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Abstract
We carry out an extensive comparison between Johnson–Mehl–Avrami–Kolmogorov (JMAK) theory of first-order phase 
transformation kinetics and phase-field (PF) results of a benchmark problem on nucleation. To address the stochasticity of 
the problem, several hundreds of simulations are performed to establish a comprehensive, statistically significant analysis 
of the coincidences and discrepancies between PF and JMAK transformation kinetics. We find that PF predictions are in 
excellent agreement with both classical nucleation theory and JMAK theory, as long as the original assumptions of the latter 
are appropriately reproduced—in particular, the constant nucleation and growth rates in an infinite domain. When deviat-
ing from these assumptions, PF results are at odds with JMAK theory. In particular, we observe that the size of the initial 
particle radius r

0
 relative to the critical nucleation radius r∗ has a significant effect on the rate of transformation. While PF 

and JMAK agree when r
0
 is sufficiently higher than r∗ , the duration of initial transient growth stage of a particle, before it 

reaches a steady growth velocity, increases as r
0
∕r∗ → 1 . This incubation time has a significant effect on the overall kinetics, 

e.g., on the Avrami exponent of the multi-particle simulations. In contrast, for the considered conditions and parameters, 
the effect of interface curvature upon transformation kinetics—in particular negative curvature regions appearing during 
particle impingement, present in PF but absent in JMAK theory—appears to be minor compared to that of r

0
∕r∗ . We argue 

that rigorous benchmarking of phase-field models of stochastic processes (e.g., nucleation) needs sufficient statistical data 
in order to make rigorous comparisons against ground truth theories. In these problems, analysis of probability distributions 
is clearly preferable to a deterministic approach.
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Introduction

First-order phase transformations are ubiquitous in mate-
rials science. They occur through the processes of nucle-
ation and growth and are often modeled using John-
son–Mehl–Avrami–Kolmogorov (JMAK) theory  [1–5]. 
This simple, yet rigorous, mean-field approach describes, 
for an infinite domain undergoing an isothermal transfor-
mation with no composition change, the evolution of the 
transformed fraction, Y, as a function of time, t, in a system 
with d dimensions as [6, 7]

where

(1)Y(t) = 1 − exp
(
−Ȳ(t)

)
,

(2)Ȳ(t) = Kd ∫
t

0

J(𝜉)

(

∫
t

𝜉

V(𝜁)d𝜁

)d

d𝜉
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represents the extended volume of potentially overlapping 
particles. The time-dependent nucleation rate, J, and growth 
rate, V, i.e., the normal velocity of the particle–matrix inter-
face, are both integrated over time. Kd is a geometric factor 
that represents the volume of a d-dimensional particle of 
unit radius, i.e., K1 = 2 , K2 = � , and K3 = 4�∕3 in one, two, 
and three dimensions, respectively. On the one hand, for 
constant rates of nucleation, J̄ , and growth, V̄  , the integra-
tion of Eq. (2) gives:

On the other hand, if particle nucleation occurs in one short 
initial burst, e.g., due to the presence of preferential nuclea-
tion sites such as grain boundaries, one may consider a case 
commonly called “site saturation” with J(0) = N , with N the 
number of nuclei and J(t ≠ 0) = 0 , thus leading to:

Hence, rates of transformations are commonly described in 
a general form as:

where n is referred to as the Avrami exponent. This expo-
nent can be conveniently evaluated from the slope of a plot 
of log[− log(1 − Y)] versus log(t) . Historically, transforma-
tions have been analyzed and often classified based on their 
Avrami exponent, even for cases that span beyond its rigor-
ous scope of applicability [6]. The equation has been used 
across a broad range of disciplines, e.g., in epidemiology to 
model the spread of disease in a population [8].

The simplicity of JMAK theory comes at the expense 
of some strong assumptions. Importantly, the approach 
relies on the key principle of statistical homogeneity, in 
time and space, of nucleation events—an assumption that 
is approached in many cases of first order phase transfor-
mations. The JMAK equation is the statistical solution for 
random nucleation events with constant rates for nucleation 
and growth rate in an infinite domain. It is also valid for a 
common time-dependent growth rate or anisotropic convex 
particles with a parallel orientation [9].

