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Abstract
Operating structural components experience complex loading conditions resulting in 3D stress states. Current design prac-
tice estimates multiaxial creep rupture life by mapping a general state of stress to a uniaxial creep rupture correlation using 
effective stress measures. The data supporting the development of effective stress measures are nearly always only uniaxial 
and biaxial, as 3D creep rupture tests are not widely available. This limitation means current effective stress measures must 
extrapolate from 2D to 3D stress states, potentially introducing extrapolation error. In this work, we use a physics-based, 
crystal plasticity finite element model to simulate uniaxial, biaxial, and triaxial creep rupture. We use the virtual dataset to 
assess the accuracy of current and novel effective stress measures in extrapolating from 2D to 3D stresses and also explore 
how the predictive accuracy of the effective stress measures might change if experimental 3D rupture data was available. 
We confirm these conclusions, based on simulation data, against multiaxial creep rupture experimental data for several 
materials, drawn from the literature. The results of the virtual experiments show that calibrating effective stress measures 
using triaxial test data would significantly improve accuracy and that some effective stress measures are more accurate than 
others, particularly for highly triaxial stress states. Results obtained using experimental data confirm the numerical findings 
and suggest that a unified effective stress measure should include an explicit dependence on the first stress invariant, the 
maximum tensile principal stress, and the von Mises stress.

Keywords  Creep · Crystal plasticity · Effective stress · Multiaxial creep · Triaixial stress

Introduction

High-temperature engineering components operate under 
general, triaxial, 3D stress states.1 Even conventional pres-
sure vessels have regions like nozzles where the stress 
state is not biaxial, and new types of high temperature 

components, like compact heat exchangers [1] and metal-
lic core-block in heat-pipe reactors [2], tend to result in 
complex, triaxial stress distributions. For high-temperature 
applications, creep-rupture is one of the dominant failure 
mechanisms and accurate, efficient design requires a method 
for predicting creep failure for general, multiaxial stress 
histories.

While components operate under general states of stress, 
creep experiments are widely available only for uniaxial 
and biaxial stresses. The most widely used biaxial creep test 
techniques are tension–torsion tests [3–5] and pressurized 
tubes [6, 7], often loaded with a combination of pressure and 
uniaxial tension or compression. Creep experiments for tri-
axial stress states are possible [8, 9], but the equipment cost, 
the time required to perform the experiments, and the uncer-
tainty in the stress experienced by the core of the specimen 
prevent their wide adoption. Without triaxial creep rupture 
data, engineers and designers can only estimate the creep 
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rupture life, tr , for triaxial stress states by extrapolating from 
uniaxial and biaxial experimental data. This extrapolation 
raises concerns about the accuracy of the predicted rupture 
times, especially for critical components.

The currently accepted engineering approach correlates 
the uniaxial tensile creep rupture stress with a time–tem-
perature parameter, such as the one proposed by Larson and 
Miller [10]. In general, time–temperature parameters have 
material-dependent coefficients calibrated against uniaxial 
creep rupture data. Applying this common design approach 
to a generic complex, stress state, � , requires a map from 
the general state of stress to a positive scalar stress value. 
Any linear or nonlinear map between a generic stress state 
and a positive scalar equivalent stress is an effective stress, 
�eff . The goal in developing an effective stress measure is 
to find a map such that the creep rupture times from multi-
axial and uniaxial loadings (e.g., in a creep rupture test) are 
the same if the scalar stress measures from the two load-
ing states are the same. Often effective stress models have 
material-dependent coefficients calibrated using multiaxial 
creep rupture data. For isotropic materials, a generic stress 
tensor can be described using only three independent values, 
such as the ordered principal stresses, i.e., �I ≥ �II ≥ �III , or, 
equivalently, stress invariants.

The first effective stresses were developed in the context 
of plasticity as yield criteria for multiaxial loading condi-
tions. In 1864, Tresca [11] proposed an effective stress meas-
ure, �Tresca , based on the maximum shear theory. In 1913, 
von Mises [12] noticed that a yield surface based upon �Tresca 
exhibits singularities and proposed a new measure, �VM , 
based on the maximum distortional energy. Being developed 
for classical plasticity, both the Tresca and the von Mises 
stresses neglect the influence of the hydrostatic stress and 
they cannot discriminate between tension and compression. 
More importantly, for a pure hydrostatic loading conditions 
�VM = �Tresca = 0 . Nevertheless, both measures are used as 
creep effective stresses.

Sdobyrev introduced the idea of creep-specific effective 
stress measures with material-dependent parameters. He 
noted the creep rupture life of pure copper correlates well 
with the maximum tensile principal stress ( ⟨�I⟩ ), the life of 
aluminum correlates well with the von Mises stress, and the 
creep life of some high-temperature structural alloys falls 
between these extremes. Here, the angled brackets, i.e., ⟨x⟩ , 
are the Macaulay brackets. Given this evidence, Sdobyrev 
proposed an effective stress, �Sd , defined as a linear combi-
nation of the von Mises stress and maximum tensile prin-
cipal stress.

Hayhurst and co-workers [13–16] pointed out that the 
measure proposed by Sdobyrev does not accurately pre-
dict the creep rupture life of materials that are sensitive to 
the hydrostatic stress. Therefore, they proposed a different 
measure, �HLM , which expands the Sdobyrev definition by 

including the absolute value of the first stress invariant, i.e., 
I1 = �I + �II + �III . Neglecting the sign of the first stress 
invariant is an unusual choice for creep applications because 
it implies a negative hydrostatic stress promotes creep dam-
age. However, Hayhurst and co-workers focused on pressur-
ized thin-walled structures and therefore compression was 
not expected.

Huddleston used a different approach and proposed a 
measure, �Hudd , that can discern between the effect of posi-
tive and negative hydrostatic stress [17]. Huddleston used 
an exponential function including the first stress invariant to 
scale the von Mises stress and demonstrated that �Hudd is 2–5 
times more accurate than the Tresca and von Mises measures 
[18, 19] when predicting the rupture time of biaxial creep 
experiment results. However, Huddleston’s model does not 
explicitly account for the effect of the maximum tensile prin-
cipal stress, which was deemed crucial for some materials 
by his predecessors. Several high-temperature design codes, 
such as Section III, Division 5 of the ASME Boiler and Pres-
sure Vessel Code [20], the fitness-for-service manual FFS-1 
[21] and the British R5 [22], adopt the Huddleston stress.

