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Abstract
The efficacy of an elasto-viscoplastic fast Fourier transform (EVPFFT) code was assessed based on blind predictions of 
micromechanical fields in a sample of Inconel 625 produced with additive manufacturing (AM) and experimentally charac-
terized with high-energy X-ray diffraction microscopy during an in situ tensile test. The blind predictions were made in the 
context of Challenge 4 in the AFRL AM Modeling Challenge Series, which required predictions of grain-averaged elastic 
strain tensors for 28 unique target (Challenge) grains at six target stress states given a 3D microstructural image, initial elastic 
strains of Challenge grains, and macroscopic stress–strain response. Among all submissions, the EVPFFT-based submission 
presented in this work achieved the lowest total error in comparison with experimental results and received the award for 
Top Performer. A post-Challenge investigation by the authors revealed that predictions could be further improved, by over 
25% compared to the Challenge-submission model, through several model modifications that required no additional informa-
tion beyond what was initially provided for the Challenge. These modifications included a material parameter optimization 
scheme to improve model bias and the incorporation of the initial strain field through both superposition and eigenstrain 
methods. For the first time with respect to EVPFFT modeling, an ellipsoidal-grain-shape Eshelby approximation was tested 
and shown to improve predictive capability compared to previously used spherical-grain-shape assumptions. Lessons learned 
for predicting full-field micromechanical response using the EVPFFT modeling method are discussed.

Keywords Polycrystal plasticity · EVPFFT modeling · Residual strains · AFRL Challenge · Synchrotron X-rays · 
Microstructure

Introduction

The advent of metal additive manufacturing (AM) and its 
potential as a candidate replacement for conventional manu-
facturing in certain structural applications has created a need 
to advance predictive models that can support design and 
qualification practices. Developing such predictive models 

is particularly challenging due to the complex physics under-
pinning process-structure-property relationships in metal 
AM, which has been highlighted in multiple recent review 
articles (e.g., [1–4]). While significant progress has been 
made in physics-based modeling of metal AM, there remains 
a lack of benchmarked, pedigreed measurements available to 
the community to assess model performance.

To help address this problem, the US Air Force Research 
Laboratory (AFRL) Materials & Manufacturing Directo-
rate Structural Materials, Metals Branch (AFRL/RXCM) 
and America Makes launched the Additive Manufacturing 
(AM) Modeling Challenge Series in 2019. The Series was 
comprised of four distinct challenge problems that each 
served as a round-robin exercise designed to assess com-
putational approaches for predicting process-structure or 
structure-property linkages at either macro- or microscales 
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in the context of metal AM. In general, time-constrained 
round-robin exercises, like the well-established Sandia Frac-
ture Challenge [5–7] and the recently launched AM-Bench 
[8], play a critical role in advancing both state of the art and 
state of practice by identifying gaps in modeling techniques 
and assessing the relative importance of specific modeling 
assumptions on predictions of interest to the scientific and 
engineering communities. While AM-Bench [8] was the 
first modeling challenge in the relatively new arena of metal 
AM, its primary focus was on assessing process modeling 
to predict residual strain field, part distortion, and as-built 
microstructure. The AFRL AM Modeling Challenge Series 
is the first round-robin exercise to assess model predictions 
of mechanical properties in metal AM.

Challenge Problem 4 in the AFRL AM Modeling Chal-
lenge Series was the first challenge of its kind to solicit blind 
predictions of micromechanical response given an explicit 
3D representation of an additively manufactured microstruc-
ture, which had been characterized using high-energy X-ray 
diffraction microscopy [9–12]. As noted by many authors, 
predicting micromechanical response is generally very suc-
cessful when distributions are compared between experi-
ments and simulations at the polycrystal (aggregate) level, 
e.g., texture prediction [13]. At the grain scale and finer, 
however, experiments show substantially more scatter than 
simulations [14, 15]. The difficulty in predicting microme-
chanical response at these lower length scales arises from 
the strong anisotropy of both elastic and plastic deformation 
of metals and the complex interactions between grains, as 
each individual orientation has to both deform according 
to its local constitutive properties but also accommodate 
its neighbors. This difficulty is exacerbated in metal AM 
because, unlike conventional manufacturing routes, the ther-
mal gradients and rapid solidification that occur during the 
AM process—especially during laser-based AM—tend to 
result in higher residual strains, more “exotic” grain struc-
tures, and unique defect structures (including voids).

The aim of this work is (1) to predict grain-scale micro-
mechanical response of an AM Inconel 625 (IN625) sample 
in the context of Challenge Problem 4 in the AFRL AM 
Modeling Challenge by using an elasto-viscoplastic fast Fou-
rier transform (EVPFFT) code, and (2) to assess potential 
approaches for improving upon the Challenge-submission 
model by optimizing constitutive parameters and incorpo-
rating residual strains using various approaches. Among all 
submissions to Challenge Problem 4, the submission pre-
sented in this work achieved the lowest total error in com-
parison with experimental results and received the award for 
Top Performer. Through post-Challenge investigation, we 
show that—using no more information than what was origi-
nally provided to all participants—significant improvements 
can be achieved relative to the Challenge-submission model 
by optimizing constitutive parameters and incorporating 

initial elastic strains provided for a set of Challenge grains. 
Key takeaways are offered for using EVPFFT modeling to 
predict micromechanical response given a 3D microstruc-
tural image and known initial elastic strains for a subset of 
grains in a microstructural volume.

Background: Challenge Overview

The goal of Challenge 4 in the AFRL AM Modeling Chal-
lenge series was to assess the performance of 3D micro-
mechanical modeling approaches through blind predictions 
of grain-scale response in an experimentally characterized 
additively manufactured tensile test specimen. Predictions 
were required for 28 unique Challenge grains contained 
within the specimen. The specimen was initially built as 
a 5×35×5   mm3 column from IN625 powder using laser 
powder bed fusion in an EOS M280 system with the build 
direction along the (loading) y-axis. The specimen then went 
through a stress relief heat treatment, hot isostatic pressing 
(HIP) to remove pores, and subsequent heat treatment. The 
specimen was then machined using wire electrical discharge 
machining (EDM) to reach the final tensile test geometry 
depicted in Fig. 1.

The tensile specimen was experimentally characterized 
during interrupted in-situ displacement-controlled load-
ing up to 1% tensile strain in the RAMS3 load frame [16] 
at the Advanced Photon Source (APS) 1-ID-E beamline 
at Argonne National Laboratory. Three synchrotron X-ray 
techniques were utilized during testing. Micro-computed 
tomography (CT) was used to determine void structure and 
to assist with data registration. Near-field high-energy X-ray 
diffraction microscopy (nf-HEDM) was used to map 3D 
grain structure, including crystal orientations, at the initial 
unloaded state (S0), and far-field (ff) HEDM was used to 
measure the grain-averaged elastic strain tensors throughout 
the microstructure at S0 and at six subsequent stress states 
(S1–S6). During testing, the sample was loaded to each tar-
get stress state and held for several hours for ff-HEDM data 
collection. For measurements taken in the plastic regime, 
the sample was unloaded by approximately 50 MPa to avoid 
creep during the hold period. The CT and HEDM data were 
then merged to create a 3D reconstruction of the sample. 
The reconstructed dataset contained 29,663 unique features/
grains with a mean equivalent sphere diameter (ESD) of 
10.8 μm based on our analysis. For complete details regard-
ing the experimental procedure, the reader is referred to the 
lead Challenge 4 overview articles by Menasche et al. [17] 
and Chapman et al. [18].
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Experimental Data Provided to Participants

The dataset provided for the Challenge was given as a 
DREAM.3D [19] file containing feature (grain) data, voxel 
data, and crystal lattice information. The feature data pro-
vided for each grain included the average crystallographic 
orientation given as Bunge-Euler angles, the material phase, 
a Challenge grain indicator, and the initial grain-averaged 
elastic strain tensors. The initial elastic strain state was only 
provided for the 28 Challenge grains. The dataset included 
an outer border of “buffer zone” (air) to entirely contain 
sample surface roughness and fiducial markers. The 3D 
image (including both microstructure and buffer zone) 
was composed of perfectly cubic voxels with a 2 μm edge 
length and had x×y×z dimensions of 305×351×312 voxels 
( 610×702×624 μm3 ). The physical dimensions of the mate-
rial microstructure absent the buffer zone were approxi-
mately 500×700×500 μm3 . Figure 1 shows the 3D micro-
structure image and contained Challenge grains along with 
the tensile specimen geometry.