Being an exact statistical solution, the JMAK equation 
can be obtained following different pathways. Johnson 
and Mehl [5] and Avrami [2–4] computed a transformed 
fraction ignoring impingement, then corrected to discard 
regions counted multiple times. Kolmogorov [1] performed 
a time integration of the probability of transformation of 
an untransformed point. The original theory considers a 
uniform nucleation rate across the entire domain, even in 
already transformed regions, thereby introducing the con-
structs of “phantom nuclei” and “extended volume trans-
formed,” and then applies an exact correction to adjust for 

(3)Ȳ(t) =
Kd

d + 1
J̄ V̄d td+1.

(4)Ȳ(t) = KdN J̄ V̄d td.

(5)Y(t) = 1 − exp(−ktn),

overlapping nucleation and growth within the already trans-
formed region.

This stochastic correction for the multiple integrations 
over the extended volume fails for finite domain sizes, which 
results in spatial stochastic inhomogeneity. In such cases, 
the more general “time cone” approach [10–12] allows 
modeling time-dependent rates of nucleation and growth in 
finite, inhomogeneous, and evolving domains. This theory, 
proposed by Cahn [11] extending an original idea by Jack-
son [10], considers a time-augmented space of dimension 
d + 1 . Therein, a cone apex represents a spatiotemporal loca-
tion, and the cone itself represents the prior spatiotemporal 
nucleation locations that would have lead the apex location 
to undergo the transformation. The integration of the Pois-
son-distributed—because of stochastic independence—prob-
ability of prior nucleation events within the cone leads to a 
general formulation, which reduces to the original JMAK 
theory under the assumptions of homogeneous nucleation 
and constant nucleation and growth rates.

With advances in computational models—in particular 
using phase-field (PF) approaches [9, 13–16]—and high-
performance hardware allowing simulations of statistically 
relevant sizes, first-order transformation kinetics have been 
simulated and directly compared to JMAK theory [9, 17, 
18]. These studies consistently exhibited a good agree-
ment with the exact theory within the bounds of its origi-
nal assumptions, as well as some expected deviations when 
breaching them. Such deviations are, for instance, related to 
(i) the particles initial slower growth rates [17], (ii) exceed-
ingly low or high nucleation rates [17], or (iii) diffusion-
mediated growth leading to a so-called soft impingement 
when diffusion plays a key role [18]. One key interest of the 
numerical simulations is the capacity to explore the extent 
of the breakdown of the JMAK-like kinetics as assumptions 
are relaxed.

In this article, we take another look at transformation 
kinetics involving concurrent nucleation and growth, using 
PF simulations. To do so, we use a computationally effi-
cient implementation of a benchmark PF simulation (see 
"Methods" section) and perform a statistical analysis over 
hundreds of simulations, recognizing the stochastic nature of 
the problem. Moreover, we discuss the effect of the driving 
force, e.g., undercooling, in relation to the initial particle 
size upon the potential deviation from theoretical values 
of the Avrami exponent. "Methods" section discusses the 
methods, including the nucleation benchmark problem, the 
implementation, and further post-processing. Phase-field 
results and relevant comparisons with JMAK theory are pre-
sented and discussed in "Results" and "Discussion" sections, 
respectively. We conclude in  "Conclusion" section, arguing 
that only an explicit consideration of the statistical distribu-
tion of simulation observables provides a full understanding 
of the transformation kinetics.
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Methods

Phase‑Field Benchmark Problems

The Center for Hierarchical Materials Design (CHiMaD) 
and the National Institute of Standards and Technology 
(NIST) have developed a series of PF benchmark problems, 
hosted on the PFHub website [19]. Therein, different bench-
mark problems are described, based on simple prototypical 
models, where users can post and compare their solutions. 
These benchmarks allow PF modelers to test their codes and 
for novices to learn from simple problems [20].

One recently published benchmark problem, considered 
in this article, focuses on nucleation [21]. The problem con-
siders an undercooled liquid undergoing a first-order phase 
transformation through nucleation and growth mechanisms. 
Classical nucleation theory (CNT) and JMAK theory are 
used to verify the simulation results in terms of critical 
nucleation radius and transformation rates for both continu-
ous nucleation and site-saturation cases. The key features of 
the model and benchmark simulation cases are described in 
the following subsections, as well as the numerical solving 
and post-processing techniques specific to the current article.

