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Abstract
Predicting the thermal history of a component produced via metal-based additive manufacturing is an important step of the 
part qualification process because the thermal history can be used to predict thermally induced residual stresses, distortion, 
and porosity. Thermal simulation calibration and validation are difficult due to the lack of insight into the melt pool during 
the build from traditional data used for calibration, such as thermocouple measurements and infrared camera images. This 
work presents a three-dimensional, finite element method, predictive thermal model of a Ti–6Al–4V thin wall manufactured 
via LENS™ that accounts for heat transfer due to conduction, convection, and radiation. Thermal melt pool data taken with 
a dual-wave pyrometer are used to calibrate and validate the model. Results from the calibration and validation studies indi-
cate that process parameters (i.e., layer height and width) along with physical properties of the heat source and material can 
be used to inform the heat source modeling of powder-blown directed energy deposition finite element thermal models to 
generate datasets for modeling across multiple length scales in an integrated computational materials engineering framework.

Keywords  Additive manufacturing · Directed energy deposition · Laser engineered net shaping · Finite element analysis · 
Ti–6Al–4V

Introduction

Additive manufacturing (AM) is a process for creat-
ing near-net shape parts on a layer-by-layer basis from a 
computer aided design (CAD) model [1]. Predicting the 

thermal history of a component produced via metal-based 
AM (MBAM) is an important step of the part qualification 
process because the thermal history can be used to predict 
thermally induced residual stresses, distortion, and poros-
ity [2–4]. However, the thermal history of AM processes 
has proven difficult to control and predict due to the large 
thermal gradients and localized heating [5]. Similar to that 
of rapid solidification casting, the cooling rates present in 
directed energy deposition (DED) can range from 102 to 
104 K/s, indicating that DED can produce a refined grain 
size, but the distinction between the thermal behavior 
native and each process is that DED experiences localized 
and cyclical heating and cooling [6]. The thermal history of 
an AM part is attributed to the melt pool, which is a func-
tion of the process parameters of the build such as laser 
power, scanning speed, hatch spacing, and layer height [7, 
8]. Therefore, the prediction of a unique melt pool with the 
associated process parameters can determine the tempera-
ture history, leading to predictions about microstructure, 
mechanical properties, and part performance [9–12].

Effort has been given to model metal-based AM pro-
cesses at different length scales to gain insight into various 
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phenomena (e.g., temperature history, residual stresses, 
microstructure, powder dynamics, melt pool dynamics, 
mechanical properties) using analytical and numerical meth-
ods [13]. For microstructure prediction, the cellular autom-
ata [14, 15], kinetic Monte Carlo [16, 17], and phase field 
[18, 19] methods have been used. Microstructure-sensitive 
models in the form of internal state variable theory [20], 
crystal plasticity finite element method [21–23], or reduced 
order models [20, 24] can then be used to estimate mechani-
cal properties [25]. Furthermore, these types of models can 
be extended to better understand the process–structure–prop-
erty relationship through parameter sensitivity studies [26] 
and robust design frameworks [27]. However, the implemen-
tation of the aforementioned microstructure and mechanical 
models to establish an integrated computational materials 
engineering (ICME) framework is highly dependent on an 
accurate thermal history of the AM process, particularly the 
cooling rates and thermal cycling at features of interest [28].

A limiting factor of finite element-based MBAM thermal 
models is that they cannot accurately capture fluid flow in 
the melt pool. Oftentimes, fluid–solid interaction in the melt 
pool is accounted for by scaling the thermal conductivity 
of the metal above the liquidus temperature to account for 
increased thermocapillary flow due to Marangoni Convec-
tion [29]. Additional fine-tuning features of a model such as 
thermocapillary flow and process efficiency are needed to 
predict the melt pool shape and morphology during a DED 
process [30]. Because of these limitations, other methods 
can be used to better understand the melt pool behavior, 
which is important for microstructure and defect predic-
tions. The discrete element method [31, 32] has been used 
to gain a better understanding of powder particle motion 
and interaction during the build process. Similarly, a powder 
scale, multi-physics model was introduced in ALE3D [33] 
to study phenomena associated with melt pool dynamics 
such as thermocapillary flow, recoil pressure, pore defect 
generation, powder spatter, and denudation zones [34]. Yan 
et al. used computational fluid dynamics to model the melt 
pool to predict balling defects in PBF in order to optimize 
print strategies to avoid balling defects [35].