Other effective stress measures are currently used in the 
literature and by other high temperature design codes. For 
instance, the French high-temperature nuclear code, RCC-
MRx [23], allows the use of two different measures, both 
including the effect of the first stress invariant. The first 
measure, �RCCVM

 , is a linear combination of the von Mises 
stress and the first stress invariant. The other measure, 
�RCCTresca

 , is similar to the first but includes �Tresca instead of 
the von Mises stress. The variety of equivalent stress meas-
ures used in the literature and for design purposes raises the 
question of which measure is more accurate and if there is 
any measure that is accurate for all materials. To the knowl-
edge of the authors, no comprehensive review comparing the 
accuracy of different stress measures for multiple materials 
exists.

Physics-based, micromechanical models, including the 
dominant damage mechanisms, can be used to extrapolate 
a material response to loading conditions for which experi-
mental data are not readily available. Creep rupture is the 
final effect of grain boundary cavitation, which is caused 
by the accumulation of points and line defect at preferably 
oriented grain boundaries. Messner et al. [24] were first 
to present a three-dimensional crystal plasticity finite ele-
ment framework including grain boundary cavitation and 
grain boundary sliding. This paper employs such a model to 
examine creep rupture under arbitrary, 3D states of stress for 
Grade 91, which is a ferritic-martensitic steel.

This work has three goals: (i) assess the accuracy of 
effective stress measures calibrated against biaxial creep 
data when used to estimate the creep rupture life for tri-
axial stress states, (ii) assess if the availability of triaxial 
creep rupture data would improve creep life predictions, and 
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(iii) assess if any of the investigated stress measures can 
be considered universally accurate for all stress states and 
materials. For the first and second goals, we use the results 
of crystal plasticity finite-element simulations for Grade 91 
to construct a complete data set of synthetic creep rupture 
data for uniaxial, biaxial and triaxial stress states. We use 
synthetic uniaxial creep rupture data to construct a piece-
wise log-linear uniaxial creep rupture correlation. Then, we 
calibrate each effective stress measure’s material-specific 
parameters, if any, using only synthetic biaxial results and 
evaluate their accuracy as creep-rupture predictors by com-
puting the relative mean square error against the synthetic 
creep rupture time for triaxial stress states. This approach 
mimics the current engineering approach and assesses the 
feasibility of extrapolating from biaxial rupture data. Also, 
to gain further insights into the extrapolation ability of each 
metric, we investigated the relationship between the signed 
relative error and the triaxiality factor. To assess the impor-
tance of performing triaxial creep tests, we then include syn-
thetic triaxial rupture data in the calibration set and reassess 
the accuracy of each effective stress measure. Finally, we 
use available biaxial experimental rupture data from the 
literature to evaluate the different stress measures against 
experimental data and determine if the measures found to 
be the most accurate against the simulation results for Grade 
91 remain accurate when applied to other materials, using 
actual biaxial rupture measurements.

Methodologies

Constitutive Models

The grain model and the grain boundary cavitation model 
used in this work are the one proposed in [24]. In this sec-
tion, we present the equations and describe the key features 
of the model. The model parameters used in this work were 
calibrated to describe the behavior of Grade 91 at 600 ◦C . 
For a more detailed discussion, refer to [24].

The Grain Model

Experimental results from [25, 26] exhibit a sudden change 
in slope of the minimum creep rate as a function of stress. 
In both studies, the authors related the change in slope to a 
switch between two different creep deformation mechanism. 
At low stress levels, the stress exponent of Grade 91 is almost 
unity, thus suggesting the main deformation mechanism is the 
diffusion of point defects. At high stress levels, dislocation 

creep becomes predominant, and stress exponent increases 
approximately to 12. Both mechanisms are active within the 
grains at the same time and contribute to the measured creep 
strain; hence, in the numerical model both mechanism must 
contribute to the rate of deformation tensor:

The grain model uses a linear stress-based relationship to 
incorporate the effect of diffusion creep:

where s is the deviatoric part of the Cauchy stress and A is 
the self-diffusion coefficient.

Dislocations glide and climb on preferred crystallo-
graphic planes and directions. The model incorporates dis-
location creep within a grain using crystal plasticity, and 
includes the apparent hardening behavior exhibited by Grade 
91 using an isotropic Voce hardening model:

where r is the slip system index, nr is a slip system unit 
normal, mr is a slip system unit direction vector, �r is the 
resolved shear stress, 𝛾̇r the slip system shear rate, �w is the 
work hardening contribution to the slip resistance, and Nss 
is the number of slip systems. In this work, we consider only 
the 12 slip systems belonging to the ⟨111⟩{110} family.

Table 1 presents the coefficients for the grain model used 
in the simulations.

(1)D = Ddiff + Ddisl

(2)Ddiff = As

(3)Ddisl =

Nss∑
r=1

𝛾̇rsym(mr ⊗ nr)

(4)𝛾̇r = 𝛾̇0

(
𝜏r

𝜏0 + 𝜏w

)n

(5)𝜏̇w = 𝜃0

(
1 −

𝜏w

𝜏sat

) Nss∑
r=1

|𝛾̇r|

Table 1   Grain bulk material parameters for Grade 91 at 600 ◦
C

Symbol Description Value Units

E Young’s modulus 150 × 103 MPa
� Poisson’s ratio 0.285 Unitless
n Voce hardening exponent 12 Unitless
�0 Initial slip resistance 40 MPa
�
sat

Saturation slip resistance 12 MPa
�0 Slip hardening constant 66.67 MPa h−1

𝛾̇0 Prefactor 9.55 × 10−8 Unitless
A Diffusional creep constant 1.2 × 10−9 MPa−1 h−1
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Grain Boundary Cavitation Model

The grain boundary cavitation model presented here extends 
the model proposed by Messner et al. [24] from purely vis-
cous to visco-elastic, using a Maxwell model [2]. The grain 
boundary model stems from the work of Sham and Needleman 
[27, 28] on the effect of mass transport and stress triaxial-
ity on grain boundary void growth. Van der Giessen and co-
workers extended the Sham and Needleman model to higher 
triaxiality values [29, 30] and proposed a continuous cavity 
nucleation model based on stress and accumulated creep strain 
[31]. Messner et al. also extended the grain boundary sliding 
model proposed by Ashby and colleagues [32–34] to include 
the effect of grain boundary sliding on creep damage.

Grain boundary opening is related to the average cavity size 
and spacing. The cavity growth rate, ȧ , is described in terms 
of cavity volume rate, V̇ , which has two terms: the first term, 
V̇D , accounts for the effect of the opening traction and the grain 
boundary diffusivity, and the second term, V̇ triax , accounts for 
the of effect of stress triaxiality and the accumulated creep 
strain experienced by the material in proximity of the grain 
boundary. In this work, we define the triaxiality factor as:

With this definition, Tf = 1 for tensile uniaxial loading con-
ditions. The grain boundary porosity, which is the square of 
the ratio between the cavity size, a, and the cavity spacing 
b, represents the damaged grain boundary area fraction. The 
cavity nucleation model describes the cavity spacing evo-
lution, ḃ , as function of the opening traction TN and local 
creep deformation rate. Cavity nucleation begins only after 
the neighboring grains have accumulated sufficient plastic 
strain. Equations 7–18 fully define the grain boundary cavi-
tation model, and Table 2 contains the calibrated parameter 
values and their descriptions.