In addition to the microstructure data, AFRL provided 
participants with the aggregate engineering stress–strain 
curve for the tensile specimen, which was collected using the 
RAMS3 load frame to calculate engineering stress and two-
point digital image correlation (DIC) measurement along the 
gauge region (a region larger than the characterized volume) 
to calculate the engineering strain. This experimental macro-
scopic response is shown in Fig. 2 with indicators for the tar-
get stress states at which the sample was held fixed and the 

material was characterized using ff-HEDM. The provided 
macroscopic stress–strain curve was used for calibrating the 
constitutive model parameters, as described in Sect. 2.

Additional data were provided that were not used in 
this work. The additional data included tensile test data for 

Fig. 1  Tensile specimen configuration and microstructural volume of 
interest for challenge 4 of the AFRL AM modeling series. The crystal 
orientations were characterized with nf-HEDM and are shown with 

inverse pole figure (IPF) coloring. The 28 individual challenge grains 
are isolated at right

Fig. 2  Experimental macroscopic engineering stress–strain response 
from the in situ tensile test. The initial state (S0) and six target stress 
states (S1–S6) at which the sample was held for ff-HEDM data col-
lection are indicated
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auxiliary calibration samples tested at room and elevated 
temperatures and example images from post-mortem serial 
sectioning with electron backscatter diffraction (EBSD), 
backscattered electrons (BSE), and optical microscopy 
(OM). The phase fraction of observed precipitates was pro-
vided (1.2% volume fraction); however, the precipitates were 
not represented in the 3D microstructure image described 
above. For a complete description of all data provided to 
Challenge participants, please see the Challenge 4 overview 
articles by Menasche et al. [17] and Chapman et al. [18].

Quantities of Interest

Challenge participants were required to predict the six 
unique components of grain-averaged elastic strain tensors 
from the 28 unique Challenge grains at the six different tar-
get stress states (Fig. 2) for a total of 1008 predicted val-
ues. The 28 Challenge grains were chosen such that they 
were identified by ff-HEDM with high confidence at all six 
loading states, were entirely contained within the far-field 
sectioning region, and were uniquely correlated with grains 
from the nf-HEDM and EBSD serial sectioning. These 28 
Challenge grains had dissimilar crystal orientations and 
spatial positions and can be seen in Fig. 1. Based on our 
analysis, the Challenge grains had a mean ESD of 32.2 μm , 
which was 197% larger than the mean ESD of all grains in 
the microstructure.

Performance Metrics

The Challenge was graded based on a summation of 
L2-norm errors for all 28 Challenge grains at all six target 
stress states. This grading metric corresponds to the follow-
ing equation:

where �e,pred
k

 and �e,exp
k

 are, respectively, the predicted and 
measured elastic strains of grain g at target stress state S 
written in contracted Voigt notation ( k = 1, 6 ) to avoid dou-
ble counting the symmetric shear strains.

Methods

EVPFFT Formulation

To make blind predictions for the AFRL Challenge, the 
elasto-viscoplastic fast Fourier transform (EVPFFT) mod-
eling method was used. For an in-depth overview of this 
and other spectral modeling methods, see a recent review 
article by Lebensohn and Rollett [20]. The EVPFFT method 

(1)L2 =
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28∑
g=1
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)2

,

solves for micromechanical fields in a 3D Cartesian grid 
while fulfilling stress equilibrium and strain compatibility 
governing equations. A 3D microstructure image composed 
of cubic or cuboidal voxels (e.g., Fig. 1) can be defined as 
a unit cell discretized into a regular grid of points in Car-
tesian space, {x} , and a corresponding grid of frequencies 
in Fourier space, {�} , of the same dimensions. In this unit 
cell, the local strain field �ij(x) can be defined as an applied 
macroscopic strain Eij plus a fluctuation (indicated by “ ∼ ”) 
strain field as follows:

This strain field is then solved alongside a thermo-elasto-
viscoplastic constitutive equation [21] based on Hooke’s law, 
thermal strains (eigenstrains), dislocation-mediated mecha-
nisms for single-crystal elasticity and plasticity, and Euler 
implicit time discretization, defined by the following:

where �ij(x) is the Cauchy stress tensor at time t + Δt ; Cijkl(x) 
is the elastic stiffness tensor; �kl(x) , �∗kl(x) , and �e

kl
(x) are, 

respectively, the total, thermal, and elastic strain tensors (at 
time t + Δt ); �p,t

kl
(x) is the plastic strain tensor (at time t); and 
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p

kl
(x) is the plastic strain-rate tensor given by:

where �̇�0 is the reference shear rate, Ns is the total number of 
slip systems, �s is the critical resolved shear stress (CRSS) 
of slip system s, n is the rate sensitivity exponent, and 
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 is the symmetric Schmid tensor of 

associated slip system s, with unit vectors ns
i
 and bs

i
 being the 

normal and Burgers vector directions of slip system s, 
respectively. For numerical convenience, �̇�0 = 1 and n = 10 
as the Challenge did not include rate-sensitive effects; there-
fore, none were considered in our simulations. This leads to 
the expression involving the exponent n in Eq. (4) to be a 
convenient continuum approximation of Schmid’s law. The 
use of Eq. (3) with the addition of an eigenstrain field �∗

ij
(x) 

was first proposed by Pokharel and Lebensohn [21] as a gen-
eralization of the original EVPFFT formulation for polycrys-
tals by Lebensohn et al. [22], to be able to consider residual 
thermal strains present in the material, e.g., those measured 
by ff-HEDM.

In this work, the local CRSS of each slip system was 
incremented every strain step at each point {x} as follows:
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where Δ𝜏𝛼(x) is the CRSS increment of slip system � , h�� is 
the latent hardening of slip system � due to hardening of slip 
system � , �̇�𝛽(x) is the shear strain rate of slip system � , and 
Γ(x) is the accumulated slip of all slip systems. The CRSS 
was scaled using a Voce hardening law given by:

where �0 , �1 , �0 , and �1 are empirically determined Voce 
hardening law parameters. The latent and self-hardening 
coefficients h�� for all slip system interactions were, by 
default, set to unity (i.e., no latent or self-hardening was 
considered).

The determination of equilibrated stress and compatible 
strain fields that locally fulfill the local constitutive rela-
tion in Eq. (3) is based on an augmented Lagrangian (AL) 
scheme, which is a numerically advantageous version of 
Moulinec-Suquet’s original basic scheme for composites 
[23] (subsequently extended to viscoplastic (VP) polycrys-
tals [24]). This AL scheme was originally proposed for 
composites [25], then further broadened to (rigid) VP [26] 
and elasto-viscoplastic (EVP) polycrystals [22] to solve 
the above problem using Green’s functions and Fourier 
transforms.

As for every numerical scheme based on the Moulinec-
Suquet formulation, C0 is adopted as the stiffness of a linear 
reference medium and used to define a polarization field �ij 
at iteration (n) in the grid points {x} as follows:

where—in the context of the AL method—�
(n)

ij
(x) is a non-

equilibrated stress/Lagrange multiplier field. With �(n)

ij
(x) 

known, the fluctuation field of the compatible strain field at 
iteration n + 1 is calculated in Fourier space as:

where the Fourier transform (indicated by “ ∧ ”) of the Green 
operator, Γ̂ijkl(�) , is given by:

With �(n)
ij

 known, and �(n+1)
ij

 obtained through Eq. (2) and 
anti-transforming Eq. (8), the residual Rk is defined as the 
difference between the two pairs of stress fields (the 
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equilibrated �ij and non-equilibrated �ij ) and strain fields (the 
compatible �ij , and the incompatible eij , which is constitu-
tively related to �ij ) and nullified:

where contracted (Voigt) notation is used for symmetric 
tensors. This nonlinear system is solved using a Newton-
Raphson (N-R) scheme:

which gives the (j + 1)-guess for the stress field �(n+1)

k
 . Using 

the constitutive relations in Eqns. (3) and (4), the Jacobian in 
the above expression can be approximated by:

where the term ��s∕��j , which depends on the specific func-
tional form of the adopted hardening law, is neglected. Once 
convergence is achieved on �(n+1) , the new auxiliary stress 
field �(n)

ij
(x) is given by:

The iterative procedure ends when the relative error between 
the two pairs of stress and strain fields is below a specified 
tolerance.