One of the key components in the thermal modeling 
process is leveraging thermal data from AM builds. In situ 
thermal data can be utilized to gain insight into deter-
mining physically motivated model parameters; however, 
thermal model calibration is difficult due to the lack of 
insight into the melt pool during the build from tradi-
tional data used for calibration, such as thermocouple 
measurements and infrared camera images. Heigel et al. 
used three thermocouples and a laser displacement sen-
sor to calibrate their thermomechanical model [36]. The 
authors concluded that the spatially dependent forced con-
vection model resulted in better predictions for the meas-
ured temperature and residual stress prediction. Johnson 

et al. utilized a side-mounted infrared (IR) thermal cam-
era along with post-build microstructural characterization 
to inform their model [20]. They concluded that for the 
first few layers of the build, the substrate acts as a large 
heat sink, the melt pool did not grow significantly deep 
until sufficiently away from the substrate, and the overall 
part temperature grows as the layers increase. Using ther-
mocouples or IR cameras can result in limited accuracy 
because thermocouples provide scalar temperature meas-
urements over time that are away from the melt pool, and 
IR cameras capture radiating thermal energy from the side 
of the part on the side of part, which does not necessarily 
include the entire melt pool. Additionally, the accuracy 
of IR thermal images can be limited due to vapor plume 
around the melt pool in addition to temperature-dependent 
emissivity [20]. The vapor plume also results in difficulty 
calibrating the IR camera due to radiation noise around the 
melt pool [37]. Dual-wavelength pyrometers that capture 
melt pool images have been used for finite element thermal 
model calibration as well [38]. Capturing accurate melt 
pool behavior is significant because it drives the thermal 
history of the part [39].

The aforementioned limitations of thermocouple and 
a single-wave IR camera data can be theoretically elimi-
nated by using an alternative thermal data method such as a 
dual-wave pyrometer. Wang et al. compared their numerical 
model with thermal images taken with a dual-wave pyrom-
eter and concluded that pyrometer data can be used to study 
the effects of varying process parameters on the thermal 
history of a build [40]. Unlike thermocouples and single-
wave IR images, a dual-wave pyrometer that is coaxially 
mounted with the laser heat source and powder deposition 
can offer greater insight into the heterogeneous history of 
the part by taking thermal images of the melt pool as the 
build progresses. Additionally, the pyrometer is not limited 
by the measurements of a stationary point away from the 
melt pool from a thermocouple and provides a full view of 
the melt pool [41]. The limited accuracy of single-wave IR 
images due to varying emissivity around the melt pool is 
eliminated because the pyrometer determines the tempera-
ture measurements using two wavelengths. The Stratonics 
dual-wave pyrometer in this study can be reliably used in 
temperature ranges from 1000 to 2500 °C; therefore, it can 
capture temperature data above and below the melting tem-
perature of most metals, which is needed for model calibra-
tion and validation [42].

The melt pool behavior driving the thermal history of 
the part and its subsequent implications in the MBAM pro-
cess–structure–property–performance relationship is evident 
with data-driven methods for anomaly detection [43–45]. 
Using melt pool images taken from a build, Khanzadeh et al. 
successfully predicted locations and sizes of pores within a 
Ti–6Al–4V DED part [44]. The implications of this type of 
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model are that they can be trained by finite element-based 
models to then quickly optimize process parameters for 
defect mitigation in different geometries.

The focus of this work is utilizing geometry-dependent 
heat source variables to predict the temperature history of a 
DED built Ti–6Al–4V component accounting for its asso-
ciated geometry and processing parameters using a dual-
wave pyrometer dataset for finite element thermal model 
calibration in the Abaqus/Standard [46] framework. The 
novelty of this work is the manner in which the experimen-
tal calibration method informs the thermal modeling heat 
source calibration using geometry-dependent heat source 
parameters, resulting in the ability to generate large thermal 
history datasets to inform multiscale modeling efforts [9]. 
The model is informed by thermal images of the melt pool, 
which elucidates a connection between the melt pool tem-
perature profile and the experimental processing parameters 
(e.g., deposition height and width) and the calibrated heat 
source parameters.