(6)Tf =
I1

�VM

(7)ȧ =
V̇

4𝜋h(Ψ)a2

(8)

ḃ =

⎧⎪⎨⎪⎩
− 𝜋b3FN

�⟨TN⟩
Σ0

�𝛽

𝜀̇C
eq

after

�⟨TN⟩
Σ0

�𝛽

∫ t

0
�𝜀̇C

eq
�dt ≥ NI

FN

0 otherwise

(9)

ṪN =

(
[[u̇]]N −

V̇
(
TN

)
𝜋b2

)
w

EGB
a

b

ṪS1∕2 =

(
[[u̇]]S1∕2 −

TS1∕2

𝜂GBfS

)
w

GGB
a

b

(10)V̇ = V̇D + V̇ triax

(11)V̇D = 8𝜋D
TN

q(f )

(12)

V̇ triax =

⎧⎪⎨⎪⎩

2𝜀̇C
eq
a3𝜋h(Ψ)m

�
𝛼n� Tf3 � + 𝛽n(m)

�n

if � Tf
3
� ≥ 1

2𝜀̇C
eq
a3𝜋h(Ψ)

�
𝛼n + 𝛽n(m)

�n Tf

3
if � Tf

3
� < 1

(13)with

(14)

f = max

(
a2

(a + 1.5L)2
,
a2

b2

)
L =

(
D𝜎VM

𝜀̇C
eq

) 1

3

fS =

{
1 if

a

b
≤ 0.5

2
(
1 −

a

b

)
if

a

b
> 0.5

(15)q(f ) = 2 log

(
1

f

)
− (1 − f )(3 − f )

(16)h(Ψ) =

(
1

1 − cos (Ψ)
−

cos (Ψ)

2

)
1

sin (Ψ)

(17)m = sign
(
�H

)
�(m) =

(n − 1)
[
n + g(m)

]
n2

Table 2   Grain boundary cavitation material parameters for Grade 91 
at 600 ◦

C

Symbol Description Value Units

� Traction nucleation exponent 2 Unitless
n
GB

Creep rate exponent 5 Unitless
a0 Initial cavities half radius 5 × 10−5 mm

b0 Initial cavities half spacing 0.06 mm

D Grain boundary diffusion 
coefficient

1 × 10−15 mm3 MPa−1 h−1

Ψ Cavity half tip angle 75 ◦

Σ0 Traction normalization 
parameter

200 MPa

FN

NI

Normalized nucleation rate 
constant

2 × 104 Unitless

Nmax

NI

Normalized maximum cav-
ity density

1 × 103 Unitless

E
GB

Interface Young modulus 150 × 103 MPa
G

GB
Interface in-plane Shear 

modulus
58.63 × 103 MPa

�
GB

Sliding viscosity 1 × 106 MPa h mm−1
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Simulations Setup and Time to Rupture Definition

The simulations imitate the triaxial creep test methodology 
proposed by Sakane and Hosokawa [9], applying a differ-
ent constant axial stress on each side of a cubic specimen. 
Block periodic boundary conditions remove the free surface 
effects, and constant force boundary conditions mimic the 
imposed dead-load in creep tests, Fig. 1a. In the simulations, 
the virtual specimen is a representative volume element 
including 100 randomly oriented, equiaxed grains, with an 
average diameter of 60 μm , Fig. 1b. Messner et al. showed 
that using 100 grains is enough to reproduce the macro-
scopic material behavior for Grade 91 using block periodic 
boundary conditions. We used NEPER [35] to generate the 
representative volume element, and the Coreform applica-
tion to generate the mesh. These simulations can impose 
arbitrary loading conditions, including stress states that are 
difficult to achieve experimentally.

We ran uniaxial simulations at four stress magnitudes: 
60 MPa, 100 MPa, 140 MPa and 180 MPa. The simula-
tions also explore the multiaxial stress space by applying 
all possible combinations of principal stresses from the 
list −180 MPa, −140 MPa, −100 MPa, −60 MPa, 0 MPa, 
60 MPa, 100 MPa, 140 MPa and 180 MPa, but always 
including a tensile first principal stress �I , i.e., 𝜎I > 0 , and 
with a third principal stress satisfying |�III| ≤ �I , for a total 
of ninety-one simulations. To avoid extrapolating beyond the 
calibration limit of the time to rupture correlation, we only 
retain virtual experiments generating a creep rupture time 
within the range of the uniaxial rupture simulations.

We had to select a failure criterion to obtain an objec-
tive time to rupture from the simulations. Achieving com-
plete failure in multiaxial, stress-controlled simulations is 
numerically challenging and computationally expensive. 

(18)g(1) = log (3) −
2

3
g(−1) =

2�

9
√
3

g(0) = 0 �n =
3

2n

Creep strain cannot be used as a failure criterion because 
the triaxiality factor influences creep ductility [36–39]. Dila-
tion, i.e., the fractional volume increase, is associated with 
the growth of creep cavities, mostly on internal boundary 
surfaces. Graverend et al. [40] showed that the fractional 
volume increase is almost stationary during primary and 
secondary creep and suddenly increases before rupture, sug-
gesting a dilation value can be used as a proxy for creep rup-
ture time. Therefore, we select as failure criterion the time at 
which the net volume of the simulated RVE increases by 2%, 
i.e., t2%

r
 . The calculated net volume increase only includes 

volume changes induced by the grain-boundary opening. We 
identified the critical dilation value by performing a sensi-
tivity analysis on the critical cavity volume we associate 
with failure. The results presented here are insensitive to 
the critical cavity volume fractions values ranging from 1 
to 5%. A dataset containing the simulated stress states and 
corresponding rupture times is available for download [41]. 
We assess the accuracy of various effective stress measures 
against the simulation database assuming t2%

r
 accurately rep-

resents the rupture time. In this work, uncertainties related 
to different microstructural features such as grain shape, 
grain size, texture, etc., or grain boundary cavitation model 
kinetics and parameters were not considered because of 
the numerical cost associated with a rigorous uncertainty 
analysis.