Phase‑Field Model

The considered PF model involves a single non-conserved 
field order parameter ( 0 ≤ � ≤ 1 ) describing the states of 
matter under isothermal undercooled conditions. The total 
free energy of the heterogeneous system is described as:

where � is the gradient energy coefficient, w speci-
fies the barrier height of phase transition, and Δf  is the 
driving force for transformation (e.g., undercooling). 
g(�) = �2(1 − �)2 is a double-well function with two 
minima at � = 0 (phase/state 1) and � = 1 (phase/state 2), 
and p(�) = �3(10 − 15� + 6�2) is an interpolation func-
tion satisfying p(0) = p�(0) = p�(1) = 0 and p(1) = 1 . The 
Allen–Cahn equation [22] describes the time evolution of 
� as:

where M > 0 is the PF mobility. The interface width 
and excess free energy are thus l =

√
�2∕w  and 

� =
√
�2w∕(3

√
2) , respectively.

The two-dimensional (2D) domain is initialized with 
� = 0 , and nuclei of radius r0 are then added as circular 
regions by setting

(6)F(�) = ∫V

[
�2

2
(∇�)2 + wg(�) − Δfp(�)

]
dV

(7)
��

�t
= −M

�F

��
= M[�2∇2� − wg�(�) + Δfp�(�)],

where ri =
√
(x − xi)

2 + (y − yi)
2 is the radial distance to the 

center (xi, yi) of nucleus i. When seeded nuclei overlap with a 
transformed region (e.g., in the case of JMAK “ghost nuclea-
tion” events), their individual contributions to the field � , 
per Eq. (8), are added while keeping the field bounded to 
� ≤ 1.

Following CNT, the excess free energy of a circular 
nuclei of radius r is

and the critical nucleation radius given by �ΔG(r)∕�r = 0 is

for a corresponding free energy ΔG∗ = ��2∕Δf  . Any parti-
cle with r0 < r∗ is thus expected to shrink, while any particle 
with r0 > r∗ is expect to grow in order to reduce the overall 
free energy of the system.

By normalizing space with respect to the interface width 
l and time with respect to a characteristic time � = 1∕(Mw) , 
the dimensionless form of the Eqs. (6) and (7) reads

where Δ̃f = Δf∕w . In this form, new nuclei are seeded with

and the critical nucleation radius is

The non-dimensional form of Eqs. (12)–(14) is numerically 
implemented. In the remainder of this article, for clarity (and 
in order to be consistent with the original paper [21]), we 
refer exclusively this dimensionless form of the equations, 
but drop the tilde notation on all symbols, e.g., writing sim-
ply Δf  , r0 , and r∗ in place of Δ̃f  , r̃0 , and r̃∗.

Nucleation Benchmark Simulations

Based on the PF model described above, the benchmark 
study is composed of three parts. Problem I involves a single 
seed with a radius r0 close to the critical radius of nucleation 
r∗ . The results are compared to classical nucleation theory 

(8)�(ri) =
1

2

�
1 − tanh

�
ri − r0

l
√
2

��
,

(9)ΔG(r) = 2�r� − �r2Δf

(10)r∗ = �∕Δf ,

(11)F̃(�) = ∫
[
1

2
(∇̃�)2 + g(�) − Δ̃f p(�)

]
dṼ

(12)
𝜕𝜙

𝜕t̃
= �∇2𝜙 − g�(𝜙) + �Δf p�(𝜙)

(13)𝜙(r̃i) =
1

2

�
1 − tanh

�
r̃i − r̃0√

2

��
.

(14)r̃∗ =
1

3
√
2

1

�Δf
.
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(Eq. 14). Problem II and Problem III represent site-satura-
tion and continuous nucleation, respectively, of several parti-
cles. The results are directly compared to JMAK theory, i.e., 
respectively, Eqs. (4) and (2). Table 1 summarizes parameter 
values (in dimensionless units of l and � ) of domain size, 
driving force ( Δf  ), corresponding critical radius ( r∗ ), initial 
nuclei size ( r0 ), and total number of seeds (N) for all cases.

