to the previously dis-
cussed BCE loss to further train the best model. The topo-
logical loss function is known to overcome the topological 
connectivity issues that arise from the naïve per-pixel cross-
entropy loss. The dual loss function is shown in Eq. 1.

where the LossBCE is the same BCE loss used before, and 
the �LossTopo is the topological loss with λ being a hyper-
parameter that controls the relative weight between the two 
losses. An ADAM optimizer with a learning rate of  1e−5 and 
λ = 0.04 was used to train the dual loss function. The trained 
models using both BCE and combined loss function steps 
were then used to report grain statistics calculations.

Overall, the training time was between 3 and 6 GPU 
hours based on the particular model. For instance, the 
U-Net model took around 4 GPU hours to complete the 
training. However, fine tuning the initial trained U-Net 
model with TopoLoss took around 48 GPU hours because 
the Pytorch implementation for TopoLoss was not parallel.

Performance Evaluation Metric

To evaluate the performance of a CNN model, a few pixel-
wise as well as overall metrics were calculated from the 
predicted binarized grain boundary map (pixel-wise clas-
sification of test set images into grain or grain boundary 
class). These include metrics that are often used in classi-
fication such as true positive rate (TPR), true negative rate 
(TNR), precision, and recall defined as following:

(1)Lossdual = LossBCE + �LossTopo
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Positive and negative class in this context means a pixel 
contains grain boundary and grain interior, respectively. 
Thus, true positive or true negative is the count of actual 
grain boundary and grain pixels, respectively, that have been 
correctly predicted by the CNN model. False positive and 
false negative quantifies the number of grain boundary and 
grain pixels wrongly classified by the model, respectively. 
For a global summary of segmentation performance, the dice 
index which measures the localization ability of the pre-
dicted map compared to the ground truth can be described 
as follows:

As a microstructure consists of several grains, pixels 
belonging to each grain in a micrograph can be considered as 
a cluster. A cluster evaluation metric known as adjusted rand 
index (ARI) was also reported [36] by identifying grains 
from both predicted and ground truth binary images (each 
pixel is either 0 or 1) from the test set.

Grain Statistics Calculation

Two major grain statistics of interest are grain size and 
morphology distribution. The individual grain area in both 
model prediction and ground truth labels were measured 
as the number of pixels belonging to each grain identified 
by a connected component analysis algorithm available in 
scikit-image [37]. The size of a grain was then defined as 
the diameter of a circle that has an equivalent area. For grain 

(2)TPR =
True Positive

True Positive + False Negative

(3)TNR =
True Negative

True Negative + False Positive

(4)Precision =
True Positive

True Positive + False Positive

(5)Recall =
True Positive

True Positive + False Negative

(6)

dice index =
2 ∗ True Positive

2 ∗ True Positive + False Negative + False Positive

morphology calculation, the pixels within a grain were fit-
ted to a principal component analysis with n = 2 compo-
nents [38]. The square root of ratio between explained vari-
ances by the first two principal components provides the 
aspect ratio of each grain where each grain is considered an 
ellipse in 2-D space. All grain statistics calculations were 
performed on the test dataset containing image patch size 
512 × 512 pixels.

Results and Discussion

Performance of the five models on test images in terms of 
various metrics are shown in Table 2 along with the param-
eter size of each model. Recall that these models were 
trained on image patch size of 128 × 128 with BCE loss of 
a class weight ratio of 9 between the grain boundary and 
grain classes.

The five different CNN architectures considered for this 
work, namely DefectSegNet, HED, RCF, U-Net, and Deep-
Crack were developed for varied applications. Among these, 
HED, RCF, and DeepCrack architecture were designed and 
optimized for natural images. DefectSegNet was specifi-
cally designed for microscopic images. As a general trend, 
larger models tended to perform better (except the Deep-
Crack model). Overall, the U-Net architecture with 17.27 M 
parameters, performed the best on all the metrics showed 
in Table 2. U-Net was developed to work with limited data 
and designed for biomedical applications such as segment-
ing MRI, X-ray as well as microscopy images [39, 40]. Its 
encoder-decoder style has been shown to generalize better 
in segmenting microscopic images of different materials 
[41] and performs according to its reputation in our task 
of grain boundary segmentation. It should be noted that 
U-Net, despite performing better, had fewer parameters than 
the much larger DeepCrack model. It is likely because the 
model architecture for DeepCrack was optimized for natural 
images. DefectSegNet, with significantly lower number of 
parameters (as shown in Table 3), performs slightly better 
in terms of precision, recall, and dice-score than the HED 
architecture, pointing toward the need for architecture opti-
mization for micrograph segmentation using CNN-based 
deep learning approaches. As U-Net performed the best 