Uniaxial Time to Rupture Correlation

At a fixed temperature a simple creep rupture model can be 
used to correlate the stress with rupture time:

where A and n are material-dependent parameters. Equa-
tion 19 is accurate if the rupture time versus stress is lin-
ear in log-log space. At 600 ◦C , the Grade 91 creep rupture 
curve exhibits a change in slope around 100 MPa [42, 43], 

(19)tr = A
(
�eff

)n

Fig. 1   a Schematic depicting 
the imposed block-periodic and 
applied constant force boundary 
conditions; b The representa-
tive volume element used in the 
simulations
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and the micro-mechanical model replicates this shift. There-
fore, the creep rupture model used here captures the uniaxial 
stress dependence using a piecewise log-linear correlation. 
All the rupture data (uniaxial and multiaxial) fall within the 
times covered by this piecewise log-linear rupture correla-
tion, so, the results here only require interpolating within the 
uniaxial rupture model predictions. This approach separates 
the two problems of extrapolating uniaxial rupture data in 
time (not addressed here) and using uniaxial and biaxial rup-
ture data to predict failure under triaxial stresses (the focus 
of this work). Table 3 shows the calibrated coefficients for 
all stress ranges. Figure 2 depicts the piecewise log-linear 
time to rupture relationship.

Experimental Data

To assess the effective stress models against experimen-
tal data, we consider three structural, high-temperature 
materials: stainless steel 304 (SS304), stainless steel 316 

(SS316) and Inconel 600 (IN600). These materials have a 
face-centered cubic structure, and we used biaxial creep 
experimental data and uniaxial time to rupture correlations 
from [17–19], for SS304, SS316 and IN600, respectively. 
Experimental data and the uniaxial correlation coefficients 
are available for download at [41].

Effective Stress Measures Definitions 
and Calibration

This work considers all the effective stress measures men-
tioned in the introduction, defined by Eqs. 20–26, and three 
additional effective stresses: 

1.	 The maximum between the tensile first principal stress 
and the von Mises stress, �max (�VM ,⟨�I⟩) (Eq. 27)

2.	 An extension of the Huddleston stress using �Sd as pref-
actor instead of �VM , �NEW1 (Eq. 28)

3.	 A further modification to Huddleston stress, where both 
the prefactor and the exponential term are function of 
�Sd , �NEW2 (Eq. 29)

In these equations � and � are material-dependent param-
eters, and SS is the distance from the origin in stress space, 
i.e., SS =

√
�2
I
+ �2

II
+ �2

III
 . All the effective stress measure 

are defined to be non-negative. The bounds and constraints 
for the effective stress parameters in Eqs. 20–29 are:

•	 0 ≤ � ≤ 1 for Eq. 22,
•	 0 ≤ � ≤ 1 for Eqs. 25 and 26,
•	 0 ≤ � ≤ 1 , 0 ≤ � ≤ 1 , with � + � = 1 , for Eq. 23, and
•	 0 ≤ � ≤ 1 and � ≥ 0 for Eqs. 24, 28, 29.

The material parameter � is always the coefficient related 
to the tensile first principal stress, while the parameter � 
is always related to the first stress invariant. The material 
parameters � and � should be defined so that the stress meas-
ure is always positive. Since simulations include the evo-
lution of creep damage via the grain boundary cavitation 
model, the calculated time to rupture, and thus the optimized 
material parameters, implicitly account for material damage 
evolution. Furthermore, since the calculated rupture time is 
based on a critical void volume fraction, results are inde-
pendent from the macroscopically observed creep ductility 
variation.

(20)�Tresca = �I − �III

(21)�VM =

√(
�I − �II

)2
+
(
�I − �III

)2
+
(
�II − �III

)2
2

Fig. 2   Piecewise log-linear stress/time to rupture model constructed 
using the simulated uniaxial creep rupture results for Grade 91 at 
600

◦
C

Table 3   Coefficients of the piecewise log-linear creep rupture and 
the associated stress ranges constructed using the simulated uniaxial 
creep rupture results for Grade 91 at 600 ◦

C

Stress in MPa, time in h

stress range A n

60 ≤ 𝜎eff < 100 9.73e+11 −3.68

100 ≤ 𝜎eff < 140 2.65e+18 −6.90

140 ≤ �eff ≤ 180 3.89e+12 −4.18
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In the following, we distinguish between effective stress 
measures with an explicit dependence on the first stress invari-
ant I1 and those that do not, i.e., measures with and without a 
� parameter. This distinction is subtly different than stating an 
effective stress measure does or does not depend on pressure. 
Of the invariants used to define the effective stress measures 
considered here, �Tresca and �VM do not depend on the pres-
sure at all—they are strictly functions of the deviatoric stress 
and superimposing an arbitrary pressure does not change the 
values of these invariants. The other invariants—⟨�I⟩ , I1 , and 
�SS—do vary with the pressure. However, only I1 scales lin-
early with an increase in pressure. If the material has a failure 
mechanism that scales with the applied pressure, then I1 best 
describes this volumetric mechanism. However, other invari-
ants, including �I , partly account for the pressure dependence, 
particularly for moderately triaxial stress states.

We minimize the mean absolute relative error to find the 
best-fit parameters (for the models with parameters). The 
creep rupture life spans several orders of magnitude and the 
relative error normalizes these differences. For example, a 
100 h error is much more severe when considering a creep 
rupture time of 1000 h versus 100000 h. The relative error 
definition is:

where tr is the real time to rupture and tp is the rupture time 
predicted using Eq. 19 and the calibrated coefficients. In 
the following discussion, we also define the mean absolute 
relative error as:

(22)�Sd(�) = �⟨�I⟩ + (1 − �)�VM

(23)�HLM(�, �) = �⟨�I⟩ + ��I1� + (1 − � − �)�VM

(24)�Hudd(�) = �VM exp

[
�

(
I1

SS
− 1

)]

(25)�RCCVM
(�) = (1 − �)�VM + �I1

(26)�RCCTresca
(�) = (1 − �)�Tresca + �I1

(27)�max (�VM ,⟨�I⟩) = max
�
�VM , ⟨�I⟩

�

(28)�NEW1(�, �) = �Sd(�) exp

[
�

(
I1

SS
− 1

)]

(29)�NEW2(�, �) = �Sd(�) exp

[
�

(
I1

�Sd(�)
− 1

)]

(30)erel =
tp − tr

tr

where i is the index referring to a specific datapoint, wi is a 
weight factor, and N is the total number of training data. For 
simulations, the weight wi = 1 . For repeated experiments, 
wi =

1

M
 , where M is the number of experiments with the 

same stress state.
The effective stress parameters were calibrated twice, once 

using only biaxial simulation results (i.e., stress states with 
two nonzero principal stresses) and then once again using all 
multiaxial simulation results, including triaxial loads. Hence-
forth, we will refer to the first case as Fit2D and to the second 
case as Fit3D. For experiments, the effective stress parameters 
were calibrated once for each material using all the available 
experimental results, which only includes biaxial stress states.

