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Abstract
A method for generating high-fidelity, boundary conforming tetrahedral mesh of three-dimensional (3D) polycrystalline 
microstructures is presented. With growing interest into subgrain scale micromechanics of materials, crystal plasticity finite 
element (CPFE) models must adapt not only their respective constitutive laws, but also their model geometry to the finer 
scale, namely the representation of grains and grain boundary junctions. Additionally, with the increasing availability of 
microstructure datasets obtained via 3D tomography experiments, it is possible to characterize the 3D topology of grains. 
From these advancements in experiment emerge both an opportunity and challenge for researchers to develop model micro-
structures, specifically finite element meshes, which best preserve grain topology for the accurate representation of boundary 
conditions in polycrystalline materials. To accomplish this, an open-source code called XtalMesh was created and is presented 
here. XtalMesh works by smoothing input voxel microstructure data using a feature-aware Laplacian smoothing algorithm 
that preserves complex grain topology and leverages state-of-the-art tetrahedralization code fTetWild to generate volume 
mesh. In this work, the workflow and associated algorithms of XtalMesh are described in detail using a synthetically gener-
ated example microstructure. For demonstration, we present a case study involving mesh generation of an experimentally 
obtained microstructure of nickel-based superalloy Inconel 718 (IN718).
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Introduction

Apart from the crystallographic orientation of individual 
grains, the morphology of grains and grain boundary inter-
faces are also known to contribute to the development of 
localized stress and strain in polycrystals. In polycrystal-
line nickel-based superalloys, for example, the morpho-
logical characteristics of twin boundary planes, including 
their twin plane area and spatial orientation with respect 
to the loading direction, are critical factors in determin-
ing the location of strain localization and crack initiation 
during monotonic and cyclic loading [1–3]. Additionally, 
incipient plasticity in these materials, such as the initiation 

of slip bands, has been found to correlate strongly with 
grain morphology. Recent experimental work on the 
nickel-based super alloy, Inconel 718 (IN718), shows that 
a large fraction of slip bands visible at the specimen sur-
face are found to emanate from subsurface grain boundary 
triple junctions, the lines of intersection formed by three 
grains [4]. Therefore, when modeling the micromechanics 
of such materials, high-fidelity representations of micro-
structures, those which preserve grain topology, are desir-
able for accurate calculation of spatially resolved fields 
near or at microstructural heterogeneities. One mesoscale 
modeling technique known as crystal plasticity finite ele-
ment method (CPFEM), routinely used to calculate the 
subgranular full-field spatial mappings of stress and strain 
in polycrystalline materials, requires discretization of 
the desired microstructure in the form of finite element 
mesh to approximate the complex mechanical boundary 
conditions present within polycrystals. The process of 
generating a mesh for a given microstructure is compu-
tationally intensive and non-trivial, and for the purposes 
of calculating spatially resolved fields at the intragranular 
scale, it is critical to develop automated mesh generation 
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workflows that can transform synthetically or experimen-
tally obtained microstructure data into high-fidelity mesh.

Presently, there exist a few commercial software that 
can accomplish this task, but no open-source codes exist 
for high-fidelity microstructure meshing. Commercial 
codes can pose some disadvantages. They typically require 
purchasing or procuring a product license of the product 
and in some cases, the intended research needs be aligned 
with or fall into an applicable category. Also, some of the 
algorithms cannot be shared because they contain propri-
etary information. In the case of high-fidelity microstruc-
ture meshing, where features such as grain boundaries 
and triple junction lines are preserved, there are a limited 
number of commercial codes available. Notable examples 
include CUBIT [5] and Simmetrix [6]. Both are full-fea-
tured software tool kits for computer-aided design (CAD) 
model preparation and finite element mesh generation, and 
each has a module dedicated for mesh generation given 
three-dimensional (3D) voxel microstructure data. Other 
commercial codes which do not have dedicated modules 
for processing microstructures data have been leveraged 
by researchers to mesh microstructures. Work by Lee and 
co-authors [7] demonstrates how such a workflow oper-
ates. Researchers first prepared a feature-preserving sur-
face mesh of a grain boundary network using their own 
in-house smoothing algorithms [8] and then generated 
volume mesh using the commercial software HyperMesh 
[9] with their surface mesh as input.