While this algorithm solves constitutive equations for an 
applied macroscopic strain Eij , the Challenge loading scenario 
has mixed boundary conditions, i.e., some components of 
strain and complementary components of the macroscopic 
stress Σij are imposed. In these cases, the algorithm includes 
the following extra step after solving Eq. (10) for �(n+1)

ij
(x) . If 

component Σpq is imposed, the corresponding (n + 1)-guess 
for component E(n+1)

pq
 is obtained as:

where �[kl] = 1 if component Σkl is imposed and �[kl] = 0 oth-
erwise, and ⟨⋅⟩ indicates an average over the grid. Because 
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spectral methods solve constitutive equations within a peri-
odic unit cell, the EVPFFT model inherently has periodic 
boundary conditions imposed on all surfaces. However, a 
secondary buffer zone (a material with infinite compliance, 
i.e., air) can be added to surfaces to “disconnect” the peri-
odic boundary conditions of that surface. Only a few layers 
of buffer zone are required to remove periodic effects [26] 
and effectively model free surface boundary conditions.

In this work, the ability to simulate concatenated loading 
and unloading processes (e.g., see Fig. 2) was incorporated 
into the original EVPFFT code [22]. For each individual 
process, the history of local deformation is contained in the 
term �p,t

ij
(x) . Therefore, the EVPFFT algorithm was extended 

by adding an external loop over processes (indicated in what 
follows by [pr]), such that for every process, a combination 
of E[pr]

ij
 and/or Σ[pr]

ij
 components could be imposed. This 

extension was implemented in a serial code with an FFT 
algorithm that enforced the number of points along each 
dimension (i.e., 3D microstructure image dimensions) to be 
a power of two ( 2n ). This modified code was required to 
simulate the multiple loading processes to generate model 
predictions for the Challenge. Aside from this serial code, a 
parallelized implementation of the EVPFFT formulation, 
Micromechanical Analysis of Stress–Strain Inhomogeneities 
with Fourier transforms (MASSIF), was used for a post-
Challenge material parameter optimization scheme 
described later on. MASSIF is simply a parallelized version 
of the base EVPFFT formulation that leverages the parallel 
Fastest Fourier Transform in the West (FFTW) [27] and 
Hierarchical Data Format version 5 (HDF5) [28] libraries. 
The FFTW library additionally handles arbitrarily sized 
grids, which removes the 2n 3D microstructure image 
requirement imposed in the serial code.

Challenge‑Submission Model (Blind Predictions)

To utilize the serial EVPFFT code, it was necessary to 
modify the dimensions of the microstructural volume 
provided by AFRL to conform to the 2n image dimen-
sions imposed by the FFT algorithm. To meet this 
dimensional requirement while retaining the majority of 
the microstructural volume, the original image dimen-
sions of 305×351×312  voxels were ultimately reduced 
to 256×256×256  voxels by applying the following 
sequence of operations. First, the “Minimum Size” filter 
in DREAM.3D was applied to remove grains comprising 
fewer than 25 total voxels, which was well below the size 
of the smallest Challenge grain. This was (unnecessarily) 
done to remove very small grains that would be either 
removed or enlarged during subsequent downsampling. 
Next, the microstructure was cropped to 248 voxels on 
both the x and z-axes and subsequently downsampled by 

50% to reach image dimensions of 124×175×124 voxels 
( 496×700×496 μm3 ). The cropping procedure primar-
ily removed the secondary phase buffer zone; however, 
small surface portions of the primary phase were removed, 
including two surface Challenge grains where 10% and 
4% of the voxels were removed. Next, a 66-voxel-thick 
border of buffer zone was added around the edges of 
the x-z plane to extend the x- and z-axes to 256 voxels. 
Finally, the top 81 voxels of the microstructure were mir-
rored across the top x-z plane to extend the y-axis to 256 
voxels. Several Challenge grains were included as part 
of this mirrored region, but only the original portion of 
the microstructural volume was considered in the submis-
sion. In essence, the mirroring and extension of the buffer 
zone were completed solely to satisfy the 2n dimension 
requirement, although the buffer zone is required to model 
free surface boundary conditions. Figure 3 shows the final 
mirrored 256×256×256  voxel ( 1024×1024×1024 μm3 ) 
microstructure.

The constitutive parameters were determined by fit-
ting the simulated stress–strain curve to the experimental 
stress–strain curve provided for the Challenge specimen 
(including unloading). The stiffness tensor Cijkl was popu-
lated with the three unique single-crystal elastic constants 
for IN625 (a face-centered cubic material) published by 
Wang et al. [29] (see Table 1).

Fig. 3  Inverse pole figure (IPF) map of the mirrored microstructure 
geometry used in the Challenge-submission model. The mirroring 
plane is shown by the dashed white line. The gap between the micro-
structure and the extents of the simulation volume (outlined in white) 
comprises a buffer zone that serves to disconnect the periodic bound-
ary conditions in the EVPFFT model to represent unconstrained sur-
faces
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These elastic constants were found to provide a good 
macroscopic fit to the elastic portion of the curve and 
therefore required no modification. The Voce hardening 
law parameters in Eq. (6) were manually fit by iteratively 
adjusting parameters until the correspondence with the 
experimental data was deemed reasonable. Fitting was per-
formed using a 50% resolution image of the microstructure 
to speed up computation time. This brute force technique 
led to a slight overprediction of the EVPFFT macroscopic 
response in the plastic region. The final Voce hardening 
law parameters used for the Challenge-submission model 
are given in Table 2.

Boundary conditions were defined in the EVPFFT 
model to emulate the displacement-controlled loading con-
ditions in the tensile test (see Fig. 1). For all loading pro-
cesses, uniform axial strain Eyy steps of 0.00025 mm/mm 
were imposed on the loading axis (y-axis). With these 
strain steps, the model reached stress states that were 
within 3% of the first three target stress states. The shear 
components of Eij were set to zero, i.e., the volume average 
shear strain was nullified. The transverse components (xx 
and zz) of Σ[pr]

ij
 were prescribed to zero macroscopic stress 

for all processes. At axial strains of 0.0035 and 0.0050 
mm/mm, the model was unloaded by -0.00022 mm/mm (in 
a single strain step) and subsequently reloaded; the model 
was unloaded a final time upon reaching 0.0100 mm/mm 
axial strain. These three unloading steps unloaded the vol-
ume by an average of 54.1 MPa (as opposed to the 50 MPa 
unloading performed during the experiment to avoid creep 
during each HEDM measurement in the plastic regime).

The final simulation was solved using the serial version 
of the EVPFFT code described in Sect. 3.1. An error toler-
ance of 10−5 was used as the convergence criteria for each 
strain step, which additionally satisfied compatibility and 
static equilibrium to the same tolerance [30]. The initial 
elastic strain field at S0 provided by AFRL was neglected, 
and no eigenstrain field was initialized (i.e., �∗

ij
(x) = 0 in 

Eq. (3)). The precipitate phase was also not considered in 
the model. The final Challenge-submission model required 
approximately 72 wall-clock hours to run on a 2018 

MacBook Pro. The final results for the blind predictions 
based on the Challenge-submission model are presented 
in Sect. 4.

Post‑Challenge Modifications

Following the release of the experimental results, several 
modifications were explored to try and improve model per-
formance. Although these modifications were performed 
with the knowledge of the experimentally measured strains, 
no modifications were made that required any information 
beyond what was initially provided for the AFRL Challenge. 
For an overview legend to the following modifications, see 
Fig. 4. Unless otherwise noted, the modifications carry for-
ward to all subsequent model iterations. For example, when 
the microstructure geometry was changed, that change was 
reflected in all subsequent models. Additionally, if model 
parameters are not mentioned in subsequent sections, those 
respective parameters can be assumed to be the same as 
those given in Sect. 3.2.