Methodology

Thermal Analysis

The thermal history of the LENS™ process is represented 
with a three-dimensional, transient thermal analysis with 
energy balance shown in Eq. 1, where ρ is density, Cp is 
specific heat capacity, t is time, T is temperature, Q is the 
applied heat source, and q is the heat flux vector. The heat 
flux vector is further defined as Fourier’s conduction law 
in Eq. 2 with k as thermal conductivity and ∇T  as the tem-
perature gradient.

The volumetric heat source, Q, is modeled as Goldak’s 
Ellipsoid [47], shown in Eq. 3, where P is the laser power, η 
is the process efficiency, σ is a fitting coefficient describing 
the volumetric flux profile, r is the laser beam radius, and d 
is the laser beam penetration depth. Goldak’s ellipsoidal heat 
source model was chosen in lieu of the double ellipsoidal 
heat source model because the Nd:YAG laser in the LENS™ 
machine has a circular Gaussian profile, so applying a heat 
flux with differing profiles for the leading and trailing flux 
distribution would not reflect the applied laser flux. Goldak’s 
ellipsoidal heat source model has a Gaussian distribution 
and decreases exponentially to 5% of its maximum heat 
flux with depth and outward radius when the fitting term 
is set to 3. If the fitting term were set to a value of 2, the 

(1)�Cp

dT

dt
= Q(x, y, z, t) − q(x, y, z, t)

(2)q = −k∇T

heat flux would be 13.5% at the boundary. The fitting term 
can be modified to change the percentage of maximum flux 
observed at the heat source boundary, which can be used to 
represent different types of heat sources.

The process efficiency depends on the laser type and 
wavelength, surface preparation, temperature, and mate-
rial [48] and can be approximated using Bramson’s formula 
[49], shown in Eq. 4, where R is the material’s electrical 
resistivity and λ is the laser wavelength. For the LENS™ 
machine used in this study, the laser wavelength is 1070 nm 
and Ti–6Al–4V’s electrical resistivity is approximately 178 
μΩ-cm [50]. Although Bramson’s formula is temperature-
dependent, the electrical resistivity was chosen at ambient 
temperature because the powder is at LENS environment 
temperature when it interacts with the laser, melting almost 
instantly.

The thermal analysis is sensitive to process efficiency, 
emissivity, and convection coefficients [51–55]. Although 
conduction accounts for the majority of heat dissipation dur-
ing the process, it is important to consider heat dissipation 
due to convection and radiation, as it can exceed 10% of total 
heat loss [56]. Applying Newton’s Law of Cooling (Eq. 5) 
accounts for surface heat loss via convection, where Tsurface 
is the surface temperature and T∞ is ambient temperature. 
Initially, convection coefficients, h, were initially applied as 
spatially dependent functions, determined by Heigel et al. 
[36]. However, due to the radiative cooling dominating the 
heat transfer process near the melting temperature, the spa-
tially dependent functions had no effect on the melt pool, 
and thus, constant convection coefficients were applied and 
are presented in Table 1.

Surface heat loss via radiation is accounted for by 
applying the Stefan–Boltzmann Law, where �sb is the Ste-
fan–Boltzmann constant and ε is material emissivity shown 
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Table 1   Convection coefficient for each surface

Surface Convection coefficient (W/m2K), h

Thin wall top 30
Thin wall side 25
Substrate 25
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in Eq. 6. For Ti–6Al–4V, the emissivity is set to a constant 
value of 0.26 [54].

The temperature-dependent material properties (specific 
heat and thermal conductivity) used in the simulation for 
solid and liquid Ti–6Al–4V are taken from Mills [57] and 
are presented in Fig. 1. The discontinuities in each plot occur 
at the beta transus temperature (995 °C) and the liquidus 
temperature (1660 °C). Additionally, a latent heat of fusion 
value of 365 kJ/kg was applied between the solidus and liq-
uidus temperatures to account for the specific heat capacity 
increase observed at this temperature range [58].

