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Abstract
Challenge 4 of the Air Force Research Laboratory additive manufacturing modeling challenge series asks the participants to 
predict the grain-average elastic strain tensors of a few specific challenge grains during tensile loading, based on experimental 
data and extensive characterization of an IN625 test specimen. In this article, we present our strategy and computational 
methods for tackling this problem. During the competition stage, a characterized microstructural image from the experiment 
was directly used to predict the mechanical responses of certain challenge grains with a genetic algorithm-based material 
model identification method. Later, in the post-competition stage, a proper generalized decomposition (PGD)-based reduced 
order method is introduced for improved material model calibration. This data-driven reduced order method is efficient and 
can be used to identify complex material model parameters in the broad field of mechanics and materials science. The results 
in terms of absolute error have been reported for the original prediction and re-calibrated material model. The predictions 
show that the overall method is capable of handling large-scale computational problems for local response identification. 
The re-calibrated results and speed-up show promise for using PGD for material model calibration.

Keywords Additive manufacturing · IN625 · Elastic strain · Data-driven method · Proper generalized decomposition

Introduction

Metal additive manufacturing (AM) has been the focus of 
researchers and engineers as a promising manufacturing 
method for large-scale, customized, and complex metallic 
parts [1–3]. However, major concerns in the field of metal 

additive manufacturing are microstructural heterogeneity 
and residual strain resulting from the high spatial thermal 
gradients, localized heating and cooling, and fast cooling 
rates present in AM builds [4, 5]. The resulting microstruc-
ture of the build controls the mechanical properties [6–8]. 
Therefore, accurate computational models that can predict 
the microstructure-level evolution of strain during service 
conditions are crucial to enable confident engineering with 
these materials without an extensive retesting procedure 
after any part of the manufacturing process is altered [9]. 
Challenge 4 of the Air Force Research Laboratory (AFRL) 
additive manufacturing (AM) modeling challenge series 
centers on developing and validating reliable computational 
models that can track the evolution of grain-average elastic 
strain of certain grains under uniaxial loading conditions. In 
this paper, a fast Fourier transformation (FFT)-based method 
has been used to model the evolution of strain, both elastic 
and plastic, with a crystal plasticity material model. Opti-
mization of the material model is performed by a proper 
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generalized decomposition (PGD) method [10, 11] and the 
performance is compared with the genetic algorithm [12].

Validating the prediction of mechanical response of mate-
rial at the micro-level was the goal of the challenge and was 
achieved using high-energy diffraction microscopy tech-
niques [13–15], where multiple levels of detail can be cap-
tured by combining near- and far-field imaging. The details 
of the high-energy diffraction methodology followed to char-
acterize the challenge material, the nickel-based superalloy 
IN625, are discussed in on the Challenge Website [16], and 
in an article under the same Topical Collection as this paper. 
Necessary information on the experiments to understand the 
work presented here are discussed in the "Problem State-
ment" section.

For microscale continuum modeling of metal polycrys-
tals, computational crystal plasticity is a common method 
[17–19]. While the mathematical algorithm used to solve 
the problem remains similar, depending on the physics to be 
modelled, different variations of the crystal plasticity mate-
rial model have been proposed. The material models are 
used within, e.g., the finite element method (FEM) or the fast 
Fourier transformation (FFT) method [20–22] for computing 
the materials response. One major drawback of using crystal 
plasticity is the computation becomes more expensive than 
when more simple material models are used. Using FFT 
instead of FEM can improve computational efficiency, but 
FFT requires a periodic simulation domain, which is not 
always possible, or necessitates modeling compromises. 
Recently, data-driven mechanistic approaches have been pro-
posed such as self-consistent clustering analysis (SCA) [23, 
24] where material points are grouped together to predict 
the overall response of the material domain. Considering 
the nature of the domain given and the nature of the chal-
lenge, the group opted to use the crystal plasticity-FFT as 
the solution method.