Options for open-source codes are much more limited, 
and most that exist are not well suited for high-fidelity 
microstructure meshing. Neper [10], one of the most widely 
used and mature open-source software packages for poly-
crystal generation and meshing, is built around the use of 
Laguerre or Voronoi tessellation techniques to create sim-
plified convex-cell representations of grains. While Neper 
supports 3D microstructure image data as input, and cer-
tain parameters of the tessellation process can be modified 
to promote feature preservation, Neper is by-design best 
suited for applications that permit substantial simplification 
of the microstructure. While tessellation methods maybe 
be appropriate for some alloys, others, like nickel-based 
superalloys, have complex grain morphologies that can be 
severely altered if represented as simplified convex cells. 
Other lesser known open-source codes, like MicroStructPy 
[11], apply similar tessellation approaches to microstructure 
meshing and do not prioritize subgranular feature preserva-
tion. To the authors’ knowledge, the only open-source code 
currently available that preserves microstructural features 
and generates volume mesh is Voxel2Tet [12]; however, its 
use is limited to one article where only its voxel smooth-
ing algorithm was utilized, and a separate tetrahedraliza-
tion algorithm was adopted to produce a valid mesh for an 
experimentally obtained microstructure of IN718 [4].

Here, we present XtalMesh (read: crystal mesh), an easy-
to-use, containerized program for high-fidelity meshing of 
microstructures, and is publicly available on GitHub [13]. 
Given 3D microstructure data, XtalMesh generates unstruc-
tured, boundary-conforming tetrahedral mesh that preserves 
the underlying grain topology. XtalMesh is built upon a suite 
of geometry processing libraries and tools leveraged to cre-
ate its meshing workflow and its design allows for customi-
zation and fast prototyping of other workflows if desired. In 
this article, we detail the workflow and algorithms of XtalM-
esh and provide information on processing time and memory 
usage for different input and parameter configurations. We 
also present a case study where a mesh is generated for an 
experimentally obtained 3D microstructure of nickel-based 
superalloy IN718. There we assess microstructure fidelity, 
mesh quality metrics, and perform a CPFE simulation to 
verify analysis-readiness of the mesh and investigate sub-
grain scale micromechanics.

Setup and Installation

XtalMesh was developed to run in a ”containerized” envi-
ronment where all of its application code, libraries, and 
dependencies are encapsulated in a light-weight single exe-
cutable package of software. One of the major advantages 
of containerization is that it allows applications to become 
stand-alone and portable, able to run on any host operat-
ing system (OS) or even cloud platforms. For typical users, 
all that is required to setup XtalMesh is to install any OS-
level virtualization software platform, such as Docker [14], 
then download the publicly available container image. Once 
downloaded, XtalMesh can be run as a container through 
any command line interface. Installation instructions and all 
source code can be found on GitHub [13].

Workflow

The general workflow of XtalMesh can be seen in Fig. 1.

Pre‑Processing

Before XtalMesh can be run, the necessary input files must 
be generated. There are a total of four input files needed, 
together they describe the complete surface geometry of 
all grains in the input voxel microstructure in the form of 
triangle mesh. These files contain information about the 
geometry of the model including the spatial coordinates 
of nodes and triangle-node connectivity. They also contain 
microstructural information, such as node types, describ-
ing whether a node is located in the interior or exterior of 
the representative volume element (RVE) and what type 
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of feature it belongs to such as a grain boundary, a tri-
ple junction line or a quadruple point. Lastly, for every 
triangle facet of the mesh, representing a 2D element of 
a grain boundary, there is a record of what grains share 
the boundary. These files can be created from scratch by 
the user; however, they can be generated more efficiently 
using DREAM.3D [15], a sample pipeline can be seen in 
Fig. 2. There, the user defines the input voxel geometry, 
imports the microstructure as a text file of grain IDs, and 
applies the ‘Quick Surface Mesh’ filter to generate the 
needed triangle data.