Two of the investigated effective stress measures, i.e., 
�RCCVM

 and �RCCTresca
 , can return negative values if 𝛽 > 0 and 

I1 is sufficiently negative. To deal with this, if during the opti-
mization a negative effective stress value is returned, then a 
very large penalty, i.e., 1 × 106 , is added to the error, e. This 
approach provides effective stress parameters always returning 
a positive effective stress for all the training data. Constraints 
are imposed using the Lagrange multiplier approach, and 
hence the Lagrangian function to optimize is:

where x is the vector of material parameters, � is the vector 
of Lagrange multipliers, and g are the constraints.

We optimized the parameter using the constrained trust-
region algorithm available in the SciPy [44] package. The 
trust region method is a local optimization technique that 
at each step searches for a minimum of the cost function 
within a region of size Δ . Using a quadratic approximation 
function the trust algorithm repeatedly solves the follow-
ing problem until the norm of the step, s, is below a certain 
tolerance:

where x is the solution vector at the previous iteration and 
includes Lagrange multipliers, B is the Hessian matrix, and 
s is the step vector. The trust region algorithm increases or 
reduces Δ based on the ratio Δf

Δm
 calculated using two con-

secutive steps. For a more detailed description of the trust 
region method, refer to [45].

The trust region method is a local optimizer; thus to ensure 
convergence to a global minimum, we used multiple initial 
guesses evenly distributed in the feasible region of the solution 

(31)e =
1

N

N∑
i=1

||wi ⋅ ereli ||

(32)f (x, �) = e +
∑
q

�qgq(x)

(33)
minimize m(s) = f (x) + sT ⋅ ∇fx +

1

2
sTBxs

subject to: ‖s‖ ≤ Δ
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space and then took the lowest, best minimum resulting from 
these grid calculations.

Results and Discussion

Extrapolating from Biaxial Data Using Simulated 
Creep Rupture Data

In this section, we use the simulated creep rupture life for 
Grade 91 at 600 ◦C to assess the accuracy of biaxial cali-
brated effective stress measures when predicting the rupture 
time for triaxial stress states. Table 4 shows the optimized 
material parameters calibrated against simulation results 
for two case: (i) when only biaxial creep rupture data are 
included in optimization dataset, i.e., Fit2D, and (ii) when 
the optimization includes both the biaxial and triaxial stress 
states, i.e., Fit3D.

We then compute the relative mean error for three cases: 
(i) using the effective stress parameters optimized using only 
biaxial data and the associated error against the biaxial simu-
lations, i.e., Fit2D-data2D, (ii) using the biaxial calibrated 
parameters and the mean relative error computed using both 
biaxial and triaxial data, i.e., Fit2D-data3D, and (iii) using 
the optimal effective stress parameters optimized using biax-
ial and triaxial data and the error against both the biaxial and 
triaxial simulations, i.e., Fit3D-data3D. Table 5 summarizes 
the synthetic creep rupture times used for calibrating mate-
rial parameters and for computing the mean absolute relative 
error for the three different cases.

The first case, Fit2D-data2D, mimics the current engi-
neering approach, the second case, i.e., Fit2D-data3D, 
provides insights on the extrapolation accuracy of the 

investigated effective stress measures, and the third case, i.e., 
Fit3D-data3D, evaluates the benefits of performing creep 
experiments for triaxial stress states. Table 6 summarizes 
the resulting mean absolute relative errors.

Figure 3 visually compares the three different errors for 
all the measures.

We start by analyzing the results for the Fit2D-data2D 
case. Blue bars in Fig. 3 represent the mean absolute rela-
tive error for this case. The results show that all the effective 
stress measures perform equally well, with �Tresca generating 
the largest error of 35%. For creep rupture, errors up 100% 
can be acceptable, given that heat-to-heat variability in rup-
ture life commonly exceeds a factor of 2, and it can reach a 
factor of 10 for low-stress, high temperature conditions [46]. 
Among the measures available in the literature, �Sd and �HLM 
generate the smallest errors, i.e., 10%, 9%, respectively, and 
the measure proposed by Huddleston is in the middle at 19%. 
The measures used by RCC-MRx also exhibit small errors. 
The fact that all the measures are about equally effective for 
the Fit2D-data2D case may explain why the scientific and 
engineering communities do not agree on the best effective 
stress measure, and why different high-temperature design 
codes and fitness-for-service manuals adopt different effec-
tive stress measures.

Table 4   The optimum value of the calibrated material parameters

Column Fit2D contains the parameters calibrated using biaxial stress 
states. The parameters in column Fit3D are optimized using biaxial 
and triaxial stress states. Coefficients � and � are always related to 
the maximum tensile principal stress and to the first stress invariant, 
respectively

Measure Fit2D Fit3D

� � � �

�
VM

�Tresca

�
Sd

0.232 0.307 
�
HLM

0.181 0.017 0.249 0.020
�Hudd 0.002 0.022
�
RCCVM

0.052 0.097
�
RCCTresca

0.011 0.098
�max(⟨�I ⟩,�VM )
�
NEW1 0.213 0.001 0.302 0.000

�
NEW2 0.185 0.017 0.232 0.026

Table 5   Synthetic creep rupture used for the calibration process and 
to compute the mean absolute relative error

Calibration Mean absolute rela-
tive error

Biaxial Triaxial Biaxial Triaxial

Fit2D-data2D X X
Fit2D-data3D X X X
Fit3D-data3D X X X X

Table 6   Mean relative errors for all the measures

The column headers fit2D and fit3D identify the data used for effec-
tive stress coefficient optimization

Measure Fit2D Fit3D

data2D data3D data3D

�
VM

0.24 3.98 3.98
�Tresca 0.35 3.94 3.94
�
Sd

0.10 0.37 0.22
�
HLM

0.09 0.36 0.21
�Hudd 0.19 3.22 0.68
�
RCCVM

0.14 0.73 0.27
�
RCCTresca

0.35 2.65 0.39
�max(⟨�I ⟩,�VM ) 0.24 0.59 0.59
�
NEW1 0.08 0.39 0.22

�
NEW2 0.09 0.35 0.21
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When considering the Fit2D-data3D case, i.e., when 
using biaxial calibrated effective stress coefficients to pre-
dict the creep life for triaxial stress states, not all measures 
behave well. Orange bars in in Fig. 3 represent this case. In 
this situation, �VM , �Tresca , �Hudd and �RCCTresca

 generate errors 
larger than 250%. In contrast, �Sd and �HLM produce very 
small errors, i.e., 37% and 36%, respectively.