Abaqus Implementation

Abaqus/Standard 2017 [46] was used to simulate the 
LENS™ process for a 10-layer deposition with a fixed time 
increment of 0.5 ms. The model consisted of 80,792 ele-
ments total, split into two parts: the substrate and the thin 
wall. The substrate is comprised of 62,552 elements, which 
are broken down into three sets, with the highest mesh den-
sity in and directly under the thin wall. The three types of 
heat transfer elements used in the substrate are: (1) 49,280 
linear hexahedral (DC3D8), (2) 12,768 quadratic hexahedral 
(DC3D20), and (3) 504 linear wedge (DC3D6). The thin 
wall contains 18,240 quadratic hexahedral heat transfer ele-
ments (DC3D20) with 3648 elements in each layer. The thin 
wall element sides are 0.2225 mm in length in each direc-
tion. The model dimensions and mesh are shown in Fig. 2. 

(6)qradiation = �SB�
(

T4
surface

− T4
∞

)

A mesh sensitivity study was performed to ensure that the 
results were repeatable on varying mesh densities.

To simulate the LENS™ process, two Abaqus user sub-
routines are used: UMDFLUX and UEPACTIVATION 
(UEPA). The UMDFLUX subroutine models the moving 
laser heat source; the laser coordinates are passed from the 
input file to the subroutine. The UEPA subroutine simulates 
material deposition by activating elements. The element 
activation strategy used here is the active/inactive method. 
At the start of the simulation, only the substrate elements are 
active. Once the laser begins to move, elements are activated 
at an ambient temperature of 37 ºC. UEPA accounts for a 
constantly evolving free surface by applying the convection 
and radiation boundary conditions at each timestep to the 
newly activated elements using the following keywords in 
the Abaqus input file: FFS and RFS, respectively.

An element is activated at the earliest timestep that sat-
isfies two requirements. The first activation requirement 
considers the element’s centroid coordinate in the build (z) 
direction. The element’s centroid must fall below the z-coor-
dinate of the top of the current layer to be considered for the 
second activation criteria. To meet the second requirement, 
the distance between the center of the laser and the ele-
ment centroid must be less than or equal to the user defined 
element activation radius that is built into Abaqus in the 
Toolpath-Mesh Intersection module. A visualization of the 
Abaqus subroutine connectivity can be seen in Fig. 3. Fur-
ther details of the element activation scheme can be found 
in previous work [38].

Experimental Calibration Setup

For model calibration, pyrometer data were used from a 
thin wall build in the Optomec LENS™ 750 with a 1 kW 

Fig. 1   Temperature dependence of thermal conductivity and specific 
heat for solid and liquid phases of Ti–6Al–4V

Fig. 2.   10-layer thin wall geometry schematic and representative 
finite element (FE) mesh
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Nd:YAG laser at the Center for Advanced Vehicular Systems 
(CAVS) at Mississippi State University (MSU) using the 
process parameters listed in Table 2. Additional details about 
the experimental setup along with the data can be found in 
the Data in Brief article [59]. During the build, a Straton-
ics dual-wave pyrometer captured in-situ thermal images of 
the melt pool at a frequency ranging from 4 to 7 Hz via 
Stratonics Thermaviz software, resulting in approximately 
25 images per layer with an estimated error of ± 50. Each 
pyrometer image consisted of a 752 × 480 matrix of tempera-
ture values, with approximately 10% of these in the area of 
interest in and around the melt pool.

Thermal Model Calibration

The thermal model was calibrated to pyrometer images taken 
from the first layer of the thin wall build. Approximately 400 
thermal simulations were performed, and the final Goldak 
heat source parameters that were iterated upon are: process 
efficiency, radius, depth, and the shape fitting term. A Tagu-
chi L27 orthogonal array was implemented for initial model 
calibration using the aforementioned parameters. With each 
round of simulations, the temperature profile down the 

center of the melt pool was plotted similar to Fig. 6. From 
there, the parameters that showed a best fit within the upper 
and lower bounds of the simulation data were considered.