Irrespective of the scenario, crystal plasticity material 
models involve a number of parameters to be calibrated 
against the experimental data before they can be used. This 
involves an optimization process in which material model 
parameters are varied and the resulting predictions compared 
against experimental, or otherwise ground truth, data. This 
optimization method requires solving for the mechanical 
response using crystal plasticity multiple times. As a result, 
the calibration can be computationally expensive, and an 
alternate way to calibrate the material model is desirable. 
One typical method for calibration is the multi-objective 
genetic algorithm [21, 25]. The material model used when 
reporting challenge results was calibrated using such a 
method. The results from the competition indicated that 
material model calibration was a key area for advancement. 
Thus, an advanced PGD-based optimization was applied to 
the material model calibration, and in this manuscript we 
demonstrate its high efficiency for this problem. PGD is a 

projection-based model reduction method and has gained 
popularity in recent years. This kind of approach is used 
for accelerated numerical simulations [26–29] or efficient 
parametric studies [30–33]. PGD approaches can be imple-
mented in either intrusive or non-intrusive ways. The non-
intrusive kind can be mainly based on data and therefore 
applicable for a wide range of problems. The method we 
present in this work is non-intrusive and data-driven and 
can be adopted for many other problems, such as for differ-
ent linear and nonlinear processes or materials optimization.

The article is organized as follows: In the "Problem State-
ment" section describes the problem statement for the chal-
lenge and in the "Material Modeling Methods" section illus-
trates the solution methodology we followed. In the "Genetic 
Algorithm" section describes the initial genetic algorithm 
(GA)-based material calibration, while in the "Proper Gen-
eralized Decomposition-Based Material Parameter Identifi-
cation" section discusses the fundamentals and results of a 
more advanced PGD-based material parameter identification 
method. The results reported to the challenge (with the GA 
calibration) and updated analysis with PGD-based calibra-
tion are presented in the "Discussion of Results". Finally, the 
analysis is concluded in the "Conclusions" section.

Problem Statement

The AFRL challenge statement provided certain build, mate-
rial, and loading information and asked for prediction of 
"grain-averaged elastic strain tensors for specified grains at 
specified macroscopic loading points under uniaxial ten-
sion." The goal of the challenge thus being to assess the 
ability of grain-scale modeling to accurately reproduce 
measured elastic strains within a real, relatively complex, 
polycrystalline setting. The following sections will provide 
a brief summary of the information provided and requested, 
along with some discussion.

Measurements of the initial and calibration data, as 
well as the requested prediction data at each load level, 
were taken using in situ testing with the Air Force/Pul-
seRay RAMS3 load frame at the Advanced Photon Source, 
Argonne National Laboratory [34]. The measurements 
include x-ray integrated micro-computed tomography ( �
CT) using direct beam projections, near-field HEDM/3D 
x-ray diffraction (3DXRD) to quantify 3D grain structure 
and sub-grain orientation, and far-field HEDM/3DXRD to 
measure grain-resolved elastic strain tensors. A box-shaped 
beam was used with vertical resolution of 28.5� m to meas-
ure 19 slices at the center of the test specimen, from which 
the data for the challenge grains was extracted. After the test, 
the specimen was destructively serial sectioned using the 
LEROY system at the AFRL [35] to collect electron back-
scatter diffraction (EBSD), backscatter electron (BSE), and 
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optical microscopy (OM) images. Serial sectioning was col-
lected with approximately 1 μm slice thickness, and similar 
resolution for the in-plane step size. Gold fiducial markers 
and � CT data were used to aid in data registration between 
EBSD and HEDM. Further details of all aspects of the chal-
lenge experiments, including schematics and images of the 
test setups, are provided on the challenge website [16] and 
in the manuscript by the AFRL about these experiments in 
this Topical Collection.

Data Provided

The AFRL provides a thorough description of the data avail-
able and methods used to collect said data on the challenge 
website, [16], and the article in this Topical Collection cov-
ering the experiments by the AFRL. The following items 
summarize the key elements needed for our models.