Modification 1: Superposition of Initial Elastic Strains 
from Experiment

For the first modification, the initial strain field was included 
by simply adding it to the model predictions. As such, there 
were no changes to any model inputs relative to the Chal-
lenge-submission model. Mathematically, the superposition 
of the initial strain field is expressed as:

Table 1  Single-crystal elastic 
constants for IN625 published 
by Wang et al. [29]

c11 [GPa] c12 [GPa] c44 [GPa]

243.3 156.7 117.8

Table 2  Voce hardening model parameters used in the AFRL Chal-
lenge-submission model

�0 [MPa] �1 [MPa] �0 [MPa] �1 [MPa]

143.0 50.0 1450.0 95.0

Challenge-submission model

Post-Challenge modifications

Modification 1: Superposition of initial elastic strains
from experiment

†Modification 2: Optimization of constitutive-model
parameters and strain step refinement

‡Modification 3a: Eigenstrain initialization with a
spherical-grain Eshelby approximation

‡Modification 3b: Empirical correction of eigenstrains
from 3a

‡Modification 4a: Eigenstrain initialization with an
ellipsoidal-grain Eshelby approximation

‡Modification 4b: Empirical correction of eigenstrains
from 4a

†with superposition of initial elastic strains from experiment
‡with optimized constitutive-model parameters and strain

step refinement from Modification 2

Fig. 4  Key of modifications made during post-challenge investiga-
tion. Color coding corresponds to Fig. 8
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where �e,mod

ij
 is the predicted (modified) elastic strain tensor, 

�
e,0

ij
 is the initial elastic strain tensor provided by AFRL for 

a given Challenge grain, �e,fft
ij

 is the predicted elastic strain 
tensor from the Challenge-submission model, and g and S 
represent the Challenge grain and target stress state, respec-
tively. This constituted a naïve approach to incorporating the 
initial elastic strain field because compatibility was no longer 
achieved, but it was a simple first step in utilizing the initial 
strain state.

Modification 2: Optimization of Constitutive‑Model 
Parameters and Refinement of Strain Steps

The intent of Modification 2 was to more accurately rep-
resent the macroscopic stress–strain response from the 
experiment (without adding model complexity relative to the 
Challenge-submission model) by optimizing the constitutive 
model parameters and refining the applied strain steps. Prior 
to optimizing the material parameters and refining the strain 
steps, the microstructure geometry was modified to make 
more efficient use of the 2n volume dimension requirement 
discussed earlier. The original microstructural image was 
downsampled non-uniformly, resulting in cuboidal voxels 
with physical dimensions of 2.10×2.74×2.10 μm3 . These 
voxel dimensions were chosen to reduce the y-axis image 
dimension from 312 to 256 voxels and slightly reduce the 
z- and x-axis image dimensions from the original image 
dimensions. Finally, several layers of buffer zone contained 
in the original dataset provided by AFRL were cropped 
around the microstructure to obtain a final 3D micro-
structure image with dimensions of 256×256×256 voxels 
( 538×702×538 μm3 ). A minimum of eight voxels of buffer 
zone was left on the x-y and y-z surfaces to model the uncon-
strained boundary conditions. This image modification 
allowed for much more of the simulated volume to com-
prise voxels of interest (primary phase, non-mirrored vox-
els) rather than extraneous data (see Fig. 3). Using the same 
256×256×256 voxel volume dimensions, there were 4.36 
times as many voxels of interest in the microstructure image 
of Modification 2 compared to the simulation volume used 
in the Challenge-submission model. Thus, the problem size 
(i.e., runtime) was the same in both cases, but the cuboidal-
voxel microstructure had a higher effective resolution, as 
depicted in Fig. 5. It is noted that a convergence study was 
later carried out to assess the impact of 3D image resolution 
on both global and local response metrics, and it was found 
that, while the image modification here makes better use of 
the 256×256×256 voxel image dimensions compared to the 
Challenge-submission model, the modification does not, on 
its own, impact the predictions. In other words, all models 

(15)�
e,mod

ij
(g, S) = �

e,fft

ij
(g, S) + �

e,0

ij
(g),

described in this manuscript (including the Challenge-sub-
mission model) were found to have adequate resolution to 
achieve convergence with respect to voxel size. Details of the 
convergence study are provided in Appendix A.

Next, a material parameter optimization scheme was 
implemented to improve the fit of the macroscopic response 
of the EVPFFT model through a method of least squares. 
The four Voce hardening law parameters in Eq. (6) were 
optimized by minimizing the mean squared error (MSE) 
between the model and experimental stress–strain curves 
calculated by:

where N is the total number of experimental data points, 
�fft
n

 is the predicted macroscopic axial stress of the EVPFFT 
model at the experimentally applied strain of point n calcu-
lated with cubic interpolation, and �exp

n  is the macroscopic 
axial stress of the experimental data at the applied strain 
of point n. Powell’s method [31] implemented in SciPy 
[32] was used to minimize the MSE and performed a full 
EVPFFT simulation for each optimization iteration. Several 
different optimization strategies with and without numerical 
differentiation were tested, and although Powell’s method 
only converges to local minima, it performed the best of 

(16)MSE =
1

N

N∑
n=1

√(
�fft
n
− �

exp
n

)2
,

Fig. 5  Inverse pole figure (IPF) map of the microstructure geometry 
used in models corresponding to Modifications 2 through 4b. The 
slight gap between the microstructure and the extents of the simula-
tion volume (outlined in white) comprises a buffer zone that serves to 
disconnect the periodic boundary conditions in the EVPFFT model to 
represent unconstrained surfaces
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all optimization strategies, provided a good initial guess 
for the parameters was supplied. Additionally, a hierarchi-
cal optimization scheme was used (e.g., see Ref. [33]) in 
which the parameters were optimized for a series of micro-
structure resolutions. In this case, the parameters were first 
optimized using a 25% resolution microstructure image to 
get a “rough” estimate of the parameters. The parameters 
were then reoptimized on a 50% resolution microstructure 
image using the previously optimized parameters as an 
initial guess. For runtime reasons, MASSIF (the parallel-
ized implementation of the EVPFFT model) was used for 
the optimization procedure. Due to current limitations in 
MASSIF, the monotonic stress–strain response (i.e., with-
out unloading/reloading) was used to fit the parameters. The 
total optimization process took less than 24 wall-clock hours 
(roughly 250 iterations of 1.5 wall-clock minutes and 100 
iterations of 10 wall-clock minutes for the 25% and 50% res-
olution microstructures, respectively) with an AMD 7702P 
64-core processor with 256 gigabytes of memory from the 
Center for High Performance Computing at the University of 
Utah. The optimized Voce hardening law parameters deter-
mined from this optimization scheme are given in Table 3.

After the Voce hardening law parameters were fit, the 
applied boundary conditions were refined to more closely 
achieve the target stress states at which ff-HEDM data 
were collected. Axial strain Eyy step values were iteratively 
adjusted to reach model states that were very similar to the 
target stress states. For the first three target stress states 
(S1–S3), the EVPFFT volume-averaged axial stress values 
were all within 0.2% of the target stress states compared to 
the 3% error in the Challenge-submission model. For the 
final three target stress states (S4–S6), instead of unload-
ing by a constant strain step, the volume was unloaded by 
specific strain steps to reach volume-averaged stress values 
of approximately 309, 323, and 353 MPa, corresponding 
to the mean sample stress during the hold period of the ff-
HEDM measurement. This was deemed necessary, as the 
experimentally collected stress–strain data was relatively 
noisy, and unloading by 0.00022 mm/mm in the model did 
not achieve the target stress states as well as unloading to 
specific macroscopic stress values. As with the previous 
modification, the initial elastic strains provided by AFRL 
were accounted for using a simple superposition. Figure 6 
provides a visual comparison between the experimental 

data and the macroscopic fit of the model before and after 
implementing the changes described in this section.

Modification 3a: Eigenstrain Initialization 
with a Spherical‑Grain Eshelby Approximation

The intent of Modification 3 is to account for initial elastic 
strains by assigning a nonzero eigenstrain field. The micro-
structural image, constitutive parameters, and EVPFFT 
boundary and solver conditions remain unchanged from the 
conditions described in Sect. 3.3.2. In this modification, 
instead of simply adding the initial elastic strain tensors of 
each grain to the model predictions, a nonzero eigenstrain 
field ( �∗

ij
(x) ≠ 0 in Eq. (3)) was initialized. To calculate the 

eigenstrain field, an Eshelby approximation was used to con-
vert the elastic strain field on a grain-by-grain basis. The 
Eshelby approximation is based on the known tensorial rela-
tionship between a uniform elastic strain tensor �e

ij
 and uni-

form eigenstrain tensor �∗
ij
 of an inclusion (i.e., grain) embed-

ded within an isotropic, infinite, homogeneous matrix, 
defined by:

where Sijkl is the uniform fourth-rank Eshelby tensor calcu-
lated from a known analytical solution for a given inclusion 
shape and elastic stiffness [34] and Iijkl is the fourth-rank 
identity matrix. An elastic self-consistent approximation 
[35] of a cubic polycrystal with random texture and the 

(17)�∗
ij
= (Sijkl − Iijkl)

−1�e
kl
,

Table 3  Voce hardening law parameters determined by minimizing 
the mean squared error between the experimental and simulated mac-
roscopic stress–strain response

�0 [MPa] �1 [MPa] �0 [MPa] �1 [MPa]

138.95 39.44 1579.89 14.24

Fig. 6  Macroscopic engineering stress–strain response of the tensile 
specimen compared to the predicted responses of the Challenge-sub-
mission and Modification 2 models. The initial state (S0) and six tar-
get stress states (S1–S6) at which the sample was held for ff-HEDM 
data collection are indicated



166 Integrating Materials and Manufacturing Innovation (2021) 10:157–176

1 3

single-crystal elastic constants given in Table 1 was used 
to calculate Poisson’s ratio, � = 0.312 . In the eigenstrain 
calculation for Modification 3, all grains were assumed to 
be spherical, which greatly simplifies the calculations of 
the values within the Eshelby tensor to a single equation 
(Eq. 11.21 in Ref. [34]) and requires no parameterization of 
complex grain shapes. Nonzero eigenstrains were defined 
only for the 28 Challenge grains as the initial elastic strains 
from the experiment were provided for only those grains. 
There is only a small macroscopic effect of initializing an 
eigenstrain field [21], and a negligible effect in this case, 
given that only the eigenstrains in the 28 Challenge grains 
are nonzero.