Table 2  Performance 
comparison between different 
model architectures

Model architecture Total parameters 
(millions)

TPR TNR Precision Recall Dice score

DefectSegNet 0.35 0.747 0.791 0.251 0.747 0.376
HED 14.72 0.734 0.792 0.249 0.734 0.372
RCF 14.803 0.732 0.802 0.258 0.732 0.382
U-Net 17.26 0.794 0.804 0.276 0.794 0.409
DeepCrack 30.903 0.761 0.806 0.27 0.761 0.398
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among all the CNNs explored in this study, it was used for 
further improvement by adding topological connectivity and 
grain statistics calculation.

As there is high class imbalance for the grain boundary 
pixels across all images, we have used a balanced cross-
entropy loss by putting more weight on the grain bound-
ary (positive) class. Experimentation with this weight ratio 
between positive grain boundary class and background grain 
class showed a trend in precision and recall performance as 
shown in Table 3 for U-Net model trained on image patch 
size 512 × 512. With increased positive class ratio, model 
recall also increased, but at the expense of precision. The 
highest precision found was 0.395 for a class weight ratio 
of 4 but this case also showed the lowest recall (0.615). 
On the other hand, a weight ratio 11 produced the highest 
recall (0.825) with the lowest precision (0.255) among all. 
This result indicates that a trade-off between precision and 
recall would be needed based on the desired goal. If the 
goal is to detect as many as the boundaries correctly (avoid-
ing false negative), then a higher weight ratio would be 
needed. Conversely, if it is required to avoid false positives 
(higher precision), a lower weight ratio will increase the 
number of missed boundaries. Lower weight ratio between 
classes resulted in better Dice score (highest 0.481) and the 

performance was comparable (in some cases better) than 
a Dice score (0.433) reported for similar grain boundary 
segmentation task in unirradiated  LiAlO2 material [42]. For 
image size to 512 × 512, the trends still hold albeit with the 
performance dropping by a small margin as expected due to 
the increased size of the test images.

An accuracy plot (in terms of pixel-wise confusion 
matrix) for two sample images from the test set is shown 
in Fig. 2, which once again highlights the trade-off between 
precision and recall as a function of class weight ratio vari-
ations. Large positive class weight (9) both qualitatively and 
quantitively missed fewer boundaries (less false negatives 
as shown in red). Identifying all the boundaries correctly 
is beneficial for the downstream task of grain statistics cal-
culation as even a small, missed boundary section can lead 
to ‘opening of the grain’ and subsequently, inaccurate grain 
size, and shape calculation. Large positive weight, however, 
also overestimates the width of the boundaries (hence more 
false positives and the reduction in precision) and the curves 
in the grain boundary are smoother. This is partly due to 
the variable pixel width of grain boundaries present in the 
ground truth labels produced from EBSD, but the primary 
reason is the spatial instrumentation drift produced between 
the two modes of microscopy i.e. SEM and EBSD, which 

Table 3  Effect of weight 
factor used for GB class used 
in model (U-Net) training on 
performance metrics

Bold values indicate the best performance in respected metric (each column in the table)
Inset shows the corresponding performances when trained on 512 × 512 size image patches

Weight ratio (for 
positive class)

TPR TNR Precision Recall Dice Score

4 0.615 (0.611) 0.912 (0.906) 0.395 (0.377) 0.615 (0.611) 0.481 (0.466)
6 0.732 0.862 0.332 0.732 0.456
9 0.794 (0.784) 0.804 (0.782) 0.276 (0.251) 0.794 (0.784) 0.409 (0.38)
11 0.825 0.773 0.255 0.825 0.389