The first problem (Problem I) involves three sub-prob-
lems where one seed of various sizes (i.e., r0 > r∗ , r0 < r∗ , 
and r0 = r∗ ) is added at the center of the domain. This prob-
lem serves as a comparison to CNT, verifying that a seed 
with r0 < r∗ shrinks, and a seed with r0 > r∗ grows. The 
seed with r0 = r∗ is expected to stagnate in size until pushed 
toward either of these two outcomes. The fact that the radius 
does not remain at its initial value may be attributed to the 
diffuse interface nature of the PF approach, while CNT con-
siders a sharp interface. Hence, the two are only expected 
to agree when the interface width is negligible. This effect 
is also possibly accompanied by potential numerical (e.g., 
discretization) effects affecting the outcome (growth or 
shrinkage). In the interest of discussing the effect of the ini-
tial radius r0 on the initial growth kinetics, in addition to 
the original values of r0∕r∗ = 0.99 , 1.00, and 1.01 from the 
original benchmark definition, here we also show the results 
for r0∕r∗ = 1.1 and 2.0. In order to facilitate the discussion, 
we refer to this ratio as � = r0∕r

∗.
Problem II considers multiple seeds ( N = 25 ), all appear-

ing at time t = 0 , placed at random locations, and allowed 
to grow until the entire domain is fully transformed. Prob-
lem III is larger in size, with a higher number of nuclei 
( N = 100 ), the key difference being that they are added 
at random times to replicate a constant nucleation rate. In 
both cases, new seeds are initialized with a unique radius 
r0 = 2.2 , whereas r∗ is set equal to either 1.0 or 2.0. While 
the original benchmark definition considers separate values 
of Δf  , and hence of r∗ for Problem II and Problem III, here 
we perform both cases for both values of Δf  , namely with 
� = 1.1 or 2.2 (see Table 1). In all cases, periodic bound-
ary conditions need to be applied in order to emulate the 
JMAK assumptions, in particular that of infinite domain 

and spatiotemporal homogeneity of nucleation and growth, 
which are violated in a finite size system [11].

Numerical Implementation

We solve the Allen–Cahn equation (12) using centered 
finite differences and an explicit Euler time stepping 
scheme. Following a preliminary convergence analysis of 
our implementation, we selected a mesh size of 0.4, used 
in all simulations. The model was implemented in Julia, 
a general purpose high-level, high-performance, dynamic 
programming language [23]. We make use of the CUDA 
(Compute Unified Device Architecture) package (cuda.jl) 
[24], which enables code acceleration via multithreading on 
Nvidia graphics processing units (GPUs). While computa-
tional efficiency and scaling analysis fall beyond the scope 
of the current paper, we noticed a speed-up factor of 20–50 
between Julia-GPU (NVIDIA RTX 2080) and Julia-serial 
(Intel Xeon Gold 6130) execution times of the three bench-
mark problems.

The computational efficiency afforded by the GPU-paral-
lelized code constitutes a great asset in addressing stochas-
ticity in the results of the benchmark study. Indeed, nuclea-
tion events being randomly located in time (Problem III) 
and space (Problems II & III), greatest statistical accuracy 
can be gained by running a large number of simulations. 
Hence, we preformed 300 PF simulations, each of them with 
a different random number seed, for each value of � in both 
Problems II and III. This study is also intended to provide 
a greater statistical insight into the deviation of observed 
behaviors (in particular transformation kinetics) for a high 
yet finite number of particles ( N = 25 or 100) compared to 
JMAK theory.

Post‑processing

In all parts of the benchmark, the transformed volume frac-
tion and free energy, as well as its individual components, 
are tracked as a function of time. In Problem I, the main 
outcome of the simulation is whether the particle grows or 
shrinks, and at which rate, such that a simple plot of the 
transformed volume fraction is sufficient to conclude and 
discuss the results.

In Problems  II and III, the Avrami exponent n 
can be extracted from a modified log-log plot of the 
transformed fraction Y versus time t, namely plot-
ting log[− log(1 − Y(t))] against log(t) , which results in 
a straight line of slope n for a perfect match to JMAK 
theory. Given the finite number of seeds, performing 
this linear fit for a given time range may lead to strong 
deviations from a linear behavior, and hence high error 
in the estimation of n, particularly in the case of late 
nucleation of the first seed in a simulation. Therefore, 

Table 1   Simulation parameters [21]

Problem # Domain size Δf r
∗ � = r

0
∕r∗ N

Problem I 100×100
√
2∕30 5 0.99, 1.00, 

1.01, 1.1, 
2.0

1

Problem II 500×500
√
2∕6 1 2.2 25

500×500
√
2∕12 2 1.1 25

Problem III 1000×1000
√
2∕6 1 2.2 100

1000×1000
√
2∕12 2 1.1 100
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we elected to fit over a transformed fraction range rather 
than a time range, which we observed to exhibit more 
consistency. Hence, we perform a least-square fit for the 
range −2 ≤ log[− log(1 − Y(t))] ≤ 0 , which correspond 
to a transformed fraction between 0.0228 and 0.9, hence 
representing a substantial portion of the transformation 
range. Taking advantage of the hundreds (300) of simula-
tions preformed for each configuration, results of time-
dependent volume fractions and Avrami exponents can 
both be visualized and discussed in terms of their statisti-
cal distribution.