Interestingly, the majority of the Challenge grains had 
an initial negative hydrostatic elastic strain according to the 
ff-HEDM measurements. When the modeled grains are ini-
tialized with this net negative strain, the grains require more 
applied elastic strain to yield than if there was no net initial 
strain. This results in general overpredictions of the elastic 
strains in these grains. In order to deal with this, the mean 
initial elastic strain tensor was subtracted from the total ini-
tial elastic strain tensor for each grain prior to calculating 
the eigenstrain tensor, as follows:

where �̄�e
kl

 is the mean initial elastic strain tensor, i.e., the 
component-wise average of all the initial elastic strain ten-
sors given for the Challenge grains. This step was performed 
in order to shift the components of the mean initial elastic 
strain tensor to be zero and is very similar to what Tari et 
al. [36] did to negate the effect of an initial tensile load. 
The mean initial elastic strain tensor was then reintroduced 
into the predictions by adding it to the model output at all 
states via:

where �e,mod

ij
 is the final predicted (modified) elastic strain 

tensor and �e,fft
ij

 is the elastic strain tensor calculated from the 
EVPFFT model for each grain, g, and stress state, S. A fol-
low-on modification, referred to as Modification 3b, is 
described in Sect. 3.3.5.

Modification 4a: Eigenstrain Initialization 
with an Ellipsoidal‑Grain Eshelby Approximation

Modification 4 improves upon the aforementioned eigen-
strain estimation by treating the Challenge grains as ellipsoi-
dal, rather than spherical, in the Eshelby approximation. The 
ellipsoidal-grain assumption is novel in terms of initializing 
elastic strain fields in the EVPFFT modeling method and 
is reported for the first time here. This modification used 

(18)𝜀∗
ij
= (Sijkl − Iijkl)

−1
(
𝜀e
kl
− �̄�e

kl

)
,

(19)𝜀
e,mod

ij
(g, S) = �̄�e

ij
+ 𝜀

e,fft

ij
(g, S),

the same equations, process, and input parameters as in 
Sect. 3.3.3, except that Eshelby’s tensor was calculated using 
the solution for an ellipsoidal inclusion [37] rather than the 
simplified case of a spherical inclusion. The ellipsoidal 
parameters of each grain were calculated using the “Find 
Feature Shapes” filter in DREAM.3D [19], which calculates 
the principal semi-axis lengths of the best-fit ellipsoid for an 
individual grain using a moment of inertia method described 
by Groeber et al. [38]. The semi-axis lengths and orientation 
of the best-fit ellipsoid are then used to calculate Eshelby’s 
tensor in the ellipsoid reference frame. These calculations 
are described in more detail in Appendix B. The same sub-
traction and reintroduction of the mean initial elastic strain 
tensor described by Eqns. (18) and (19) was employed as 
before. A follow-on modification, referred to as Modification 
4b, is described next.

Modifications 3b and 4b: Empirically Corrected Eigenstrains

Due to the assumptions associated with isotropy, grain 
shape, and homogeneity in the Eshelby approximation, 
there are inherent errors in the calculated eigenstrains that 
can be empirically corrected. Pokharel and Lebensohn [21] 
proposed adding a scalar correctional matrix, �ij , to the 
eigenstrains calculated by Eq. (17) to alleviate disparities 
caused by these assumptions. Due to the change of basis 
incorporated in the ellipsoidal Eshelby approximation, the 
correctional matrix must be applied after the eigenstrains are 
calculated in the global reference frame, i.e.,

where �∗,c
ij

 is the corrected eigenstrain tensor calculated by 
the Hadamard (element-wise) product between the correc-
tional matrix �ij and the uncorrected eigenstrain tensor �∗

ij
 in 

the global reference frame. This implementation has the 
same effect as in Ref. [21], but the correctional matrix is 
simply applied further along in the calculations. The cor-
rectional matrix is symmetric due to the symmetry of the 
strain tensor and thus contains six unique scalar constants. 
For an in-depth process of calculating the constants in the 
correctional matrix, see Appendix A in Ref. [36]. Succinctly, 
this process involves (1) initializing the EVPFFT model with 
the calculated eigenstrain field, (2) applying a negligible 
strain step ( 10−6 mm/mm) and equilibrating the stress and 
strain fields, (3) performing simple linear regressions 
between the six unique components of the initial elastic 
strain tensors and the corresponding components of the 
equilibrated elastic strain tensors for all grains, and (4) cal-
culating the six correctional values in �ij required to change 
the slopes of the best-fit linear-regression curves to unity 
(i.e., to achieve a perfect fit). Correctional matrix values 
were calculated and applied to the eigenstrain fields from 

(20)�
∗,c

ij
= �ij�

∗
ij

no sum over ij,
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both the spherical (Modification 3a) and ellipsoidal (Modi-
fication 4a) Eshelby approximations. Supplementary 
Figs. S-1 and S-2 (refer to Electronic Supplementary Mate-
rial) visually show this calculation process for the Modifica-
tion 3a and 4a models. Subsequently, two EVPFFT models 
(named Modification 3b and 4b) were initialized with these 
corrected eigenstrain fields and analyzed. The six correc-
tional matrix values from this linear regression process are 
given in Table 4, along with the average R2 value (i.e., the 
average correlation between the initial and equilibrated elas-
tic field).

We have recently implemented the previously presented 
methods for calculating the eigenstrain field from the ini-
tial elastic strain field into DREAM.3D as the “Compute 
Eigenstrains by Feature (Grain/Inclusion)” filter. For each 
grain, the filter computes the uniform eigenstrain tensor 
using the elastic strain tensor, Poisson’s ratio, the best-
fit ellipsoid grain shape, and optionally, the correctional 
matrix. This filter is included in the main DREAM.3D 
distribution on all platforms as of version 6.5.151 which 
can be downloaded from http:// dream 3d. blueq uartz. net/.

Results

To analyze the performance of each model, three types of 
analyses are performed. The first is to simply use the Chal-
lenge grading metric (described in Sect. 2.3) to provide an 
overall comparison among models. The second is a simple 
linear regression between the predicted and experimental 
elastic strain tensor components at the six target stress 
states for the 28 Challenge grains to provide a more refined 
comparison among models. The final analysis is a mean 
error method that gives insight into trends of over- and 
underprediction of specific strain components, i.e., model 
bias. These three methods combine to give valuable insight 
into model trends and performance. Figure 7 provides an 
example of the micromechanical anisotropy and hetero-
geneity observed in the simulations. A short animation 
showing the evolution of the axial elastic strain field with 
applied macroscopic load for the Modification 4a model is 
given in the Electronic Supplementary Material.

Overall Model Performance

To compare model predictions, the Challenge L2-norm error 
grading metric given in Eq. (1) is used. Since this metric 
uses an L2 norm, strain components with larger errors domi-
nate the L2-norm error of each grain. Generally, this implies 
that normal strain components have a larger effect on the 
total L2-norm error than shear strain components. This is 
because the normal strains are generally larger in magnitude 
and thus larger in absolute error than the shear components. 
For all models, Fig. 8 gives the L2-norm error for each target 
stress state along with the sum of the errors from each state, 
or the total L2-norm error.