Smoothing

With the surface geometry of the input microstructure fully 
defined, the smoothing process of XtalMesh can proceed. A 
mesh can be represented as a graph � = (�,�) with vertices � 
and edges � , where � =

[
�
T
1
, �T

2
,… , �T

n

]T , �i ∈ ℝ
3 . The clas-

sic Laplacian smoothing algorithm describes the displacement 
of a vertex �i to a new position �′

i
 using the following formula

where 0 ≤ � ≤ 1 is a scale factor, and �i represents the Lapla-
cian of �i , calculated as the difference between �i and the 
weighted centroid of its first-order neighborhood vertices 
{i, j} ∈ �

where 
∑

{i,j}∈� wij = 1 , and the choice of weights is given by

Computing the displacement update for all vertices in the 
mesh requires Laplacians � =

[
�
T
1
, �T

2
,… , �T

n

]T given by

where � is the n × n Laplacian matrix defined as,

(1)�
�

i
= �i + ��

i

(2)�i =
∑

{i,j}∈�

wij

(
�j − �i

)

(3)wij =
�ij∑

{i,k}∈� �ik

(4)� = ��

Fig. 1   Flowchart of XtalMesh

Fig. 2   Sample DREAM.3D pipeline including relevant filters to cre-
ate surface mesh for a voxel microstructure and export information of 
nodes, node types, triangles, and triangle face labels [15]



112	 Integrating Materials and Manufacturing Innovation (2022) 11:109–120

1 3

, and the general update equation for the entire mesh 
becomes

For the voxel surface mesh of the input microstructure, a 
feature-aware constrained Laplacian smoothing algorithm 
is developed where certain vertices can be free to move, 
�free , OR fixed, �fixed , weights can be non-uniform, and an 
additional geometric constraint matrix � =

[
�
T
1
, �T

2
,… �T

n

]T 
is applied. � restricts the displacement of vertices along 
the three orthogonal directions based on their location 
with respect to the RVE and serves to retain the original 
cubic shape of the RVE. Values of �i are determined by the 
following,

(5)�ij =

⎧
⎪⎨⎪⎩

−1 i = j

wij (i, j) ∈ �

0 otherwise

(6)�
�

= � + ��

� is multiplied with � through an element-wise product, and 
the new update equation becomes,

In this workflow, RVEs are smoothed in three steps, wherein 
each step defines a particular set of �free and �fixed as well as 
weights, �ij . Figure 3 shows the order of smoothing opera-
tions and their effects for an example microstructure, which 
is synthetically generated. The first step involves smooth-
ing the exterior triple lines, which represent the intersection 
of grain boundaries and the RVE exterior surface. Vertices 
belonging to exterior triple lines and their intersections, 
identified as exterior quadruple points, are free to move, 
while all other vertices of the mesh are fixed. Non-uniform 
weights are applied according to edge types as follows,

(7)�i =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[1, 1, 1] interior (no constraint)

[0, 1, 1] x-face

[1, 0, 1] y-face

[1, 1, 0] z-face

[0, 0, 1] xy-edge

[1, 0, 0] yz-edge

[0, 1, 0] xz-edge

[0, 0, 0] corner (fully constrained)

(8)�
�

=

{
� + �(�◦�) � ∈ �free

� � ∈ �fixed

Fig. 3   Diagram of the smooth-
ing process. a Input voxel 
microstructure for a syntheti-
cally generated example micro-
structure, showing the voxelated 
form of a select grain. b Select 
grain after smoothing exterior 
grain boundary triple junction 
lines, c interior triple lines, d 
and subsequent smoothing of 
boundaries
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A larger weight is applied to edges connecting triple-line and 
quadruple-point vertices so as to enhance the smoothing of 
triple-line vertices local to quadruple points. This is done 
because quadruple-point vertices do not undergo significant 
displacement during smoothing. Therefore, with an other-
wise uniform weighting scheme, triple-line vertices close 
to quadruple points would smooth more slowly than those 
located in the middle of the triple line. After smoothing the 
exterior triple lines, the interior triple lines and their inter-
sections are smoothed in a similar manner with the same 
edge-weight scheme defined above. The only difference is 
that vertices belonging to interior triple lines and quadruple 
points are free while all others are fixed. Lastly, vertices 
belonging to grain boundaries at both the exterior and inte-
rior of the RVE are smoothed with uniform weights, �ij = 1 , 
while all other vertices are fixed.