Material

The material is stress relieved (SR), hot isostatically pressed 
(HIP’ed), and heat treated (HT) AM IN625 manufactured 
using a commercial EOS M2801 Laser Powder Bed Fusion 
(LPBF) system from gas atomized powder. Details of these 
post processing steps were withheld from participants. The 
test artifact was built with the tensile direction along the 
build direction and post-machined with wire electrical dis-
charge machining, with no further finishing steps.

Characterization

Three main interconnected data streams were provided to 
the challenge participants. First, mechanical test information 
in the form of quasi-static (strain rate 10-4 s -1 ) stress–strain 
plots both for the challenge artifact itself and for calibration 
was provided. The in situ challenge artifact had a unique 
geometric design to enable the measurements, where the 
calibration specimen had a more standard geometry, fol-
lowing the ASTM E8 standard. HEDM data (importantly, 
residual elastic strain) were provided at the initial state 
(before loading) for the challenge grains. Finally, serial sec-
tioning electron backscatter diffraction data, collected after 
the specimen, were mechanically tested to collect HEDM 
data under various loading conditions, were registered to 
the HEDM dataset to define the geometry and orientation 
of each grain within the test specimen. Finally, a three-
dimensional voxelized image of the microstructure was 
provided to the participants, summarizing the combined 
HEDM and EBSD data. The supplied input structure had 
different phases including IN625, pores inside the material, 
gold, platinum, and outer borders. A sample of the input 
microstructure image is shown in Fig. 1. The image was 
305 voxels × 351 voxels × 312 voxels voxels, where each 
voxel had an edge length of 2 μm. There were 29662 features 
in total, including each grain, the precipitates, pore, gold, 
platinum, etc. Before analysis, the image was simplified to 
only include the IN625 grains and porosity. The porosity 
was modeled to be linear elastic material with extremely 
low stiffness. After this processing, the remaining empty 
air space (blue boundary region in Fig. 1a) was removed. 
There were in total 28 challenge grains specified inside the 
domain. These grains had a known, fixed value of initial 
elastic strain state at state S0 (see Fig. 2). However, there 
was no strain specified for any of the other grains or phases 
at S0.

Requested Predictions

Challenge participants were informed that HEDM meas-
urements of grain-averaged elastic strain tensors were 
taken at seven different load states identified in the 
stress–strain curve in Fig. 2: 

1. Initial, unloaded, state,
2. 100 MPa,
3. 200 MPa,
4. loaded to 300 MPa followed by a 50 MPa unload (to 

reduce the likelihood of creep during measurements) 
before measurement,

5. deformed until 0.35% strain (which was roughly 
360  MPa) followed by 50 MPa unloading before  
measurement,

Fig. 1  Comparative diagram showing the supplied input structure 
after imaging and final structure used for prediction

1 Certain commercial software, equipment, instruments, or materi-
als are identified in this paper to adequately specify the experimental 
procedure. Such identification is not intended to imply recommenda-
tion or endorsement by the National Institute of Standards and Tech-
nology, nor is it intended to imply that the equipment or materials 
identified are necessarily the best available for the purpose.
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6. deformed until 0.5% strain (roughly 385 MPa) and 
unload by 50 MPa before measurement,

7. deformed until 1.0% strain (roughly 410 MPa) and 
unload by 50 MPa before measurement.

Participants were asked to report the grain-averaged elastic 
strain tensors for each of the challenge grains at each of 
these load states. Note that the quantity used to specific the 
state at which measurements and predictions were com-
pared switches from load to strain at point four. Load con-
trol was used during the two to three hours during which 
measurements were taken at each load/strain level.

Some interpretation and judicious assumptions based 
on the data provided were required:

• The hold periods during mechanical testing of the chal-
lenge artifact were not quantified—challenge participants 
were told only that these periods lasted between 2 h and 
3 h, and were held in load control, after a 50 MPa load 
reduction for holds at 300 MPa and higher. Thus, a “best 
guess” of the time–displacement curve to be applied as 
boundary values was required.