To statistically compare model predictions to each other, 
an adjusted total L2-norm error of each model was calcu-
lated using the Modification 4a model instead of the experi-
mentally collected data as a reference (i.e., �e,exp

k
 in Eq. (1) 

was taken from the Modification 4a predictions). A one-way 

Table 4  Calculated correctional matrix ( �ij ) values for both spherical 
and ellipsoidal eigenstrain grain-shape assumptions. Correctional val-
ues closer to unity indicate that less empirical correction is required. 

The �avg column calculates the average percent correction (with 
respect to 1) of each row. The average coefficient of determination 
( R2

avg
 ) from the six linear regressions is also given

Shape assumption �11 �22 �33 �23 �13 �12 �avg (%) R
2
avg

Spherical 1.07 0.78 1.51 0.86 1.23 1.06 20.5 0.873
Ellipsoidal 1.03 1.02 1.09 0.93 1.10 1.03 5.7 0.925

Fig. 7  Total axial strain field ( �
yy
(x) ) of the Modification 4a model at 

target stress state S6. For visual clarity, the x-y and y-z surfaces have 
been cropped slightly to remove surface artifacts. The color scale 
bounds are between the 2nd and 98th percentiles of the axial strain 
field

http://dream3d.bluequartz.net/
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analysis of variance (ANOVA) test was performed, which 
showed a significant difference between the adjusted total 
L2-norm error of the models, F(6, 1169) = 242.4 , p < 0.001 . 
A post hoc Tukey test [40] revealed that 18 of 21 pairs of 
these adjusted total L2-norm errors were significantly differ-
ent from one another at a significance level of padj < 0.051.  
The test was unable to find statistically significant differ-
ences between the L2-norm errors of only three model pairs: 
Modification 4a vs. Modification 4b, Modification 3a vs. 
Modification 3b, and Modification 1 vs. Modification 2.

Linear Regression

The second method for model comparison is to plot the pre-
dicted versus experimental values of each of the six elastic 
strain components at each of the six target stress states for 
the 28 Challenge grains. As an example, Fig. 9 shows the 
Challenge-submission versus experimental values of the 
axial elastic strain component ( �e

yy
 ) for the 28 Challenge 

grains at target stress state S4. Simple linear regression was 
performed, and the coefficient of determination ( R2 ) and 
slope (m) are given in the plot along with the mean error 
(ME), which is defined in Sec. 4.3.

The linear regression shown in Fig. 9 is then performed 
for all six strain components at all six target stress states 

for a total of 36 different plots. For each of the seven mod-
els investigated, the 36 plots are given in supplementary 
Figs. S-3–S-9 (refer to Electronic Supplementary Material) 
as single-image plot matrices. To simplify the presentation 

Fig. 8  L2-norm error at the six target stress states calculated using 
only the inner summation in Eq. (1) (left) and total L2-norm error 
(right) for the different models. For all post-submission models, the 
percent decrease in total error relative to the Challenge-submission 

model is labeled above each bar. The black horizontal line indicates 
the L2-norm error for a constant 100 μ� offset corresponding to the 
standard resolution of ff-HEDM [39]

Fig. 9  Challenge-submission model predicted versus experimental 
axial elastic strain �e

yy
 at target stress state S4. The line y = x indicates 

the ideal 1:1 fit. The legend gives the coefficient of determination 
( R2 ) and slope (m) of the regression line as well as the mean error 
(ME)1 padj is the p-value adjusted for multiple comparisons.
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of the results presented herein, the 36 plots are compressed 
into 36 points on a single plot by extracting the R2 values. 
Figure 10 shows the compressed R2 plots for three of the 
models (Challenge-submission, Modification 1, and Modifi-
cation 4a), which are representative of the range of L2-norm 
errors among the seven models investigated. Note that in 
these R2 plots, Modification 1 (Fig. 10b) is representative of 
Modification 2, and Modification 4a (Fig. 10c) is representa-
tive of Modifications 3a, 3b, and 4b.

Mean Error and Model Bias

The final metric used to evaluate each model is the mean 
error (ME) between the predicted and experimental elas-
tic strain tensor components at each of the six target stress 
states. The ME provides the average over- and underpredic-
tion, or bias of the model, and is calculated as follows:

where �e,pred
ij

 and �e,exp
ij

 are, respectively, the predicted and 
experimentally measured elastic strain tensor components 
for each of the N = 28 Challenge grains, g. From Eq. (21), 
a positive ME indicates an overprediction, and a negative 
ME indicates an underprediction. Note that the ME is not an 
absolute error metric; for example, if �e,exp

ij
 is negative, an 

overprediction of �e,pred
ij

 generally underpredicts the magni-
tude of the strain component. The ME is also the same as the 
average vertical difference between the data points and the 

(21)MEij =
1

N

N∑
g=1

(
�
e,pred

ij
− �

e,exp

ij

)
,

line y = x in all regression plots and is equal to the intercept 
of the regression line when the slope is unity. Figure 11 
shows the ME plotted for the Challenge-submission, Modi-
fication 1, Modification 2, and Modification 4a models, 
which represent the range of ME values observed among the 
seven models investigated.

An important note from these ME plots is the large 
underprediction seen in the yz-component of shear strain 
in the plastic regime. Singling out the Challenge-sub-
mission model, almost half of the �e

yz
 underprediction at 

S6 is attributed to a single outlier grain (grain ID 8445), 
for which the yz-component is underpredicted by 2098 
μ� , contributing to the large negative ME and confidence 
interval. It is emphasized that this grain is an outlier in 
the measured strains and has a magnitude 3.8 times higher 
than the next largest shear strain magnitude at S6 based on 
the ff-HEDM measurements. Therefore, this outlier grain 
causes a similar trend in all other models.

There are some numerical values worth extracting from 
Fig. 11 for future discussion. Looking specifically at the 
axial elastic strain component �e

yy
 at S6, the Challenge-sub-

mission model (Fig. 11a) ME is 369 μ� or a (26.4 ± 7.3)% 
overprediction, the Modification 1 model (Fig. 11b) ME 
is 260 μ� or a (18.6 ± 9.2)% overprediction, the Modifica-
tion 2 model (Fig. 11c) ME is 185 μ� or a (13.3 ± 9.0)% 
overprediction, and the Modification 4a model (Fig. 11d) 
ME is 184 μ� or a (13.2 ± 7.2)% overprediction.

Fig. 10  Performance plots (relative to experiment) of the a Chal-
lenge-submission, b Modification 1, and c Modification 4a model 
predictions, where the 36 R2 values in each plot are extracted from 

the 6×6 plot matrices in supplementary Figs.  S-3, S-4, and S-8, 
respectively (refer to Electronic Supplementary Material)
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Discussion

From the results presented, there are several key trends, 
takeaways, and opportunities for future improvements that 
are identified for predicting micromechanical response using 
the EVPFFT modeling method. The reader is referred to 
Fig. 4 for a summary of the key changes incorporated in each 
post-Challenge modification model. It is again noted that the 
first three target stress states (S1–S3) represent macroscopic 
states in the elastic regime, and the final three target stress 
states (S4–S6) represent macroscopic states in the plastic 
regime (see Fig. 2).

Analysis of Model Trends

From the overall error comparisons among the seven mod-
els (Fig. 8), there are two interesting trends observed. First, 
all of the models exhibit a steady decrease in performance 
with accumulated plastic strain. This observation is simi-
lar to results reported by Tari et al. [36] for a validation of 
the EVPFFT method on a Ti-7Al polycrystal. This trend 
is expected given that plasticity is a much harder problem 
to model than elasticity, highlighting the need for continu-
ally improving plasticity modeling efforts. Second, the 

post-Challenge model performance in the elastic regime 
(S1–S3) shows a very low L2-norm error for all models in 
comparison with both the Challenge-submission model and 
the experimental measurements. This error is below the typi-
cal strain resolution reported for ff-HEDM [39], thus dem-
onstrating the accuracy of the EVPFFT model predictions 
in the elastic regime.