The surface mesh smoothing algorithm implemented 
works solely to provide smooth representations of grains in a 
computationally efficient manner and is not intended to pro-
duce optimized surface mesh. Therefore self-intersections 
and non-manifold geometry may exist in the final output. 
However, these occurrences are minor and inconsequential 
to later stages of meshing. Once smoothing has been com-
pleted, surface mesh for every individual grain as well as 
the entire microstructure is written to the working directory, 
ready for subsequent volume meshing.

Meshing

The final step of the XtalMesh workflow is volume meshing. 
Having prepared a smoothed representation of the micro-
structure, it is now crucial that a valid, analysis-ready mesh 
can be generated, while preserving the underlying grain 
topology. In addition, the meshing algorithm selected must 
be capable of processing any input as XtalMesh makes no 
assumptions about the user’s material and/or microstructure. 
Here, we have implemented the highly robust tetrahedral 
meshing method known as fTetWild [16] and have adapted 
it to mesh polycrystals. Traditional tetrahedral meshing algo-
rithms, like Delaunay-based methods, widely used in com-
mercial software for their efficiency, make strong assump-
tions on the input surface mesh, requiring the input to be 
watertight, manifold, and free of self-intersections. In real-
ity, many 3D models have these defects and require manual 
cleanup of these artifacts before these methods can create 
valid tetrahedral mesh. The publicly available Thingi10k 
dataset provides a good representation of the models found 
in the wild, comprised of 10,000 non-sanitized 3D printing 

(9)�ij =

⎧
⎪⎨⎪⎩

1 (i, j) ∈ �triple−triple

2 (i, j) ∈ �triple−quad

0 otherwise

models created by over 1,000 users [17]. Researchers tested 
the robustness of several state-of-the-art meshing codes 
using the Thingi10k dataset and have found that their suc-
cess rates in producing a valid mesh can vary greatly [18]. 
As an example, TetGen, the most commonly used Delau-
nay-based meshing code, was only able to successfully 
mesh 50% of the models found in the dataset. In contrast, 
fTetWild, our algorithm of choice, exhibits a 100% success 
rate thanks to its envelope-based meshing algorithm [16]. 
More detail on the algorithm can be found in the original 
paper for fTetWild, as well as its predecessor TetWild [16, 
18].

fTetWild was specifically designed for robust automatic 
3D meshing pipelines, making no assumptions on the input 
surface mesh, and produces a valid tetrahedral mesh for 
any perfect or imperfect input of arbitrary complexity. It is 
for this robustness that fTetWild algorithm works first by 
simplifying the input triangle mesh, where vertices might 
be merged or edges might be collapsed, while ensuring tri-
angles stays within an envelope distance, � of the original 
input. After this operation, a background tetrahedral mesh is 
generated around the new input vertices, and triangles of the 
input are inserted into the background mesh, forming a new 
tetrahedron based on their intersections with the background 
mesh. As triangle insertion proceeds, local mesh operations 
are taking place to improve mesh quality. These processes 
continue until all input surface triangles have been inserted, 
and all tetrahedral elements are above a minimum quality 
threshold. fTetWild determines the quality of tetrahedral 
elements according to their 3D conformal energy [19], a 
quantity with possible values ranging from three to infin-
ity, with a regular tetrahedron having a conformal energy of 
three. The meshing algorithm stops mesh optimization when 
all elements are below a threshold energy (default: 10), or 
the number of iterations reaches a maximum (default: 80).

The meshing process of XtalMesh is shown in Fig. 4. 
XtalMesh proceeds by passing to fTetWild the recently 
smoothed surface mesh of the whole microstructure. The 
fTetWild algorithm then runs and outputs a volume mesh 
that is processed further by XtalMesh. Because fTetWild 
was not designed with the intent of multi-material meshing, 
it is the job of XtalMesh to segment the mesh according to 
the respective grains of the input microstructure. This addi-
tional processing step consists of assigning grain IDs to the 
elements of the mesh based on which grain surface mesh 
that they are located within. This grain segmentation step 
utilizes a generalized winding number algorithm for efficient 
computation of inside/outside condition [20].