The initial rounds of simulations were performed with 
Goldak’s Double Ellipsoidal heat source model, but it was 
quickly realized that switching to Goldak’s Ellipsoidal heat 
source model yielded more accurate results due to the sym-
metric TEM00 profile of the laser, and thus, more physi-
cally based parameters. Analysis revealed that a wide vari-
ety of heat source parameters could produce the maximum 
temperature from the experimental data, so the calibration 
methodology shifted to examining the temperature profile 
through the center of the melt pool in the scanning direction. 
Furthermore, the convection coefficient functions for the top 
and sides of the thin wall were simplified to the values listed 
in Table 1 because of negligible changes in temperature in 
the melt pool due to radiative cooling dominating the heat 
transfer process near the melting temperature compared to 
convective cooling. Originally, the model did not account 
for thermocapillary flow in the melt pool. By scaling the 
thermal conductivity above the liquidus temperature by a 
factor of 1.5, similar to Lampa et al. [60], the predicted tem-
perature profile decreased above the liquidus temperature, 
thus showing a better fit to the experimental data.

Results and Discussion

First Build Layer

Figure 4 compares calibrated simulation results with an 
experimental pyrometer image; each image is taken from 
the midpoint of layer one. The raw Abaqus temperature data 
are interpolated between nodes using a cubic interpolation 

Fig. 3   Abaqus subroutine connectivity, adapted from [46]

Table 2   Calibration build process parameters

Parameter Value

Laser power (W) 290
Scanning speed (mm/s) 12.7
Layer height (mm) 0.508
Layer width (mm) 1.78
Dwell time (s) 2.0
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scheme for comparison with the pyrometer data. For the 
pyrometer image, the temperature outside of the melt pool 
appears to be constant at around 1400 °C; however, 1400 °C 
is the lower bound of this set of pyrometer measurements 
due to the significant noise in the data below 1400 °C. The 
calibrated heat source parameters, which are shown in 
Table 3, were selected because they showed a good fit to the 
pyrometer data and were physically motivated. Bramson’s 
equation was used to calculate process efficiency by account-
ing for the material’s electrical resistivity and the laser’s 
wavelength. Because the laser in the LENS™ is a TEM00 
mode laser, the heat flux drops to 5% of the maximum flux 
at the outer radius and depth, resulting in a value of 3 for 
the fitting term. The laser penetration depth was set a value 
just larger than the layer height, which agrees with previous 
findings in literature [36, 61]. Finally, the flux radius was set 
to half of the deposition width for a physical representation 
of the process parameters.

Figure 5 plots the maximum temperature over the entire 
first layer with the pyrometer data with error bars show-
ing ± 50° measurement uncertainty that demonstrates the 
simulation temperatures are in agreeance with the experi-
ment. The utility of the dataset collected by the pyrometer 

is demonstrated in this figure by showing how much the 
maximum temperature varies for each pyrometer image for 
the duration of first layer, which is as high as a 70 °C differ-
ence, indicating that metrics other than maximum tempera-
ture should be used. This variation can be partially attributed 
not only to measurement uncertainty, but also to the inherent 
hetereogeneity of the DED process. Small fluctuations in 
laser power, powder size distribution, and powder flow rate 
among other phenomena can affect a component’s tempera-
ture history. Using a pyrometer dataset for model calibration 
allows the user to look at thermal data in the melt pool dur-
ing the build that is otherwise unavailable when restricted 
to thermocouples or IR cameras.

Figure 6 compares the simulated temperature profile 
down the center of the melt pool with pyrometer data for 
the first layer. The profile shows a good fit and lies within 
the bounds of the experimental data. The simulation data 
used in this plot are taken at the midpoint at the top surface 
of layer one, while the experimental data are an average of 
five pyrometer images taken around the middle of the layer 

Fig. 4   Abaqus temperature field from the simulation (left) compared 
with pyrometer data (right)

Table 3   Calibrated Goldak heat source parameters

Parameter Value

Efficiency, η (%) 37.3
Fitting Parameter, σ 3.0
Laser Penetration Depth, d (mm) 1.06 * layer height
Laser spot size, r (mm) 0.5 * deposition width