Finally, in order to assess the effect of interface curva-
ture upon the transformation kinetics, we calculated and 
monitored it in time and space during PF simulations. This 
is of particular importance because of regions of negative 
curvature that develop during the impingement of parti-
cles. These regions are naturally captured in PF simula-
tions, but absent from JMAK theory. The local interface 
curvature can be directly obtained from the phase field 
� . Specifically, from the definition of the local curvature 
� = ∇ ⋅ � , where � = ∇�∕|∇�| is the interface normal vec-
tor, the local interface curvature is directly calculated in 
the entire domain as [25]

For visualization purposes, when plotting the cur-
vature maps in "Results" section, we filter out bulk 
regions (where |∇�| = 0 ) by actually plotting the field 
� exp{−(� − 1∕2)2∕a} , which peaks at the value � at the 
interface location ( � = 1∕2 ) and vanishes within a nar-
row distance from the interface, with a filtering parameter 
a = 0.01.

Results

Problem I

Figure 1 shows the results of simulations for Problem I. The 
PF results show excellent agreement with CNT. The seed 
smaller than the critical radius shrinks, while those larger 
than the critical radius grow. At r0 = r∗ , the radius should 
theoretically stagnate. However, the problem discretization 
and its numerical solution inevitably leads to small approxi-
mations (e.g., rounding errors) that ultimately accumulate 
and lead to the seed growing or shrinking. In the case of 
our implementation, Fig. 1 shows that the particle grows 
with a sluggish initial kinetics. In most cases, the growth 
or shrinkage of particles comes after a transient incubation 
time, which is longer as r0 is closer to r∗.

(15)� =
1

|∇�|

(
∇2� −

∇� ⋅ ∇|∇�|
|∇�|

)
.

Problem II

Figure 2 shows the results for Problem II for two values 
of Δf  , corresponding to � = 1.1 and 2.2 (Table 1). The 25 
seeds of radius r0 are placed randomly in the domain at the 
beginning of the PF simulation. As expected, since r0 > r∗ , 
all particles grow, and eventually the entire domain is 
transformed (within the simulated time for � = 2.2 and 
later for � = 1.1 ). Due to the stochasticity in the random 
placement of the seeds at t = 0 , the 300 independent 
instances with different random locations lead to a statis-
tical distribution of results, shown as shaded regions (A, 
D) or histograms (B, C, E) in Fig. 2.

Panel A of Fig.  2 shows the time evolution of the 
transformed volume fraction. Panels B and C show the 
volume fraction distribution at times t = 20 and t = 100 , 
respectively. Panel D shows the “Avrami plot” of 
log[− log(1 − Y(t))] versus log(t) . The slope of its linear 
region corresponds to the Avrami exponent n, of which 
the corresponding distribution appears in panel E. The 
least-square fit between −2 and 0 on the y-axis (see "Post-
processing" section) leads to average slopes n = 1.98 and 
2.32, respectively, for � = 2.2 and 1.1, while a value of 2.0 
is expected from JMAK theory (Eq. 4).

Finally, panel F illustrates the system evolution for one 
typical simulation for � = 1.1 , in the form of a map of 
curvature � in the interface region (see "Post-processing" 
section) for six snapshots from t = 0 to t = 200 with steps 
of 40. This spatiotemporal map exhibits the 25 initial seeds 
(highest curvature localized at the initial grain centers), 
as well as region of negative curvature when the particles 
impinge on each other.