XtalMesh allows users to control certain meshing param-
eters, treated as direct inputs into the fTetWild algorithm. 
These user-defined parameters include the target edge 
length, l, which determines the average element size, and 
envelope size, � , which represents the maximum deviation 
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allowed from the input surface mesh. Each parameter is 
expressed as a fractional length of the body diagonal of the 
input model b. With b, a value for l of 0.05, results in an 
average element edge length of b

20
 , assuming the input 

geometry permits such a coarse mesh without sacrificing 
mesh quality. Likewise, for the other parameter, a value for 
� of 0.001 will restrict fTetWild’s approximation of the sur-
face mesh (think re-positioning vertices) to within a distance 
of b

1000
 from the original input surface. This holds true 

regardless of the input. To demonstrate, Fig. 5 presents the 
individual effects of l and � on the mesh for the previously 
smoothed microstructure in Fig. 3. For relatively large val-
ues of l and � , a coarse mesh is created as shown in Fig. 5a. 
In the case that a more accurate representation of the input 
grain shape is desired but for a similar mesh resolution, 
smaller values of � can be used. Doing so will have the effect 
of refining the mesh in regions of the grain unable to be 
represented with the defined element size, see Fig. 5b. To 
produce a mesh that is both finer in element size and 

Fig. 4   Diagram of the meshing 
process. a Smoothed input sur-
face microstructure, b triangle 
geometry of all grain boundary 
surfaces used as input into the 
fTetWild algorithm. c Volume 
mesh output of fTetWild, which 
are the elements produced 
within grain surface meshes. 
Yet, the algorithm is still una-
ware of grain ID assignment. 
d Final mesh after segmenting 
elements according to grain IDs

Fig. 5   Visualization of meshing parameter effects for one grain 
within a synthetic microstructure meshed using three different 
choices of l and � . The resulting meshes are characterized accord-
ing to their average element size and approximation of input surface 

microstructure as (a) coarse with low precision, b coarse with high 
precision, and (c) fine with high precision. Total number of elements 
for the grain is shown in the upper right corner of each sub-figure
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provides a better approximation of the input surface mesh, 
then relatively small values for both l and � can be chosen, 
as shown in Fig. 5c.

Computational Resources and Performance

The processing time of XtalMesh and the amount of ran-
dom-access memory (RAM) it uses depend largely on the 
input data and choice of meshing parameters. To help users 
develop a effective mesh generation process within the capa-
bilities of their system, we analyze the effects that each factor 
has on total processing time and peak RAM usage for both 
the smoothing and meshing steps of XtalMesh. The results, 
presented in Table 1, indicate that for most applications, both 
computation time and peak memory usage strongly depend 
on the size of the input data. Understanding RAM usage is of 

particular importance, since available system memory will 
ultimately limit the achievable mesh resolutions and even 
input model sizes.

While the smoothing operation’s use of RAM depends 
solely on input data size, the meshing operation usage 
depends also on the target edge length l. A separate analy-
sis was conducted in which three synthetically generated 
microstructures of different size and number of grains were 
meshed for a range of l values. The results first show that 
for a given model, an intrinsic peak memory usage can be 
associated with the total triangle facet geometry that must be 
processed, and that it increases with larger input size, this is 
evident in the plateaus of memory usage for large target edge 
lengths, see Fig. 6a. Not until a target edge length value of 
1 × 10−2 or smaller does memory usage noticeably change 
for the tested models. As shown in Fig. 6b as well, the peak 
RAM usage clearly does not increase beyond that of the 
intrinsic input data memory until higher mesh resolutions, 
greater than 1 million elements for the cases tested. Based 
on the results of this analysis, it is recommended to use the 
minimum allowable input size for the desired application if 
either computation time or memory usage are of concern 
is recommended. Lastly, both the smoothing and meshing 
operations of XtalMesh benefit from parallel processing; 
therefore, it is also recommended to use all available CPU 
cores to minimize execution time.