From the ME plots in Fig. 11, there are a number of note-
worthy model-bias improvements made by post-Challenge 
modifications. First, the improvements made to axial (yy) 
strain bias are examined, specifically at target stress state 
S6. In comparison with the Challenge-submission model 
(Fig. 11a), the Modification 1 model (Fig. 11b) reduces the 
S6 axial-strain overprediction by 30% through the super-
position of the initial elastic strain field. This superposition 
lowers the overprediction because the initial strain state in 
the majority of the Challenge grains is compressive (i.e., 
negative). The Modification 2 model (Fig. 11c) then fur-
ther reduces the S6 axial overprediction—by 50% compared 
to the Challenge-submission model—due to the optimized 
macroscopic stress–strain response (Fig. 6). The ME plot 
of the Modification 4a model (Fig. 11d) is very similar to 
the Modification 2 model because the initialization of an 
eigenstrain field has only a minor effect on the macroscopic 

Fig. 11  Mean error plots (relative to experiment) for the a Challenge-submission, b Modification 1, c Modification 2, and d Modification 4a 
model predictions. The error bars indicate the 95% confidence interval (CI)
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stress–strain response [21], which in turn only slightly 
affects the ME. However, the removal of the average initial 
strain in the eigenstrain field calculations and subsequent 
re-addition (Eqns. (18) and (19)) is necessary for this to be 
true if there is a nonzero mean initial strain state in the target 
grains. Beyond the model-to-model differences in ME, there 
is one major trend observed in the axial-strain ME for all 
models in the plastic regime. Specifically, from Fig. 11, the 
axial elastic strains are increasingly overpredicted with accu-
mulated plastic strain, regardless of the model. Given that 
this increase in model bias occurs in the plastic regime, the 
phenomenon that causes this is inherently plasticity-based. 
There are a multitude of physical, experimental, and mod-
eling factors that could cause such a trend to occur, which 
remains the topic of ongoing investigation.

Continuing to examine the ME plots in Fig. 11, there is 
another important trend seen in the transverse (xx and zz) 
strain biases of all models. Looking specifically at the post-
Challenge modification models in Fig. 11b–11d, there is a 
nearly constant overprediction, on average, of 130 μ� in both 
transverse strain components for the first three target stress 
states (S1–S3) before slightly decreasing at each of the final 
three target stress states (S4–S6). The transverse strains are 
overpredicted slightly less (more apparent in the xx than 
the zz component) at the final three target stress states due 
to the axial-strain overprediction. The Poisson effect neg-
atively correlates the axial and transverse components of 
strain to one another; thus, when the ME of the axial strains 
increases, the ME of the transverse strains must decrease. 
Because of this, if there were no overprediction of the axial 
yy strain, the transverse-strain overprediction of approxi-
mately 130 μ� would remain constant at all six target stress 
states. Given that the transverse strains are negative due to 
the Poisson effect, an overprediction or positive ME in these 
components indicates an underprediction in strain magni-
tude. In other words, both transverse strain components are 
consistently about 130 μ� more negative in the experimental 
data than all model predictions at all target stress states. If 
this bias were attributed to the single-crystal elastic con-
stants, the bias would not be constant, and instead would 
vary with load. The cause of this constant transverse-strain 
bias is again a topic of ongoing investigation, but given that 
the bias is constant at all target stress states, the phenomenon 
that causes this most likely occurs before or during the first 
ff-HEDM measurement.

Focusing specifically on the L2-norm errors and R2 val-
ues in Figs. 8 and 10 , there are several trends and com-
parisons to be made between model performance. First, 
when the initial elastic strain field is superposed onto the 
Challenge-submission model predictions (Modification 1), 
the R2 values in the elastic regime show that the predictions 
improve from almost no correlation to a very high corre-
lation (Fig. 10a versus Fig. 10b). This significant increase 

in correlation in the elastic regime is responsible for the 
majority of the 21% decrease in total L2-norm error (Fig. 8) 
observed between the Challenge-submission and Modifica-
tion 1 models. Looking specifically at models that superpose 
the initial strain field (Modifications 1 and 2) compared to 
models that initialize an eigenstrain field (Modifications 3a, 
3b, 4a, and 4b), there are some interesting trends to high-
light. In the elastic regime, the strain superposition models 
have higher R2 values than the eigenstrain models (Fig. 10b 
versus Fig. 10c), leading to the strain superposition models 
performing the best overall in the elastic regime (Fig. 8). 
This is because, in the elastic regime, superposing a set of 
elastic strains from experiment is generally considered valid 
and is a more explicit way of incorporating initial elastic 
strains than the eigenstrain approach. However, as more 
load is applied and plastic strain accumulates, the method of 
superposition breaks down, and the eigenstrain models begin 
to outperform the superposition models. Once the plastic 
regime is reached, the eigenstrain models have a lower 
L2-norm error and higher R2 values than all other models in 
the plastic regime (Figs. 8 and 10 c). The eigenstrain models 
perform best in this regime because the initial elastic strain 
field is inherently incorporated into the constitutive equa-
tions, allowing for stress equilibrium, strain compatibility, 
and grain rotation to be modeled more comprehensively. 
Interestingly, the eigenstrain models mainly improve the 
R2 values of the axial strain (yy) component compared to 
the strain superposition models (Fig. 10c versus Fig. 10b). 
Compared to the spherical-grain assumption models (Mod-
ifications 3a and 3b), the ellipsoidal-grain shape assump-
tion models (Modification 4a and 4b) have lower L2-norm 
errors (Fig. 8) as the equilibrated elastic strain fields have 
a stronger correlation to the initial elastic strain field (e.g., 
the 5.9% increase in average R2 value in Table 4). Finally, 
when the correctional matrix is included in the spherical-
grain Eshelby approximation (Modification 3b), the model 
predictions improve slightly over the uncorrected version 
(Modification 3a), and in the case of the ellipsoidal-grain 
Eshelby approximation (Modification 4b), the correctional 
matrix does not improve the predictions over the uncorrected 
version (Modification 4a). Additionally, all eigenstrain mod-
els perform almost identically to one another in the plastic 
regime. This is because, regardless of what the initial state 
of each grain is, the effective yield strength of each grain 
remains the same and thus the grain-averaged elastic strain 
tensors of each model effectively converge once each grain 
reaches plasticity.

Takeaways for Blind Micromechanical Predictions

We offer several key takeaways based on our experience 
participating in the AFRL AM Modeling Challenge and 
performing extensive post-Challenge analysis. First, the 
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EVPFFT method is well equipped at handling microme-
chanical predictions given a 3D microstructure image. The 
EVPFFT code can produce predictions below the ff-HEDM 
strain resolution in the elastic regime with straightfor-
ward input from a voxelized microstructure image. It was 
also found that improving the macroscopic stress–strain 
fit reduced the model bias in the axial strain components. 
Incorporating the initial elastic strain field was also found to 
be crucial for improving micromechanical predictions. The 
best method for this was found to be initializing an eigen-
strain field using an ellipsoidal-grain Eshelby approxima-
tion. This method is relatively simple to implement and is a 
direct improvement over a spherical-grain Eshelby approxi-
mation, as it improves model predictions and requires no 
empirical correctional term.

If blind micromechanical model predictions akin to Chal-
lenge Problem 4 in the AFRL AM Modeling Challenge 
Series were to be made in the future using the EVPFFT mod-
eling method, the following steps would be performed. First, 
the given microstructure image would be modified as little as 
possible while still retaining the necessary EVPFFT model 
requirements (e.g., buffer zone and, if needed, the 2n dimen-
sion requirement). If the residual initial elastic strain field is 
known (even for just a small subset of grains), an eigenstrain 
field would be calculated using an ellipsoidal-grain Eshelby 
approximation. Additionally, the mean initial elastic strain 
(if it exists) would be removed from the eigenstrain field 
calculations to nullify the net elastic strain at the initial state. 
The constitutive model parameters would then be optimized 
to minimize the total discrepancy between the experimental 
and simulated macroscopic stress–strain curves, especially at 
stress states of interest. Based on the presented results, tak-
ing these steps can substantially improve model performance 
and be easily verified.

Opportunities for Future Investigation

There are opportunities for potential improvements to the 
methods presented in this work, particularly in terms of the 
eigenstrain field calculations. The Eshelby approximation 
presented in this work assumes full isotropy; however, this 
assumption could be improved by using elastic properties 
calculated from the neighborhood of a respective grain. Cou-
pled with this, Eshelby’s tensor could be calculated using an 
anisotropic inclusion solution (e.g., Chapter 3 in Ref. [34]). 
These two methods are, however, much more complex to 
incorporate than the Eshelby approximation presented here. 
Pokharel and Lebensohn [21] previously proposed using 
an optimization-based approach to iteratively improve the 
eigenstrain field; however, this approach remains untested.