Fig. 2  Comparison of some 
images from test set between 
original SEM image, ground 
truth label, and the model 
prediction made by U-Net. 
The prediction image pixels 
are color coded as follow-
ing: True negative = Black, 
True Positive = Cyan, False 
Positive = Yellow, False Nega-
tive = Red

Predic�on (class 
weight 4)

Ground Truth Mask SEM Image Prediction (class 
weight 9)
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will be discussed in the subsequent sections. In general, 
Fig. 2 highlights that the trained CNN model using data 
generated from multimodal SEM and EBSD microscopy is 
successful in a challenging task of segmenting grain bounda-
ries from SEM images. Even for an expert microscopist, 
manual labeling for grain statistics calculations become a 
highly tedious, time-consuming task, which can be acceler-
ated with the use of CNNs developed in this study. By apply-
ing CNN segmentation model, the task of microstructure 
analysis directly from SEM images can be automated. As 
we have demonstrated for 347H stainless steel by segment-
ing micrographs with varying alloying composition, this 
method can significantly expedite the selection of alloys with 
desired microstructure. The CNN-based semantic segmenta-
tion architectures tested in this study do not prioritize that 
the edges between grains should be closed or connected. 
Additionally, they do not explicitly differentiate between 
individual grains either as in the case of instance segmen-
tation tasks [41]. This leads to small gaps in the predicted 
grain boundary network which produce large inaccuracies in 
downstream computation of grain statistics such as grain size 
and shape distribution. The conventional cross-entropy loss 
function used here prioritizes pixel-wise accuracy at the pos-
sible expense of the correct connectivity of the grain bound-
ary which is a problem for microstructural characterization 
tasks. Although we have seen that a larger number of grain 
boundaries can be detected by increasing the class weight 
ratio, the effectiveness approach can work only so far before 
being overtaken by the false positives. Thus, there is a need 
to segment with correct topology. Following the work of Hu 
et al. [34, 35], a loss function that prioritizes both pixel-wise 
accuracy and topological similarity of the segmented binary 

image with the ground truth, namely TopoLoss, was thus 
used for improving the connectivity of predicted microstruc-
ture. This method utilizes persistent homology and Morse 
theoretic measures defined on the grain boundary probability 
surface to capture topological information [42, 43] rather 
than trying to maximize the accuracy of each individual 
pixel on its own. We analyze the impacts of using Topo-
Loss to emphasize the appropriate connectivity of predicted 
microstructures. Figure 3 shows the segmentation accuracy 
predicted by the U-Net model on a couple of test images. 
By using the standalone BCE loss function, we can see the 
model predicted that the microstructures contain small gaps 
highlighted by orange markers, that would not impact the 
overall pixel-wise accuracy for segmentation task on natural 
images. But, for the task of automated computation of grain 
characteristic distributions and analyzing the impact of pro-
cess and alloying elements on the resulting microstructure, 
that would be deemed insufficient. By considering topology 
of the ground truth labels, immediate improvements in con-
nectivity and closing of grain contours are observed. Global 
performance metrics such as ARI [36] that reflects boundary 
connectedness also improves from 0.72 to 0.78 pointing to 
improved segmentation of grains and their boundaries as 
presented in Table 4.

Fig. 3  Pixel-wise prediction 
accuracy plot showing improve-
ment in GB connectivity when 
a topological loss function is 
added to the pixel-wise BCE 
loss. Some small gaps in GB 
prediction maps (orange mark-
ers) are successfully being 
closed by considering topologi-
cal connectivity during model 
training

SEM Image BCE Loss Predic�on BCE + TopoLoss

Table 4  Cluster similarity score 
in terms of adjusted rand index 
(ARI) shows improvement in 
grain boundary connectivity by 
the inclusion of topological loss 
function