Fig. 5   Comparison of simulated maximum temperature with maxi-
mum measured pyrometer temperature (± 50 °C) of layer one

Fig. 6   Comparison of simulated temperature profile along the center-
line of the melt pool in the scan direction to pyrometer data at the 
midpoint of layer one. The melt pool is traveling from right to left
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to represent a grouping of steady state temperatures. The 
error bars represent the ± 50° measurement uncertainty in 
addition to the peak to valley values used to calculate the 
mean. The only portion of the simulated melt pool profile 
that lies outside of the experimental bounds is the trailing 
edge, which is likely due to inadequate convection boundary 
conditions near the laser deposition due to the impinging gas 
flow. This phenomena is also observed in Fig. 7 for layers 
2–5.

Additional Build Layers

To assess the applicability of the calibrated heat source 
parameters from layer one, the model is extended to a ten-
layer thin wall and compared with pyrometer data. The 
maximum temperature in each layer from the simulation 
and pyrometer data are compared in Table 4, respectively. 
The maximum temperature in each layer compares favorably 
between the predicted temperature and the pyrometer data.

Figure 7 compares the temperature profile down the 
center of the melt pool using the simulation and the pyrom-
eter data for layers two through five. Even though the maxi-
mum temperature and melt pool diameter are overpredicted, 
the shape of the profile follows the trend demonstrated by 
the pyrometer data. This deviation from experimental data is 
likely due to an inadequately sized substrate, which cannot 

act as a large heat sink. Thus, heat buildup occurs with 
increasing layers, which causes the maximum temperature 
and overall melt pool temperature to increase. Further dis-
cussion of model improvement can be found in “Thermal 
model validation”.

Thermal Model Validation

To validate the thermal model, two double-track, twenty-
layer Ti–6Al–4V thin walls were fabricated on the 
Optomec LENS™ 750 at CAVS at MSU with differing 
scanning strategies and scanning speeds than the calibra-
tion builds. The experimental process parameters are listed 
in Table 5, and the pyrometer data used in the validation 

Fig. 7   Comparison of simulated temperature profile along the centerline of the melt pool in the scan direction to pyrometer data at the midpoint 
of a layer two, b layer three, c layer four, and d layer five. The melt pool is traveling from right to left

Table 4   Maximum temperature for the simulation data and the exper-
imental data for layers 1–5

Layer Average maximum temperature (°C)

Simulation Experiment

1 1758.2 1732.0
2 1810.5 1711.2
3 1823.9 1717.4
4 1825.9 1725.3
5 1825.6 1723.9
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study can be found in a publicly available data reposi-
tory [62]. In contrast to the single line deposition strategy 
used for the calibration specimen, the validation speci-
mens deposited two lines per layer in a serpentine pattern. 
The Goldak heat source parameters used in the validation 
study are calculated in Table 3. Similar to the calibrated 
heat source values, a small scaling factor of approximately 
1.06 was applied to the penetration depth term in relation 

to the layer height, with the laser spot size set to the layer 
deposition width. The efficiency and fitting parameter 
remain unchanged.

To address a possible reason for the heat buildup (i.e., the 
increased temperatures) observed in the calibration simula-
tions, a larger substrate was modeled to act as a heat sink. The 
mesh used in the validation build is shown in Fig. 8; the total 
number of elements is approximately 433,000. The element 
size in the thin wall is 0.083 mm × 0.083 mm × 0.083 mm, 
with the mesh coarsening out in the substrate away from the 
thin wall.

Figure 9 shows the center temperature profile of the melt 
pool observed with the pyrometer and the simulation data 
for the validation build. Despite a faster scanning speed, the 
temperature gradient is much steeper and follows a linear 
trend compared to the observed melt pool characteristics in 
the calibration builds. This is likely due to the smaller depo-
sition volume and a more heavily concentrated heat source 
resulting in a greater energy density. The greater energy den-
sity in the validation build leads to a higher peak temperature 
and a faster cooling rate compared to the calibration build. 
Unlike the single-track simulations in the previous section, 
there is no observed peak temperature in the trailing section 
of the melt pool. This is likely due to the greater energy den-
sity in the double-track simulation [63]. The energy density, 
E [J/mm2], is defined as E = P/(2rv), where P is the laser 
power, r is the laser beam radius, and v is the scan speed. 
The double-track simulation has a global energy density 
that is nearly three times larger than the single-track depo-
sition, resulting in a peak temperature approximately 500° 
higher than the liquidus temperature. The trailing peak in 
the single-track data could be attributed to the lack of energy 
present to overcome latent heat of fusion that occurs between 
the solidus (1600 °C) and liquidus temperatures (1660 °C) 