Fig. 1   Phase-field results for transformed fraction of a single seed 
(Problem  I) versus time. The inset shows the interface ( � = 0.5 ) at 
t = 90 , for the four cases with � ≤ 1.1 , as solid lines and the initial 
radius as black dash-dotted line
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Problem III

Figure 3 shows the results for Problem III for � = 1.1 and 
2.2. Figure panels are similar to that of Fig. 2 described in 
"Problem II" section. Once again, Fig. 3 compiles the results 
of 300 independent instances of the problem with differ-
ent randomly generated spatiotemporal locations of the 100 
nucleation events in each simulation. The average Avrami 
exponents from PF are n = 3.08 and n = 3.26 , respectively, 
for � = 2.2 and � = 1.1 , whereas the theoretical value from 
JMAK theory (Eq. 3) is n = 3.

Discussion

Results of Problem I (Fig. 1) show the excellent agreement 
between PF simulations and CNT, in terms of critical nucle-
ation radius r∗ for a given driving force Δf  . The simulation 

with r0 = r∗ slowly takes off and leads to the particle growth, 
which we attribute to the discretization and computational 
artifacts (e.g., rounding errors) accumulating until the parti-
cle radius gets either lower or higher than its initial value. An 
interesting observation from Fig. 1 is the relation between 
the incubation time �0 , i.e., the time it takes before the par-
ticle approaches a steady velocity. PF results show that the 
transient growth period is shorter as the ratio 𝜌 = r0∕r

∗ > 1 
increases. This behavior is nothing surprising, as one would 
also expect that �0 → ∞ as r0 → r∗ . This initial transient has 
important consequences on the overall kinetics of the many-
particle simulations of Problems II and III.

The analysis of Problems  II (Fig. 2) and III (Fig. 3) 
clearly shows the dependence of the resulting growth kinet-
ics (e.g., Avrami exponent) upon the combination of driving 
force (through the critical nucleation radius) and initial par-
ticle radius. Both cases exhibit a significantly higher growth 
rate (A), and a corresponding lower Avrami exponent (E), 

Fig. 2   Phase-field results of 
the site-saturation simula-
tions (Problem II) with two 
distinct critical radius values 
� = 1.1 (blue) and � = 2.2 
(red) combining 300 separate 
instances for each with different 
random location of the 25 initial 
seeds: A Transformed fraction 
versus time, showing global 
average (line and symbols) and 
statistical distribution (shaded 
background), B Volume frac-
tion distribution at t = 20 , C 
Volume fraction distribution 
at t = 100 , D Avrami log-log 
plot, showing global aver-
age (line and symbols) and 
statistical distribution (shaded 
background), E Distribution of 
Avrami exponents fitted indi-
vidually to the 300 simulations, 
F Spatiotemporal map showing 
the curvature of the particles 
at the interface as they grow at 
t = 0, 40, 80, 120, 160, 200 for 
one simulation with � = 1.1



634	 Integrating Materials and Manufacturing Innovation (2022) 11:628–636

1 3

when the ratio of initial radius to critical radius is larger. 
Statistically, distributions of both transformed fraction at 
a given time (B,C) and that of Avrami exponents (E) are 
broader, which we attribute to the higher degree of stochas-
ticity found in Problem III, specifically the random nuclea-
tion times.

The dependence of Avrami exponent (n) upon the ratio 
( � ) of nuclei radius to critical radius is to a great extent 
a consequence of the change in incubation time observed 
in Problem I (Fig. 1). Large incubation times (as � → 1 ) 
slow down the growth of individual particles, and conse-
quently the average transformation kinetics. Another way 
to interpret these results is that, for a given initial particle 
radius r0 , a higher driving force (e.g., an higher under-
cooling), inversely proportional to r∗ (Eq. 14), reduces the 
incubation time. Since JMAK theory assumes a constant 
growth rate, i.e., a negligible incubation time, a higher � 
(i.e., a higher Δf  ) provides a better agreement between PF 

and JMAK kinetics. These trends are a direct consequence 
of JMAK assumptions, in agreement with prior discussions 
of the theory based on analytical arguments [11] or simula-
tion results [17]. One additional technical (post-processing) 
aspect worth mentioning is our observation that the extracted 
Avrami exponent is strongly sensitive on the choice of linear 
fitting range when using a time range—hence our choice 
to use a transformed fraction range (see "Post-processing" 
section), which seemed to lead to more consistent results.