Loss function ARI

BCE 0.72
BCE + TopoLoss 0.78



251Integrating Materials and Manufacturing Innovation (2024) 13:244–256 

As the performance of any machine learning model is 
heavily reliant on the quality of data available for train-
ing and CNN models being no different, we discuss some 
aspects of using multimodal microscopy as a method for 
generating both the images and labels. During acquisition 
of high magnification SEM images as in the present case, 
there have been reports of drifts or spatial movement of pix-
els in the image [44, 45]. The factors that influence such 
pixel drifts include imaging time, charge build up, and sam-
ple preparation among others. Depending on SEM magni-
fications used and image acquisition time, there has been 
reported drift of up to 42 pixels [45] in some instances. As 
we used both SEM and EBSD microscopy modes that usu-
ally involve different image capture times [42], the amount 
of pixel drift between two images is unequal. As a result, 
we end up having a relative drift between the SEM image 
and its corresponding grain boundary map generated from 
the EBSD image. An example of such relative drift is pre-
sented in Fig. 4, where with human eye both the images and 
the binary segmentation mask look the same. Only when 
they are overlaid, the relative drift becomes apparent. For 
pixel-wise segmentation models based on CNN, this poses 
a problem where the model faces a dilemma between its 
actual captured features from the image and what it sees 
from labeled segmentation mask where there are arbitrary 
pixel shifts. The outcome is that the model ends up over-
estimating the width of boundaries in its predictions in an 
effort to maximize the pixel-wise accuracy. Some of the 
CNN models such as HED and RCF have been reported 
to predict wider boundaries [20, 46]. However, U-Net and 
DeepCrack with their symmetric encoder and decoder struc-
ture are known to generate thin boundaries [22]. We find that 
all of the considered models, predict wider grain boundaries 
than ground truth. Additionally, we notice that if the U-Net 

model is overfitted to the training data, it is able to gener-
ate thin boundaries by memorizing the ground truth labels 
along with their pixel drifts rather than actually extracting 
relevant features from the images. With this evidence, we 
arrive at the conclusion that the existence of pixel drift is the 
main reason why the model predicts wider grain boundaries 
compared to the ground truth. It should be noted that it is 
possible to reduce the extent of such drift either during the 
microstructural imaging [47] or during post-processing [48]. 
However, an important goal of this work is to evaluate mul-
timodal microscopy as an automated approach for training 
CNN models. Besides, as we have variable amount of drift 
due to sample preparation history, as is often the case in 
materials microscopy, the task of drift correction becomes 
extremely challenging and would be an independent work 
on its own.

The existence of the variable image drifts in the captured 
images warrants further quantification of the model-pre-
dicted grain boundaries beyond just reporting of conven-
tional metrices such as precision, recall, and dice score. Fig-
ure 5 shows that the grain boundaries in the ground truth 
labels are only a few pixels wide. The variability in pixel 
width used (highlighted by the bi-modal distribution with 
two distinct peaks, (Fig. 5a) for creating the grain boundary 
labels contribute to some extent in wider boundary predic-
tions made by the CNNs. In the case of model predictions, 
the boundaries are consistently wider (Fig. 5b) than the 
labels primarily due to the underlying relative drifts between 
images as discussed previously. On average the model pre-
dicted boundaries are 9 pixels wider (Fig. 5c) with a maxi-
mum value as large as 21 pixels wider than the ground truth. 
Note that the grain boundary width difference in the model 
predictions is within the range of relative spatial drifts such 
as shown as an example in Fig. 4. These calculations show 

Fig. 4  An example SEM image with GB labels overlaid highlighting the pixel drift found in some images. Image on the right shows a magnified 
view in a small region. Axes labels in the images show no. of pixels to act as a visual guide for understanding the extent of relative pixel drifts
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that despite the model precision being low when predicting 
the grain boundary class, the false positives mainly arise 
from the underlying pixel drifts present between the image 
and labels. Wider boundary predictions result in reduced 
precision (as shown in Table 3) on test set; however, the 
model can still reliably segment grain boundary and grains 
for microstructural analysis.