Table 5   Validation build machine process parameters

Parameter Value

Scanning strategy Bidirectional
Laser power (W) 290
Scanning speed (mm/s) 16.933
Layer height (mm) 0.5
Layer width (mm) 0.5
Number of layers 20
Dwell time (s) 0.7

Fig. 8   Representative finite element mesh for the double-track thin 
wall

Fig. 9   a Comparison of the experimental and FE simulation tempera-
ture profile through the center of the melt pool along the scan direc-
tion for layer one of the validation build. b Comparison of the experi-

mental and FE simulation average center temperature profile taken at 
the midpoint of each layer for layers 1–20 for both the simulation and 
experimental data. The melt pool is traveling from right to left
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region, which is where the slope of the temperature profile 
changes.

To further extend the analysis of the validation build, 
melt pools center profiles were taken at the midpoint of each 
layer of the build and were averaged as shown in Fig. 9. The 
results show that by setting the penetration depth to a value 
of approximately 1.06 times the layer height, the applied 
laser radius to one half of the deposition width, and a cou-
pling efficiency of 37.3% a good prediction of the melt pool 
temperature profile can be achieved. Although each of the 
simulated center temperature profiles did not fully fall in 
the error bounds, the maximum temperatures and melt pool 
shape showed good agreement with the experimental results. 
This limitation could be due to the selection of the Goldak 
ellipsoidal heat source and insufficient cooling conditions 
caused by the blown powder shielding gas.

While both the calibration and validation simulations 
show good agreeance with the experimental data, there are 
potential avenues of model improvement, such as: (1) cali-
brating a machine specific convection coefficient function 
by performing a hot-film anemometry experiment specific 
to the LENS™ as proposed by Gouge et al. to improve the 
temperature profile trailing the melt pool [64]; (2) implement 
a temperature-dependent emissivity [65, 66]; (3) studying 
the effect of using different heat source models (e.g., cylin-
drical-involution-normal, 3D Gaussian) to better represent 
the specific laser in the LENS™ [67]. Calibrating a spa-
tially dependent convection coefficient that accounts for the 
cooling effects of the shielding gas and powder-carrying gas 
along with the implementation of a temperature-dependent 
emissivity would improve the cooling boundary conditions 
around the melt pool. Furthermore, implementing different 
heat sources while following the calibration methodology 
presented in this study could provide insight as to what heat 
source provides the best prediction of the melt pool tem-
perature profile.

Conclusions

The findings in this work suggest that applying physically 
based heat source parameters can provide a good tempera-
ture prediction compared with thermal images taken of the 
melt pool with a dual-wave pyrometer. The physical basis 
of the heat source parameters is taken from the geometry of 
the deposition (e.g., layer width and depth) and a coupling 
efficiency calculated with the material’s electrical resistiv-
ity and the laser’s wavelength. The calibration methodology 
is significant because coaxial dual-wave pyrometer images 
provide melt pool measurements that are unavailable with 
other in situ experimental data collection techniques. Insight 
into the melt pool is crucial for model calibration efforts 
because the thermal history of a part is driven by the melt 

pool. This methodology was first calibrated with single-track 
build data and was then extended to a double-track thin wall 
geometry to validate the proposed approach. Furthermore, 
this physically based simulation framework can be used gen-
erate large datasets of thermal histories and cooling rates 
that capture the full temperature history of a build. This is 
due to the connection between melt pool and the processing 
parameters rather than using thermocouple calibration away 
from the melt pool that only captures the macro-response. 
Future paths for this research include extending the model 
to complex geometries, exploring different calibration meth-
odologies, and sequentially coupling the thermal model with 
a mechanical model.
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