None of the measures available in the literature have both 
good extrapolation ability and an explicit, consistent depend-
ence on the first invariant. Among the measures with good 
extrapolation ability, the one proposed by Sdobyrev does not 
include the first stress invariant, the measure introduced by 
Hayhurst does not distinguish between positive and negative 
values of the first stress invariant, and �RCCVM

 could return 
a negative effective stress for some values of applied stress, 
which is undesirable as it means it cannot be used to predict 
rupture life for an arbitrary state of stress. The Huddles-
ton effective stress is the only one that discerns between 
positive and negative values of the first stress invariant, but 
it does not accurately extrapolate from biaxial to triaxial 
stress states. Therefore, we introduce two additional effective 
stress measures, both using Huddleston exponential form 
and the Sdobyrev measure: �NEW1 and �NEW2 . The only dif-
ference between the two proposed measures is the effective 
stress value used to scale the first stress invariant inside the 
exponent. The first measure uses the term proposed by Hud-
dleston, i.e., SS, the second one uses the Sdobyrev stress. 
Both formulations are inspired by the definition of stress tri-
axiality, i.e., I1∕�VM , but use as a scaling factor an effective 

stress returning a nonzero value for pure hydrostatic loading 
cases. When considering the Fit2D-data3D case, both the 
proposed effective stress measures produce very small errors 
and possess good extrapolation ability, with �NEW2 generat-
ing slightly lower mean absolute relative error than �NEW1.

Lastly, we present results for the hypothetical case where 
real triaxial creep experimental data are available, i.e., Fit3D-
data3D. Green bars in in Fig. 3 represent this scenario. 
Results obtained using simulated creep rupture times show 
the availability of experimental triaxial creep rupture data 
would significantly increase the accuracy of predictions for 
all the effective stress measures with material-specific param-
eters. In most cases, the error would drop below 50%, thus 
greatly improving creep rupture life estimates. This would 
lead to significantly more accurate creep rupture predictions 
under multiaxial stress states in structural components

Most effective stress measures have material-specific 
parameters requiring calibration against at least some 
multiaxial rupture data. From the literature models, only 
�Tresca and �VM do not have configurable parameters and 
these are both very inaccurate when compared to simu-
lated triaxial rupture data. An accurate, parameter-free 
effective stress measure could be useful, for example in 
preliminary design assessments to evaluate the suitabil-
ity of new materials. Inspired by the good extrapolation 
ability of the Sdobyrev measure, we proposed an addi-
tional parameter-free effective stress, �max(⟨�I⟩,�VM) . Results 
shows �max(⟨�I⟩,�VM) would produce small errors for both the 
data2D, data3D cases, 24% and 59%, respectively.

Fig. 3   Errors bar plot for the 
investigated effective stress 
measures obtained using simu-
lation’s results for Grade 91 at 
600

◦
C , and the time to 2% void 

volume fraction as a proxy for 
failure. In the legend fit2D and 
fit3D identify the data used for 
fitting. Also data2D and data3D 
refers to which data have been 
used to calculate the error. The 
suffix 2D refers only to biaxial 
data, the suffix 3D refers to 
biaxial plus triaxial data
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Figure 4 depicts the signed relative error as function of 
the triaxiality factor for the Fit2D-data3D case. According 
to Eq. 30, a positive error means the model overestimates 
the creep rupture life, and −1 is the lower bound.

These results show the error depends on the triaxiality 
factor and on the choice of the effective stress measure. The 
triaxiality space can be divided into three regions, low (i.e., 
Tf ≤ 2 ), moderate (i.e., 2 < Tf ≤ 5 ), and high (i.e., Tf > 5 ). 
In the low-triaxiality regime, the error generated by triaxial 
and biaxial stress states is comparable. Using biaxial cali-
brated measures to estimate the creep life for triaxial stress 
states within this regime does not introduce large errors. 
Results in the high-triaxiality regime suggest measures can 
be divided into two categories: (i) measures whose error 
increases with the triaxiality factor, i.e., �VM , �Tresca , �Hudd , 

and �RCCTresca
 , and (ii) measures whose error saturates at high 

triaxiality values, i.e., �Sd , �HLM , �NEW1 , �NEW2 , �RCCVM
 , and 

�max(⟨�I⟩,�VM) . Notice that data points for �NEW1 , �NEW2 , �Sd , 
�HLM are difficult to distinguish in Fig. 4 because they over-
lap. The current analysis does not rigorously demonstrate 
that this saturation trend provides an upper bound on error 
for highly triaxiality load conditions, but it is suggestive.

The low- and moderate-triaxiality regimes are the most 
relevant to engineering applications. Figure 5 provides 
an enlarged view of the signed relative error within these 
regimes. Triaxiality factors above five are typical of very 
sharp notch geometries and cracks [47] and therefore are 
likely precluded in the initial design of a component. Fur-
thermore, some high-temperature design codes, such as Sec-
tion III, Division 5 of the ASME BPV, limit the allowable 

Fig. 4   Scatter plot of the signed 
relative error for all simulation 
results. Effective stress param-
eters were calibrated using only 
biaxial stress states

Fig. 5   Enlarged view of Fig. 4 
emphasizing medium and low 
triaxiality regimes
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stress triaxiality. In the moderate-triaxiality regime, the 
measures exhibiting a saturating error are far more accurate 
than the others. Figure 5 shows �Sd , �HLM , �NEW1 , and �NEW2 
produce signed relative errors within ±25% band. Further-
more, �max(⟨�I⟩,�VM) always provides conservative results, 
e.g., negative signed relative errors, particularly with larger 
margin in the intermediate triaxiality regime. These results 
suggest that when selecting an effective stress measure for 
components designed to operate at moderate triaxiality val-
ues, one should prioritize a measure exhibiting a saturating 
behavior. The results presented in this section do not account 
for the experimentally observed creep rupture life variability 
because our model is deterministic.

Extrapolation in Time

Creep rupture experiments, including biaxial tests, are com-
monly available only for short rupture times where dislo-
cation creep is the dominant mechanism. Designers must 
therefore calibrate uniaxial rupture correlations and param-
eters for effective stress measures against comparatively 
short-term data and then extrapolate in time to reach realis-
tic component design lives. Empirically, the uniaxial creep 
rupture correlation of many materials exhibits a change in 
slope below a particular stress value, see for instance [42, 
43]. This shift in slope corresponds to a physical mechanism 
change: at low stress levels, diffusion creep becomes the 
dominant deformation and damage mechanism. As men-
tioned previously, predicting the shift in the uniaxial creep 
rupture correlation is not the focus of this paper. We did 
assess the accuracy of the effective stress measures against 
the numerical data applying an inaccurate uniaxial rupture 
correlation that simply extrapolates from the short-term data 

log-linearly, missing the mechanism shift. When using this 
uniaxial rupture correlation the effective stress measures do 
not accurately predict the long-term multiaxial failure simu-
lations. This result is tautological—an inaccurate uniaxial 
rupture correlation produces similar errors even for uniaxial 
failure. However, the question of extrapolation from short-
term biaxial data to long-term triaxial failure is relevant to 
this work.