• Only the initial strain in the challenge grains, not all 
grains, was provided. Thus, we assumed that all other 
grains had zero initial strain; other approximation are 
possible. This approximation is the simplest possible; 
given the lack of data, we opted to avoid other unsub-
stantiated assumptions. However, the method followed 
in the article is general and any value of initial strain can 
be applied to get the solution.

• The grain structure provided was for the final state, and 
the assumption was that the geometry and crystallog-
raphy of the initial grain structure was the same. This 
is an approximation, because some plastic strain (about 

7.8% overall engineering strain was not recovered upon 
unloading) was induced.

• The single-crystal properties provided were from the 
literature and did not necessarily match precisely the 
material conditions of the test artifact. While calibra-
tion data was provided, it was on macroscale properties, 
rather than individual grain properties. Thus, grain-scale 
methods require material calibration for both physical 
and empirical model parameters, as we will discuss fur-
ther in the following sections.

• The properties of some phases (e.g., gold and platinum 
fiducial markers, precipitates) were not given, although 
the materials appear on/in the specimen. We assumed 
these phases had no impact upon the mechanical response 
and omitted them from our analysis. However, porosity 
was considered in our analysis.

• Using grain-averaged properties, such as orientation 
and measured strains, introduces some uncertainties, as 
there are likely variances within the grain. However, we 
assumed these variations are small, thus were possible to 
neglect.

These challenges are mostly related to unavoidable measure-
ment realities or are otherwise insolvable. However, identi-
fying inherited assumptions and sources of uncertainty will 
help us construct a model robust to such uncertainties, and 
may provide insight into the differences between model and 
experimental results.

Calibration Data

In order to calibrate the material model, the AFRL provided 
us with experimental microstructure characterization and 
mechanical testing data [16]. For calibration, the AFRL 

Fig. 2  Schematic diagram 
showing the challenge problem. 
The uniaxial tensile test experi-
ment is performed, and a small 
section is observed under high-
energy X-ray diffraction. 28 
challenge grains are specified in 
a dataset cross-registered with 
electron backscatter diffraction. 
The initial strain of these grains 
is provided. The elastic strain 
tensors are to be predicted for 
these grains at specified points 
on the stress–strain curve (S1, 
S2, S3, S4, S5, S6) during the 
uniaxial tensile test
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experiments used a tensile bar prepared using ASTM E8 as 
guidance [36]. Three post-processing steps were applied: 
stress relief, hot isostatic pressing, and heat treatment 
(SR+HIP+HT); details were not provided, and although not 
explicitly stated since both calibration and test specimens were 
described as SR+HIP+HT, we assume the post-processing for 
both was identical. The build direction was aligned with the 
tensile direction, and testing was conducted in a room tem-
perature (75° F (23.9° C)) and laboratory air environment. The 
microstructure characterization information provided for the 
calibration specimen includes EBSD scans and back-scattered 
electron images from the side and top faces, and chemical anal-
ysis of powder. For this work, we only used the mechanical 
testing and EBSD characterization data.

Material Modeling Methods

The material model used in this work is specified in detail in 
[19]. For this problem, we have an initial grain average elas-
tic strain specified. The following description is thus defined 
in terms of the initial deformation gradient present in the 
simulation.

The work uses a general elasto-viscoplastic material model. 
If the local deformation gradient is � , it can be multiplicatively 
decomposed into individual contributions,

Here, �e is elastic part of the deformation gradient, �in is 
the inelastic part of the deformation gradient, and �init is 
the initial part of the deformation gradient, i.e., residual 
deformations derived from measured elastic strains in the 
challenge grains.