Microstructural Analysis: Grain Morphology

Macroscopic behavior of polycrystal material quantified 
as mechanical, electrical, wear, thermal, corrosion proper-
ties among others largely depends on the microstructural 
features of the material such as distribution of grain size 
and grain morphology [49–51]. Additionally, microstruc-
tural features provide insight into the history of the manu-
facturing, thermal, and mechanical processes the material 
has undergone [52, 53]. Automated segmentation of grain 
boundaries allows subsequent characterization of material 

microstructure in terms of grain size and morphology both 
during and after such processes have occurred.

In the subsequent section, we show that grain size and 
shape calculations on the model segmented microstructures 
still are reliable despite having precision that stems from the 
pixel drift during the image acquisition step. To derive the 
microstructural features of interest, first, we calculated the 
grain shape (aspect ratio) across the microstructural images 
in the test dataset. Figure 6 presents an analysis of the grain 
shape in terms of their aspect ratios across all the images in 
the test set. As shown in Fig. 6a, only a few portions of the 
grains are equiaxed; most of the grains are elliptical with 
some being thin grains. The histogram distribution of all 
the grains across images obtained from EBSD ground truth 
also shows the same trend (Fig. 6b) and highlights that the 
existence of some extremely thin and tall grains. Variation 
in grain shapes is potentially due to the chemical variations 
in the 347H steels being analyzed in this study. To evaluate 
the ability of the U-Net for microstructural characterization, 
grain shapes were also calculated from the model predicted 

Fig. 5  Calculation of grain boundary width a Distribution in Ground 
truth labels created from EBSD images b Width of boundaries pre-
dicted by model shows a distribution that is right shifted c Difference 

between the predicted and true labels shows the extent of overestima-
tion of boundary width by the CNN model
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grain boundary binary images. We find that the distribu-
tion of grain shapes predicted by the model (both trained 
with BCE loss and Topological loss) closely follows the true 
distribution. The grains were identified using a connected 
component analysis in scikit image which is sensitive to 
small gaps in the predicted grain boundary map. This led to 
larger grains being predicted than the original case for some 
situations and the predicted distribution of grain shapes 
shifted slightly to the right as a result. However, the model 
still performed well to capture the underlying distribution 
of grain shapes and can be used to extract microstructural 
information directly from a SEM image. To compare the 
grain shape distributions, we fit a beta probability distribu-
tion to both the true and predicted grain shapes shown in 
Fig. 6c. As grain aspect ratio is always between 0 and 1, it 
is a natural choice adopted in other studies as well [54]. A 
similarity metric between two probability distributions can 
be calculated using the Jensen–Shannon distance [18]. The 
Jensen–Shannon distance between the true and predicted 
distribution is small (0.043 for BCE loss and 0.062 for Topo-
logical loss used), indicating the two distributions are quite 
similar. Beyond the regular accuracy metrics, this analysis 
indicates that the model was successful in predicting the 
underlying 347H stainless steel grain shape distributions.

Grain size is another microstructural feature of interest 
in this study as it is an indicator for properties such as hard-
ness, corrosion behavior, and yield strength. Both SEM and 
EBSD images show several twin grain boundaries. These 
twin boundaries are at 60º misorientation angle and are usu-
ally very thin. The true distributions of grains in Fig. 7a 
show that a significant portion of grains are of small size and 
likely consist of complete and incomplete twin boundaries. 
Compared to the actual distributions obtained from EBSD 
segmented grain boundaries, the model overpredicts large 
size grains. This is due to the existence of small gaps in 
predicted boundary maps that do not fully enclose a grain 
resulting in two small grains merging into a larger grain 
spuriously. Due to the existence of instrument pixel drift 
between image and labels as discussed previously, we calcu-
lated that the model predicts on average 9-pixel wider grain 
boundary. Consequently, the model struggles to resolve 
the small sized twin-like boundaries and underpredicts the 
small grains as shown in Fig. 7a, b when detecting minimum 
grain size of 3- and 7-pixel diameters respectively. If the 
analysis is limited to minimum grain diameter of 11 pixels, 
we find the model predicted distribution closely matches 
the true grain size distribution (Fig. 7c). For comparing the 
prediction capability, an exponential probability distribution 