In this section, we use the simulated creep-rupture data 
for Grade 91 to investigate: (i) the loss in accuracy when 
predicting the long-time multiaxial creep rupture time using 
effective stress measures calibrated only against short-time 
biaxial data, and (ii) the potential benefits of performing 
long-time biaxial creep rupture experiments. For the remain-
der of this section, we refer to short-time creep rupture data 
as all virtual experiments with a simulated creep rupture 
time t2%

r
≤ 42160 h , which is the creep rupture time for the 

uniaxial case at 100 MPa. At 600 ◦C , this value indicates 
the mechanism shift from dislocation to diffusional creep 
based both on the underlying crystal plasticity model [24, 
48] and on experimental data [42, 43]. In what follows, we 
present results only for the �NEW1 effective stress measure. 
However, we obtained similar results for all other effective 
stress measures with configurable parameters.

Figure 6a–c shows the predicted versus the simulated 
creep rupture time for three cases: (i) when calibrating 
the effective stress measure parameters using all avail-
able biaxial simulation data, (ii) when calibrating effec-
tive stress measure parameters using only short-time 
biaxial data, and (iii) when calibrating effective stress 
measure parameters separately for long and short-time 
creep rupture times, using different parameters sets in 
the two regions. This final case corresponds to a region-
split approach for uniaxial rupture correlations. Table 7 

(a) (b) (c)

Fig. 6   The predicted versus the simulated creep rupture time gen-
erated using the �

NEW1 effective stress measures calibrated using: 
a all available biaxial data, b only short-time biaxial data, i.e., 
t
2%
r

≤ 42160 h , and c different parameters for short and long creep 

rupture times. Dash dotted lines identify the ±100% limits, the verti-
cal dashed line separates the short- and long-time regions. The colors 
represent the triaxiality factor of each virtual experiment
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summarizes the calibrated parameters for �NEW1 for the 
three cases. The first case is exactly the same as the 
Fit2D-data3D case presented in Sect. “Extrapolating from 
Biaxial Data Using Simulated Creep Rupture Data,” the 
second case represents the current engineering approach 
where effective stress measures are used beyond their 
calibration range, and the third case provides insight into 
how effective stress models depend on the active creep 
mechanism. In Fig. 6, the vertical dashed lines separate 
the short and long-time regions, the diagonal dashed-
dotted lines identify the ±100% limits, and colors repre-
sent the triaxiality factor, Tf  , associated with each virtual 
experiment.

Results in Fig. 6a, b are almost identical with errors 
concentrated in the high triaxiality regimes, i.e., Tf > 5 
and for long rupture times. There is almost no differ-
ence in the effective stress parameters calibrated against 
the entire biaxial dataset and the parameters calibrated 
only against the short-term data (see Table 7). Note that 
only three biaxial virtual experiments are available within 
the long-time creep rupture region in the virtual dataset. 
However, the abundance of triaxial data in the long-time 
region demonstrates that an accurate effective stress met-
ric calibrated using only short-time, biaxial creep rupture 
data can be used beyond its calibration range without gen-
erating errors beyond the ±100% limits.

Figure 6c demonstrates lower errors in the long-time 
creep rupture regime when compared to results in Fig. 6a, 
b. This suggests the effective stress parameters depend on 
the dominant creep damage mechanism, and more accu-
rate effective stress models could be developed if long-
term biaxial rupture data were available.

Comparison to Biaxial Experimental Test Data

This section considers whether the results of the analy-
sis in the previous sections hold for other materials and 
against experimental biaxial rupture test data. Table 8 lists 
the best-fit effective stress parameters calibrated against 
the experimental database described above. Figure 7 is 
a bar plot comparing the mean absolute relative error of 
each measure against the database, and Table 9 summa-
rizes the results in the bar plot. Furthermore, each scatter 
plot in Fig. 8 depicts the signed relative error for a single 
effective stress measure calculated against all materials.

The results show that not all effective stress measures 
accurately predict the creep rupture life for all the materials. 
All the measures produce comparable, low errors for SS316 
and IN600, but some measures behave better than others. For 
both materials �NEW1 is the most accurate and �VM is the least 
accurate. For SS316, �NEW2 and �HLM exhibit a mean absolute 
relative error 1% larger than �NEW1 . For IN600, �RCCTresca

 and 

Table 7   The calibrated effective stress measure parameters for three 
cases: (i) using all the available simulated biaxial creep rupture times 
(Fit2D), (ii) using only biaxial creep rupture simulations with a 

t
2%

r
≤ 42160 h (short-time), and (iii) using only biaxial creep rupture 

simulations with a t2%
r

> 42160 h (long-time)

Measure Combined Short-time Long-time

� � � � � �

�
NEW1 0.213 0.001 0.195 0.001 0.354 0.000

Table 8   The effective stress 
parameters calibrated using 
biaxial experimental data for 
different materials

Coefficients � and � are always related to the maximum tensile principal stress and to the first stress invari-
ant, respectively

Measure SS 304 SS 316 Inconel 600

� � � � � �

�
VM

�Tresca

�
Sd

0.727 0.478 0.494
�
HLM

0.000 0.285 0.352 0.051 0.000 0.201
�Hudd 0.014 0.225 0.022
�
RCCVM

0.281 0.188 0.199
�
RCCTresca

0.321 0.309 0.178
�max(⟨�I ⟩,�VM )
�
NEW1 0.547 0.010 0.472 0.002 0.369 0.018

�
NEW2 0.000 0.305 0.375 0.050 0.013 0.205
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�Hudd are the second and third most accurate measures. Scat-
ter plots in Fig. 8 reveal a higher accuracy does not guaran-
tee a lower chance of overpredicting the creep rupture time. 
For SS316, �RCCTresca

 is less accurate than �NEW2 and �HLM , 
but the former has a lower maximum signed relative error, 
making it more conservative. The same consideration holds 
for IN600 and SS304 when comparing �NEW1 with �RCCTresca

.
All the measures not explicitly including the hydrostatic 

stress overestimate the creep rupture life for SS304, particu-
larly for higher triaxiality values, with the worst measures 
being �VM , �Sd and �max(⟨�I⟩,�VM) . As we note above, measures 
including �I do include some dependence of the pressure. 
However, empirically, measures that explicitly include I1 in 
their formulation perform better than measures that do not 
explicitly include it.