Before applying the material model, we need to find the 
deformation gradient responsible for mechanical deformation 
�mech by,

The deformation gradient can be related to the elastic mate-
rial model using

where �e is the elastic Green–Lagrange strain, �e is the sec-
ond Piola–Kirchhoff stress, �SE is the fourth-order elastic 
stiffness tensor, and �2 is the second-order identity tensor. In 
this work, the entire inelastic part is assumed to come from 
plastic deformation, i.e., �in = �p . The inelastic deforma-
tion gradient can be calculated from the plastic part of the 
material model to relate the plastic velocity gradient, �p = 
�̇p

⋅ (�p)−1 to plastic shear rate �̇�𝛼 in slip system � by,

(1)F = Fe
⋅ Fin

⋅ Finit

(2)Fmech = Fe
⋅ Fin = F ⋅ Finit−1

(3)Se = CSE ∶ Ee =
1

2
CSE ∶

[
(Fe)

T
⋅ Fe − I2

]
,

Here, s(�)
0

 and n(�)
0

 are the unit vectors which define the slip 
direction and slip plane normal for slip system � in the 
undeformed configuration, Nslip is the number of active slip 
systems (active slip systems for FCC system are shown in 
Table 3), and ⊗ is the dyadic product. The resolved shear 
stress, � (�) on the slip plane, is related to plastic shear rate 
�̇� (𝛼) . The resolved shear stress is given by,

where the � is the Cauchy stress, s is the slip direction, and 
n is the slip normal, defined by:

In these equations, Je is the determinant of Fe . In this work, 
the hardening term �̇� (𝛼) evolves based on a power law, given 
by

where �̇�0 is a reference shear rate and m is the exponent 
related to material strain rate sensitivity. The deformation 
resistance shear stress �0 and back stress a(�) are expressed as

where � is a slip system, H and h are direct hardening coef-
ficients, R and r are the dynamic recovery constants; latent 
and cross-hardening contributions were assumed to be iden-
tical. The FFT algorithm followed in this work is based on 
[37] and [38]. The implementation is fully parallel using the 
FFTW library [39] and can handle a simulation domain as 
large as provided in the challenge.

(4)L(p) =

Nslip∑
𝛼=1

�̇� (𝛼)
(
s
(𝛼)

0
⊗ n

(𝛼)

0

)
.

(5)𝜏 (𝛼) = � ∶
(
s(𝛼) ⊗ n(𝛼)

)

(6)� =
1

Je

[
Fe

⋅ Se ⋅ (Fe)T
]

(7)s(�) =Fe
⋅ s

(�)

0

(8)n(�) =n
(�)

0
⋅ (Fe)−1

(9)�̇� (𝛼) = �̇�0

||||||
𝜏 (𝛼) − a(𝛼)

𝜏
(𝛼)

0

||||||

(m−1)(
𝜏 (𝛼) − a(𝛼)

𝜏
(𝛼)

0

)
,

(10)�̇�
(𝛼)

0
= H

Nslip∑
𝛽=1

|||�̇�
(𝛽)

0

||| − R𝜏
(𝛼)

0

Nslip∑
𝛽=1

|||�̇�
(𝛽)

0

|||,

(11)ȧ(𝛼) = h�̇�
(𝛼)

0
− ra

|||�̇�
(𝛼)

0

|||,
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Calibration Method

Genetic Algorithm

In order to calibrate the crystal plasticity material model, dur-
ing the challenge the flow-diagram shown in Fig. 3 was fol-
lowed. The EBSD statistics supplied by the AFRL were used 
in the open source software package DREAM.3D [40] to 
create a synthetic representative volume element (RVE). The 
RVE had dimensions of 10 voxels × 10 voxels × 10 voxels , 
and each voxel represented 1 grain. Five parameters from 
the crystal plasticity crystal plasticity formulation given 
in " Material Modeling Methods" section were calibrated 
using the genetic algorithm: the deformation resistance 
shear stress �0 (controlling the yield point), direct harden-
ing coefficients (H, h), and dynamic recovery constants (R 
and r) (controlling the plastic response). By varying these 
parameters, mechanical response of the RVE was computed 
and compared with the experimental data provided by the 
AFRL. The optimization of the parameters was done by the 
genetic algorithm in MATLAB [12]. When a satisfactory 
resemblance is achieved, the parameters are considered to 
be final. Since the genetic algorithm needs a large number of 
iterations, the five parameters were calibrated sequentially. 
First �0 , H, and R were calibrated. In the second stage, h and 
r were calibrated. The result of the calibration is shown in 
Fig. 4. For the competition stage, the calibrated parameters 
from the genetic algorithm were used. Later, in the post-
competition stage, a PGD-based calibration method was 
adopted, which will be explained in the next section "Proper 
Generalized Decomposition-Based Material Parameter Iden-
tification". In both cases, elastic parameters are taken from 
the supplementary information provided with the AFRL 

challenge 4 statement, collected from [41]. Final calibra-
tion values for each method are given in Table 1.