Fig. 6  a Grains as ellipses and their aspect ratio calculation as a shape parameter b Grain shape distributions extracted from EBSD ground truth 
and model predictions across test set images c Comparison between true and predicted shape distributions by fitting Beta PDF
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function is fitted to grain sizes calculated from EBSD and 
model predicted results in Fig. 7d. The Jensen–Shannon dis-
tance between the true and predicted distribution is calcu-
lated to be 0.0221 for BCE loss and 0.0136 for Topological 
loss used respectively, which is very low and indicates that 
the predictions are very similar to the ground truth data. 
Despite the limitation of resolving thin twin boundaries aris-
ing from pixel drifts during data collection, the CNN model 
trained on multimodal microscopy data still is quite success-
ful in predicting the grain size distribution of 347H stainless 
steels for automated microstructural analysis.

Summary and Conclusions

In this paper, we presented an automated microstructural 
segmentation method for SEM images of 347H stainless 
steel using deep learning-based CNN models and computer 
vision. To facilitate the calculation of microstructural statis-
tics (grain size and morphology), CNN models were trained 
to perform pixel-wise segmentation into grain boundary and 

grain interior classes. We demonstrated a novel multimodal 
microscopy approach to circumvent the need of expensive 
manual pixel labelling by utilizing grain boundary map-
ping obtained through the corresponding EBSD image of 
each SEM micrograph. We evaluated several different CNN 
architectures with varying sizes of model parameters that 
were originally developed in different domains such as bio-
medical image segmentation, edge and crack detection in 
natural images, and defect segmentation of material micro-
graphs. Generally, model architectures that were optimized 
for microscopy-like images performed better. The best-per-
forming model architecture, U-Net, trained on in-house SEM 
images of 347H steel with different compositions showed 
comparable performance on similar task that used manual 
labelling. We found that combining multimodal microscopy 
data for generating both the images and labels has its chal-
lenge in the form of instrument induced pixel drift of spatial 
location of images as the two microscopy modes require dif-
ferent timescales. As a result, there is a mismatch between 
the feature extracted by the model from SEM images and 
the ground truth grain boundary map in some cases. The 

Fig. 7  Grain size (circular equivalent diameter) distributions with minimum grain size of three, seven, and eleven pixels respectively (a–c). d 
Comparison between true and predicted grain size (minimum of 11-pixel size) distribution by fitting Exponential PDF
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deep learning model compensated for this by predicting 
wider grain boundaries and showed a trend in precision vs. 
recall trade-off depending on the weight applied to the grain 
boundary class. As it is a problem with high class imbalance 
(with < 10% of the pixels in an image belonging to the grain 
boundary class), a high model recall compromised precision 
in the form of predicted grain boundaries being wider by 9 
pixels on average. The width overestimation of the predicted 
grain boundaries, however, is within the maximum relative 
pixel drift present during the EBSD data capture, providing 
validation of the developed model’s efficacy. As even a small 
gap in predicted grain boundary map can lead to inaccurate 
calculations of grain size and shape distributions, we devised 
a dual topological loss function along with the cross-entropy 
loss during model training which showed improvement in 
maintaining topological connectivity of grain boundary 
network both qualitatively and quantitatively. Finally, our 
approach is shown to successfully calculate grain statistics 
from the predicted grain boundary map and lead to accurate 
measurement by comparing the original and predicted ana-
lytical distributions for grain size and shape.

Based on the work performed in this effort, we conclude 
that deep learning CNN models are suitable for performing 
image segmentation to aid in data analysis of metal micro-
structures. Multimodal characterization techniques, which 
preclude the need for manual labeling, perform a key step in 
automating the segmentation process. Data pre-processing is 
essential to reconcile the image distortions brought about by 
the use of multiple data collection modalities, which we see 
as a means to enhance image/data registration, since they can 
subsequently affect model performance and accuracy. CNNs, 
we found, do not require manual feature extraction and can 
find features of interest in training process without human 
intervention. This work shows that metallographic investiga-
tions can accelerate the materials research and development 
process as well as automate it by interpreting image data 
using the methodology developed here.
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