The fitted coefficients of �NEW2 for SS304 reveal this 
measure has undesirable behaviors under some condi-
tions. If � = 0 , then �Sd = �VM , and hence purely negative 

hydrostatic stress state would result in an infinite rupture 
time, while any pure positive hydrostatic stress state would 
result in a zero rupture time. The above suggests restric-
tions are needed on the � parameter and/or the stress state 
to prevent the occurrence of doubly pathological condi-
tions when using �NEW2 . Furthermore, the values in Table 8 
also demonstrate that effective stress parameters are highly 
material-dependent. Using material independent param-
eters might lead to drastically inaccurate results, or to 
unnecessary conservative safety factors.

For biaxial experimental data, �Sd and �HLM are less 
accurate than �NEW1 , suggesting the �NEW1 might be more 
resilient against typical experimental and heat-to-heat var-
iations. Furthermore, the smaller signed relative error gen-
erated by �NEW1 , �NEW2 and �Hudd compared to �HLM suggests 
a nonlinear dependence of the creep rupture time on the 
hydrostatic stress. However, the results for �RCCTresca

 negate 
this idea, at least for the low triaxiality regime. Lastly, the 
parameter-free effective stress measure, �max(⟨�I⟩,�VM) , does 
not always produce conservative creep rupture estimates, 
particularly for SS304. Therefore, the proposed parameter-
free measure is only adequate to evaluate the creep rupture 
life for materials with a low sensitivity to the hydrostatic 
stress, in this case SS316 and IN600.

The experimental database used in this comparison is 
the same data used by Huddleston (excluding uniaxial 
stress states, where present) to develop and calibrate his 
model. However, he tuned the model to produce conserva-
tive estimates of rupture time first, and only secondly to try 
to best-fit the biaxial rupture data. This approach is reason-
able for an engineering design method and partly explains 
why his measure is comparatively inaccurate using our 
criterion, which aims only to accurately represent the biax-
ial rupture data. More accurate effective stress measures 

Fig. 7   Bar plots of the mean 
relative error against the 
experimental test data for effec-
tive stress measures calibrated 
against the experimental data

Table 9   The mean relative absolute error generated using experimen-
tally calibrated effective stress measures

SS 304 SS 316 Inconel 600

�
VM

4.612 1.504 0.819
�Tresca 1.387 0.902 0.459
�
Sd

2.228 0.651 0.657
�
HLM

0.788 0.529 0.531
�Hudd 0.593 0.814 0.446
�
RCCVM

0.800 0.606 0.516
�
RCCTresca

0.470 0.707 0.424
�max(⟨�I ⟩,�VM ) 1.616 0.861 0.571
�
NEW1 0.353 0.518 0.377

�
NEW2 0.588 0.528 0.511
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(a) (b) (c)

(d) (e) (f)

(g)

(j)

(f) (i)

Fig. 8   Scatter plots of the signed relative error for each stress measure. Some of the effective stress measures produce errors outside the plot 
range for SS304. For such cases, the number of missing point is noted in the title. All sub-plots share the same horizontal and vertical axis



641Integrating Materials and Manufacturing Innovation (2021) 10:627–643	

1 3

could lead to better quantification of design uncertainty 
and margin, potentially leading to more efficient compo-
nent designs.

Conclusions

In this work, we used a physically motivated finite ele-
ment, crystal plasticity model for Grade 91 steel to perform 
virtual creep experiments for triaxial stress state condi-
tions that cannot be easily achieved experimentally. The 
simulation results were used to evaluate the error in using 
common effective stress models to extrapolate from biaxial 
to triaxial loading conditions and to evaluate the potential 
benefits of obtaining true triaxial creep rupture test data. 
Based on these data and analysis, we also proposed three 
additional effective stress measures, one of which does not 
require calibrating parameters against multiaxial rupture 
data. Trends observed in the simulation results were con-
firmed against experimental biaxial creep rupture test on 
two austenitic steels SS304, SS316, and one Nickel-based 
alloy, IN600. The results are generally applicable to other 
materials with a cubic crystal structure. However, the meth-
odology presented in this manuscript is applicable to any 
material system. Provided an accurate micromechanical 
model is available, the techniques developed here could be 
used to identify the best extrapolating effective stress meas-
ures for other crystal systems. Our specific conclusions are:

•	 For low triaxial stress states, i.e., Tf ≤ 2 , all the effec-
tive stress measures that explicitly include the first 
stress invariant (i.e., those with a parameter � as 
defined in this work) produce comparable results.

•	 Some effective stress measures are significantly more 
accurate than others in the high triaxiality region, i.e., 
Tf > 5 . These measures are also generally more accu-
rate in the intermediate regime, i.e., 2 < Tf ≤ 5 , though 
differences between the measures are smaller.

•	 Based on the numerical and experimental data col-
lected here, the stress measure �

NEW1 = �
Sd(�)

exp

[
�

(
I
1

SS
− 1

)]
 is the most suitable measure for assess-

ing multiaxial creep rupture among all the stress meas-
ures considered in this work. The model is the most 
accurate when 3D data are available (i.e., from the 
crystal plasticity simulations) and is the best at extrap-
olating from 2D data to 3D rupture predictions.

•	 Effective stress parameters are substantially material 
dependent; using universal parameters for different 
materials might lead to large errors and possibly non 
conservative predictions.

•	 The proposed parameter-free stress measure, i.e., 
�max(⟨�I⟩,�VM) , produces acceptable creep rupture life 

predictions for materials where the rupture life is less 
sensitive to the hydrostatic stress—316 SS and Inconel 
600 for the materials considered here.

•	 Triaxial creep test data, while difficult to collect experi-
mentally, could generally improve the accuracy of effec-
tive stress models, including �NEW1.

•	 Effective stress measures can extrapolate in time—meas-
ures calibrated against short term rupture data remain accu-
rate when compared to failure data for long-term multi-
axial rupture simulations, provided that the mechanisms 
for short-term and long-term rupture are similar. However, 
long-term biaxial or multiaxial rupture data would further 
improve the accuracy of effective stress models.

Creep data for higher triaxiality ratios could improve the 
accuracy of effective stress measures. Establishing a cor-
relation between creep crack growth data and failure under 
constant load for highly triaxial stress states could provide 
this type of data, as could additional micromechanical mode-
ling for other materials. Furthermore, machine learning tech-
nique, such as Gaussian process regression, could be used to 
estimate the uncertainty of the predictions derived here [49].
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