Proper Generalized Decomposition‑Based Material 
Parameter Identification

We propose using a PGD-based surrogate modeling 
approach [10, 11] for calibration or material model param-
eter identification as an enhancement over the previously 
described genetic algorithm.

The PGD method used in our work is the higher-order 
PGD (HOPGD), which is designed for non-intrusive data 
learning and constructing reduced order surrogate models. 

Fig. 3  Schematic diagram 
showing the steps of the calibra-
tion method. CPFFT means 
crystal plasticity fast Fourier 
transformation
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Fig. 4  Calibration outcome for optimization using a genetic algorithm
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The basic idea behind PGD approaches is separation of vari-
ables. For a d-dimensional function f (�1,�2, ...,�d) , which 
contains the quantity of interest as a function of parameters 
�i|i=1,d ∈ Di , the separation of variables results in the fol-
lowing form

where f n is an approximation of f, n is the rank of approxi-
mation, m denotes the mth mode. Note that the superscripts 
n, m are counting indices, not exponentiation. The n-rank 
approximation f n is given by the finite sum of products of 
the separated functions: Fm

i
|i=1,d , which are a priori unknown 

and should be obtained either with a pre-computed database 
[10, 11, 32, 42] or by directly resorting to physical models 
[29–31, 43]. Furthermore, each function Fm

i
 that represents a 

variation of the original function f in the parameter direction 
�i is also called a mode function.

The HOPGD relies on the database and falls into the 
family of data-driven approaches. The database can be 
either from simulations or experiments. Once the data-
base is obtained, the HOPGD can learn with data to com-
pute the mode functions Fm

i
|i=1,d , which can reproduce 

(or extrapolate) the full parametric function f. Therefore, 
HOPGD can be used to construct a surrogate model that 
relates the input parameters and output quantity of inter-
est. The detailed implementation of the method is pre-
sented in [10] and summarized in Appendix A. Examples 
of codes can be found on the GitHub project (https://yelu-
git.github.io/hopgd/).

(12)

f (�1,�2, ...,�d) ≈ f n(�1,�2, ...,�d)

=

n∑
m=1

Fm
1
(�1)F

m
2
(�2)⋯Fm

d
(�d)

In this work, the parametric stress–strain curve is 
required for materials identification. More specifically, 
we want a surrogate model relating the parameters and 
the stress–strain curve. The PGD surrogate model can be 
written as

where pi are the parameters we want to identify for the crys-
tal plasticity model. Once this surrogate model is obtained, 
we can easily vary the values of those pi and find the best 
set for a given experimental measure, instead of repetitively 
running the expensive FFT simulation.

Now, assuming the parameters p =
[
p1,… , pd

]
 belong to 

a predefined domain D = D1 ×⋯ ×Dd , we want to identify 
the best p∗ such that

where J denotes the objective function which measures the 
distance between the model output �PGD and the experimen-
tal measurement �e . Now, we can repetitively perform the 
following steps to find the best parameters: 

1. Sample the parameter space D with the adaptive strat-
egy, as described in Appendix B.

2. Compute the stress–strain curve data with the crystal 
plasticity model for the selected data points.

3. Use HOPGD and data samples to compute the mode 
functions in Eq. (13) and obtain the surrogate model 
�PGD.

4. Use the surrogate model to optimize the parameters to 
match the experimental data. Solve Eq. (14).

We remark here that the surrogate model used in the above 
procedure is extremely cheap to evaluate, since the mode 
functions Fm

i
(pi) are known with data and we only need to 

perform a 1D interpolation to get the output � for a given 
point p . The same procedure has been applied to a weld-
ing problem and shown to have very good performance in 
terms of efficiency [11]. In what follows, PGD refers to 
HOPGD unless otherwise stated.