Results and Discussion

Case Study ‑ Tribeam Data

XtalMesh is not limited to processing synthetically gener-
ated microstructures and is equally capable of generating 

Fig. 6   a Peak RAM usage during volume meshing, and (b) the number of elements generated for the synthetic model microstructures meshed 
with varying target edge length, l. The three models differ in size and number of grains

Table 1   Processing time and peak RAM usage for XtalMesh smoothing 
and meshing operations for synthetic microstructures of increasing size, 
expressed by their cube length in voxels.

The generated microstructures also have an average grain diameter of 
27 voxels. All cases were run on an Intel® Xeon® W-2145 processor 
with 14 cores

Input Size Smoothing (50 itera-
tions)

Meshing 
( l = 0.05, � = 0.001)

voxels
3 # grains time (s) RAM (GB) time (s) RAM (GB)

1003 91 50 0.8 107 0.9
1503 267 147 1.8 342 2.3
2003 587 350 3.8 787 4.4
2503 1166 678 7.0 1733 9.4
3003 1929 1231 12.0 2964 18.0
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analysis-ready mesh for experimentally obtained data. To 
demonstrate this, a case study is carried out involving a 3D 
microstructure of nickel-based superalloy IN718 collected 
by Tribeam serial sectioning [21], seen in Fig. 7a. This 
microstructural dataset was obtained at a voxel resolution 
of 1μm , and the subset chosen for this analysis contains 313 
grains. Due to inherent error introduced during the recon-
struction of the 3D dataset and alignment of electron back-
scatter diffraction (EBSD) slices, all faces of the dataset are 
flat except for those corresponding to the free surface of the 
specimen. To process non-flat surface features with XtalM-
esh, the free surface is filled with voxels until a flat surface 
is achieved as shown in Fig. 12 in Appendix. This free sur-
face “cap” of voxels is treated as a separate grain during the 
smoothing process and is removed before meshing. The final 

mesh produced is shown in Fig. 7b and contains 2,058,526 
elements.

One of the two main functions of XtalMesh is to pro-
duce a high-fidelity mesh representation of the input micro-
structure. Visual comparison of the input data and gener-
ated mesh confirms this result for the IN718 microstructure 
where practically all grain topology is preserved, including 
high aspect ratio twins found throughout the microstructure. 
The high level of fidelity achieved by XtalMesh is made 
more apparent with the grain-level comparison found in 
Fig. 7c, where the raw voxel representation of a selected 
grain is overlaid onto its generated mesh. From various 
viewing angles, it is apparent that the divergence of the gen-
erated grain mesh from its original input is largely confined 
to within a few voxel-widths. Fidelity of the mesh was also 

Fig. 7   a 3D reconstruction of Tribeam experiment dataset for IN718, 
and (b) mesh generated with XtalMesh with a star indicating the 
grain selected for further visual comparison. c Selected grain from 

the IN718 mesh (blue) with original voxel grain geometry over-
laid (transparent gray). Two viewing angles are provided. Dataset 
obtained from Stinville et al. [21]
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analyzed quantitatively, computed as the percentage of mesh 
elements found inside of their original grain voxel meshes. 
An element was determined to be inside or outside based 
on the location of its centroid with respect to its grain voxel 
mesh. From this calculation, it is determined that 98.3% of 
mesh elements generated are located inside their original 
grain volumes, this considerable overlap supports the meth-
od’s high-fidelity classification.

Apart from outputting an accurate representation of the 
input microstructure, another main function of XtalMesh is 
to produce valid, analysis-ready meshes. A mesh is consid-
ered valid if all elements have positive volume and analy-
sis-ready if the elements are of sufficiently high quality for 
numerical finite element simulations. To illustrate the valid-
ity and quality of the generated mesh, histograms of three 
different tetrahedral element quality metrics are provided in 
Fig. 8. The metrics chosen were the scaled Jacobian, shape, 
and minimum dihedral angle, as defined in The Verdict 
Library Reference Manual [22].