Beyond simply improving the methods presented here, 
there are several model additions that could be made. Given 
the constant decrease in model performance with increasing 

plastic strain, improving plasticity modeling efforts is nec-
essary. Numerous methods have been proposed to account 
for grain-boundary strengthening effects (an inherent plastic 
effect) within the EVPFFT modeling method, ranging from 
dislocation-based models [41] to scaling the initial CRSS 
as a function of slip-directed distance to grain boundaries 
[42]. The EVPFFT model used in this work does not explic-
itly consider any grain-size effects, and plasticity modeling 
improvements such as these could potentially resolve the 
axial-strain bias discussed previously. Precipitate data were 
also not considered in this work. Since the microstructure 
consisted of approximately 1.2% precipitate phase by vol-
ume-fraction, it is likely that these very small precipitate 
particles could have a considerable effect on the micro- and 
macroscopic response of the material. This precipitate phase 
could potentially be added through DREAM.3D [19] filters 
or other methods to more explicitly represent the multiphase 
microstructure, at the expense of increased computational 
cost due to a (likely) higher resolution simulation domain.

Conclusions

An EVPFFT modeling approach was used to make blind pre-
dictions of micromechanical response for an experimentally 
characterized microstructure of additively manufactured 
IN625 in the context of Challenge Problem 4 in the AFRL 
AM Modeling Challenge series. The data provided to Chal-
lenge participants by AFRL included a 3D microstructural 
image (voxelized data set) depicting crystal orientations; a 
macroscopic engineering stress–strain curve corresponding 
to the aforementioned microstructure, with six specific stress 
states (S1–S6) indicated, at which far-field high-energy 
X-ray diffraction microscopy (ff-HEDM) measurements 
were collected; and grain-averaged elastic strains in each of 
the 28 Challenge grains at the initial state (S0). Participants 
were asked to predict the grain-averaged elastic strain tensor 
in each of the 28 Challenge grains at stress states S1 through 
S6. The Challenge-submission model reported here received 
the Top Performer Award for the lowest total L2-norm error 
(the grading metric calculated through comparison to experi-
mental results) of all submissions. As a result of partici-
pating in the Challenge, the EVPFFT formulation has been 
extended to simulate an arbitrary number of concatenated 
loading processes, enabling simulation of successive loading 
and unloading steps. After the Challenge—but without using 
any additional information—we investigated the impact of 
six model modifications on the predictive performance rela-
tive to the Challenge-submission model. From the results 
presented, the following conclusions are drawn: 

1. Through post-Challenge investigation, we were able to 
substantially lower the total L2-norm error—by over 
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25% in the best model compared to our Challenge-sub-
mission model—using no additional information beyond 
what was provided to participants for the blind predic-
tions.

2. Incorporating the initial residual strain field is crucial 
for improving prediction accuracy of localized microme-
chanical response. Models that incorporated the initial 
elastic strain field through any of the methods investi-
gated herein reduced the total L2-norm error by at least 
20% compared to the Challenge-submission model (in 
which initial strains were ignored), with the majority of 
this improvement occurring in the elastic regime. Lev-
eraging residual strain data for even a small subset of 
grains (28 out of 29,663 grains in the case of the Chal-
lenge specimen) proved to be valuable in improving the 
overall accuracy of predictions.

3. Accounting for the initial residual strain field through 
the use of eigenstrains resulted in a significant improve-
ment in predictive performance (based on overall 
L2-norm error) versus simply adding the initial elas-
tic strains from experiment through superposition. 
While the superposition approach resulted in better 
performance metrics than the eigenstrain approach in 
the elastic regime (S1–S3), the latter outperformed the 
former in the plastic regime (S4–S6), accounting for 
the overall improvement in L2-norm error. The relative 
improvement of the eigenstrain models with increasing 
stress state is attributed to the fact that, unlike the simple 
superposition approach, the eigenstrain approach guar-
antees that the initial elastic strain field is inherently 
incorporated into the constitutive equations, allowing for 
stress equilibrium, strain compatibility, and grain rota-
tion to be modeled more completely.

4. For the first time with respect to EVPFFT modeling, 
we report an ellipsoidal grain-shape assumption used in 
the Eshelby approximation to calculate an initial eigen-
strain field. Using the parameters of a best-fit ellipsoid 
for each grain resulted in an equilibrated elastic strain 
field that more accurately represented the initial elastic 
strain field from experiment (i.e., an average R2 increase 
of 5.9%) when compared to the eigenstrain field calcu-
lated based on a spherical grain-shape assumption. This 
more accurate representation of grain shape resulted in 
an improvement in model prediction compared to the 
spherical grain-shape assumption used previously.

Based on the lessons learned from the post-Challenge 
investigation, we offer a step-by-step procedure for using 
EVPFFT modeling to predict micromechanical response 
given a 3D microstructural image and known initial elastic 
strains (e.g., from ff-HEDM) for an incomplete set of grains 
in the microstructure. The findings presented herein have 
important implications for micromechanical modeling of 

both conventionally manufactured and additively manufac-
tured metals.

Appendix

Appendix A. Global and Local Model 
Convergence Study

During the post-Challenge analysis, a convergence study 
was completed to determine the optimal image resolution 
(voxel size) with respect to global and local error. The global 
error was calculated using the mean squared error (MSE) 
method given in Eq. (16), and the local error was calculated 
using the Challenge grading metric described in Eq. (1). 
The model inputs from Sect. 3.3.3 were used for the con-
vergence study, aside from microstructure image resolution 
changes. For the purposes of the convergence study, a beta 
version of MASSIF with concatenated loading processes 
implemented was used. Utilizing MASSIF thus allowed for 
more data points (i.e., geometries that do not satisfy the 2n 
requirement) to be included in the convergence study than 
if the serial EVPFFT code were used. The local and global 
errors were calculated for seven different resolutions of the 
cuboidal voxel microstructure discussed in Sect. 3.3.2. The 
local and global error was additionally calculated for the 
original microstructure resolution provided for the Chal-
lenge (roughly 33 million voxels), i.e., a microstructure with 
no geometry modifications. Figure 12 shows the global and 
local error data for these eight microstructure resolutions.

From Fig. 12, the global error reached convergence before 
the local error. The global error reached convergence at 
about 1 million voxels or an average of about three vox-
els per grain (not shown in the plot), while the local error 
reached convergence at about 2.1 million voxels or an aver-
age of about 200 voxels per Challenge grain. Based on these 
results, the microstructure resolution used in all models pre-
sented herein did not have any significant effect on the model 
predictions.

Appendix B. Eigenstrain Calculations 
for Ellipsoidal Grains

The following calculations show the process of calculat-
ing the constant eigenstrain tensor using the dimensions 
of the best-fit ellipsoid of an individual grain. These cal-
culations are implemented in DREAM.3D as the “Com-
pute Eigenstrains by Feature (Grain/Inclusion)” filter as of 
version 6.5.151. The DREAM.3D filter does not have an 
option to subtract the mean initial elastic strain tensor as 
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in Eq. (18), so that must be performed manually if desired. 
The first calculation is to change the basis of the elastic 
strain tensor into the best-fit ellipsoid (local) reference 
frame, i.e.,

where �e′
kl

 is the elastic strain tensor in the local reference 
frame and Qki is the orientation matrix corresponding to 
the orientation of the best-fit ellipsoid reference frame. The 
prime ( ′ ) superscript indicates a tensor in the local refer-
ence frame and the absence of such indicates a tensor in 
the global reference frame. Next, the fourth-rank Eshelby 
tensor is calculated via Eshelby’s solution [37] for isotropic 
ellipsoidal inclusions using Eqns. 11.16–11.19 given by 
Mura [34], where Eshelby’s tensor, Sijkl , is a function of the 
ellipsoid semi-axis lengths, a ≥ b ≥ c , and Poisson’s ratio, 
� . Edge cases where the grain shape is a sphere or spheroid 
are handled using Eqns. 11.21, 11.28, and 11.29 given by 
Mura [34]. Within Eshelby’s solution, there are two ellip-
tic integrals that are numerically integrated using 32-point 
Gaussian quadrature (arbitrarily chosen as execution time is 
negligible). Once Eshelby’s tensor is calculated, the uniform 
eigenstrain tensor is calculated in the local reference frame 
as follows:

(22)�e
�

kl
= QkiQlj�

e
ij
,

where �∗�
ij

 is the eigenstrain tensor in the local reference 
frame. This fourth-rank tensor inversion is performed on a 
flattened 9 × 9 matrix and then rebuilt into a fourth-rank 
tensor. The final calculation is to transform the eigenstrain 
tensor back into the global reference frame to complete the 
eigenstrain calculations as follows:

where �∗
kl

 is the final eigenstrain tensor. The correctional 
matrix can then be applied through Eq. 20, if desired. These 
calculations are then repeated for every grain in the micro-
structure, which is 29,663 grains in the case of the Challenge 
microstructure.
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