In addition to the effect of the incubation time, we also 
explored the effect of interface curvature on the overall trans-
formation kinetics, in particular questioning the effect of 
negative curvature regions formed during the impingement 
of particles (see panel F of Figs. 2, 3). This effect, naturally 
integrated into PF simulations, is absent from the mean-field 
curvature-agnostic JMAK theory. However, while it seems 
most likely that these negative curvature regions affect the 
kinetics of transformation in the PF simulations, their effect 

Fig. 3   Phase-field results of the 
continuous nucleation simula-
tions (Problem III) with two 
distinct critical radius values 
� = 1.1 (blue) and � = 2.2 
(red) combining 300 separate 
instances for each with different 
random location of the 100 
initial seeds: A Transformed 
fraction versus time, showing 
global average (line and sym-
bols) and statistical distribution 
(shaded background), B Volume 
fraction distribution at t = 100 , 
C Volume fraction distribution 
at t = 250 , D Avrami log–log 
plot, showing global aver-
age (line and symbols) and 
statistical distribution (shaded 
background), E Distribution of 
Avrami exponents fitted indi-
vidually to the 300 simulations, 
F Spatiotemporal map showing 
the curvature of the particles 
at the interface as they grow at 
t = 0, 50, 100, 150, 200, 250, 300 
for one simulation with � = 1.1
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appeared much weaker than that of the value of � (or that 
of the selected fitting range) on the Avrami exponent. Spe-
cifically, plotting the time evolution of individual terms of 
Eqs. (11) and (12) integrated over the entire domain shows 
that the Δ̃f  terms are dominant by nearly two orders of mag-
nitude against the Laplacian terms during most of the simu-
lation. Moreover, Figs. 2F and 3F, which are representative 
of the overall behavior of all simulations for both � = 1.1 and 
� = 2.2 , show that the particles remain closely circular, even 
during impingement, except in very localized regions. While 
that aspect may deserve further exploration for a broader 
range of cases and parameters, this observation seems to 
indicate that the curvature plays a minor role in the kinetics 
of the transformation.

Conclusion

We used a computationally efficient (Julia-GPU) implemen-
tation of a simple phase-field nucleation benchmark [21] in 
order to (i) produce a statistically significant data (over hun-
dreds of simulations and thousands of particles), (ii) analyze 
the kinetics of transformation, and (iii) compare the results 
to the classical, and widely used, JMAK theory.

Simulations of individual particles (Problem I) exhib-
ited an excellent agreement to classical nucleation theory 
in terms of critical nucleation radius ( r∗ ). They also high-
lighted the increasingly high incubation time—before the 
establishment of a steady growth velocity—as the initial 
particle radius ( r0 ) gets close to r∗.

Multi-particle PF simulations of nucleation and growth 
generally capture JMAK theory exponent when the nuclei 
size r0 is sufficiently higher than the critical radius r∗ , for 
both site-saturated (Problem II) and continuous nuclea-
tion (Problem III) configurations. As r0 → r∗ , the increase 
in incubation time slows down the average transformation 
kinetics and the JMAK assumption of constant transfor-
mation rate is not satisfied. The statistical distribution of 
transformed fraction and that of fitted Avrami exponent are 
broader in the case of continuous nucleation than in the case 
of site saturation, which we attribute to the greater degree of 
stochasticity when nuclei are seeded at random times. We 
noted a significant dependence of the Avrami exponent to 
the selected time range for the linear fit of log[− log(1 − Y)] 
versus log(t) and thus suggest relying on a range of trans-
formed fraction instead of a time range. Finally, within the 
scope of the simulations and parameters considered here, 
we did not observe any indication of a substantial effect of 
interface curvature—naturally present in PF simulations 
but absent from JMAK theory—upon the transformation 
kinetics.

In summary, we presented an additional illustration of the 
excellent agreement between PF and classical nucleation and 

JMAK theories, as long as original assumptions—in particu-
lar the constant growth velocity in an infinite domain—are 
reproduced. We also proposed a statistical picture of trans-
formed fraction and Avrami exponents in first-order phase 
transformation kinetics, and of the deviation from JMAK 
theory for low values of � , linked to the significant incuba-
tion time and breakdown of the constant growth velocity 
assumption. A possible perspective to extent this study could 
be to quantitatively assess the dependence of the incubation 
time or early transient growth kinetics as a function of � 
in order to incorporate it within the fitted law—e.g., using 
the more general time cone analysis [11]. While the current 
study is arguably a first step in the statistical analysis of 
computational PF results for phase transformations, it is our 
hope that it can encourage the community to address such 
stochastic problems from a statistical perspective.
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