To further validate the mesh, we perform a full-field crys-
tal plasticity finite element (CPFE) simulation of tensile 
straining in the x-direction to a strain of 0.8%. Details of the 
constitutive law, and chosen material parameters, can be 
found in [4]. Figure 9a compares the calculated stress-strain 
curve with the experimental one. The calculated stress at 
0.8% strain corresponds roughly to the measured 0.2% offset 
yield stress. With the simulation results from this mesh, dif-
ferent CPFE variables can be analyzed, such as the von 
Mises stress field in Fig. 9b. The visualizations here are 
accomplished using the open-source software ParaView 
(https://​www.​parav​iew.​org/) [23]. While such macroscopic 
analyses and verification of grain-average response can be 
executed using much simpler microstructure representations 

like those generated by Neper, high-fidelity microstructure 
representations enable more precise verification and analysis 
methods and allow for subgrain scale correlations to be 
drawn from model results. For example, Fig. 10 shows a slip 
activity map measured from high-resolution digital image 
correlation (HR-DIC) for a region within the deformed 
IN718 microstructure in Fig.  7c, when viewing in the 
y-direction. The primary slip activity involves slip systems 
C3:

(
111

)
[101] and C5:

(
111

)
[110] . In agreement, the model 

not only indicates that these systems are active in the cross-
section seen experimentally, but also throughout the grain. 
Further, it suggests that their activity is heterogeneously 
distributed with systems C5 and C3 activated at the front- 
and back-facing regions of the grain, respectively, as can be 
seen in Fig. 11. We attribute the agreement on the local slip 
activity distribution to the high-fidelity microstructure 
representation.

Conclusions

In this work, we present XtalMesh, an open-source code 
used to generate analysis-ready meshes of polycrystals 
emphasizing high-fidelity microstructure representation. 
Given voxel microstructure data, XtalMesh smooths grain 
boundaries and triple junction lines and produces valid, 
boundary conforming tetrahedral mesh that preserves 
the underlying grain topology. This code is suitable for 
both synthetically generated and experimentally meas-
ured microstructures, even those with high aspect ratio 
lamellae, such as twins. Its containerized format allows for 
portability and simple setup on any host operating system 

Fig. 8   Tetrahedron mesh quality statistics for the generated IN718 mesh. Metrics include (a) scaled Jacobian, b shape, and (c) minimum dihedral 
angle as defined by the verdict library reference manual [22]

https://www.paraview.org/


118	 Integrating Materials and Manufacturing Innovation (2022) 11:109–120

1 3

or cloud platform. The base workflow of XtalMesh and 
its algorithms are described in detail, and a case study is 
presented involving mesh generation for a microstructure 
of the nickel-based superalloy IN718 collected by Tribeam 
serial sectioning. There, the high-fidelity classification 
of the mesh is confirmed qualitatively through visual 

comparisons with the input microstructure and quantita-
tively on a per-element basis. Finally, a crystal plasticity 
finite element simulation is performed to confirm analysis-
readiness of the mesh where macroscopic and subgrain 
scale results of the model are validated by experiment.

Fig. 9   a Engineering stress-strain curves for the IN718 material measured by experiment and simulated by CPFE with the XtalMesh model and 
(b) CPFE calculated von Mises stress field. Experimental data obtained from Stinville et al. [24]

Fig. 10   HR-DIC strain field overlaid on an EBSD map (a), and in-
plane slip displacement map (b) for a region of IN718 microstruc-
ture observed after uniaxial tension to 1.83% strain. The star in each 

subfigure denotes the grain of interest found in Fig. 7c viewed in the 
y-direction. Data obtained from Stinville et al. [24]
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Fig. 11   Calculated relative slip 
activity of slip systems C3 and 
C5 throughout the volume of 
the grain of interest found in 
Fig. 7c, seen from two view-
ing angles. Relative activity 
ranges from 100% C3 to 100% 
C5. Model data obtained from 
Stinville et al. [21]

Fig. 12   a 3D reconstruction of Tribeam experiment dataset for 
IN718. b Same Tribeam dataset viewed along the x-direction to 
visualize the rough surface, this area is filled with voxels until flat. 

c Tribeam dataset with the new surface “cap” of voxels in dark gray. 
Dataset obtained from Stinville et al. [21]

Appendix
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