In the post-competition stage, we explored several 
ideas to improve our predictions. In one case, we took 
the calibration data provided by the AFRL and used PGD 
to calibrate the material model. The results are shown in 
Fig. 5. The model and experiment appear to agree well. 
However, based on discussion at the AFRL Workshop fol-
low the competition, we also tried calibrating the material 
model directly to the experimental data used to assess the 
competitors and provided as an overall stress–strain curve 
by AFRL. It seemed more logical as the challenge asked 

(13)�PGD = �n(�, p1, ..., pd) =

n∑
m=1

Fm
�
(�)Fm

1
(p1)⋯Fm

d
(pd)

(14)p∗ = arg min
p∈D

J
(
�PGD, �e, p

)

Table 1  Summary of calibrated parameters from calibration cases. 
All the parameters are specified for convenience of the reproduction 
of the readers. Only �

0
 , H, h, R,   and r are calibrated. Other param-

eters were selected from literature

∗ From [41]

Material property Genetic algorithm values PGD values

C1111∗ 245587 MPa 245587 MPa
C1122∗ 158173 MPa 158173 MPa
C2323∗ 118901 MPa 118901 MPa
�̇�
0

0.00242 0.00242
m 58.8 58.8
�
0

131.5 MPa 143.9 MPa
a 1.4 1.4
H 0.0 0.0
h 0.0 0.43
R 2892.93 2500
r 13.02 30
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to predict the local values based on this exact experiment. 
The result of this second calibration is shown in Fig. 6. 
The load drops required for in situ data collection in the 
challenge specimen were manually removed to enable the 

calibration. Here again, we see very good comparison 
between the experiment and simulation. The most signifi-
cant improvement, thus, is the computational time. For 
both the genetic algorithm and PGD-based calibration, 
36 2.3 GHz Xeon Gold 6140 processors were used with 
192 GB of memory. For the genetic algorithm, the cali-
bration took 3.6 h. Compared to that, the first calibration 
(with calibration data) with PGD took 0.7 h. Final calibra-
tion with the PGD algorithm with the final experimental 
results took around 0.8 h, representing a speed up factor 
of almost 4.2.

Discussion of Results

Comparison of Absolute Errors Between Elastic 
and Total Strain

The crystal plasticity method computes total strain (elastic 
plus plastic), from which elastic strains can be extracted. 
Here, we will report both elastic and total strain predic-
tions; total strains are different from both the elastic pre-
dictions and elastic measurements, indicating the likeli-
hood that plastic components of strain are substantial. 
Importantly, we must be cognizant of the differences 
when performing model validation. A comparison of the 
results between the PGD-calibration method and genetic 
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Fig. 5  Calibration outcome for optimization using the PGD method 
with calibration data from AFRL

Fig. 6  Calibration outcome for 
optimization using PGD with 
exact experimental data from 
the AFRL challenge specimen, 
with load drops induced by data 
collection manually removed for 
calibration

0 0.002 0.004 0.006 0.008 0.01

Strain

0

100

200

300

400

500

St
re

ss
, M

Pa

Experiment
Computation



150 Integrating Materials and Manufacturing Innovation (2021) 10:142–156

1 3

algorithm-based method is presented for elastic strain pre-
dictions. Some key takeaways highlighting the capability 
of the solution method are also mentioned.

A comparison of average absolute error in experimen-
tally measured elastic strains along the normal directions 
(X, Y, and Z axes) Exx , Eyy , Ezz for total and elastic strain 
predictions is shown in Figs. 7, 8 and  9. The absolute 
error is defined as the absolute value of the difference 
between the experimental data provided by AFRL and our 
predicted strain. There were in total 28 challenge grains, so 
for each prediction point, the average absolute error shown 

is the absolute error averaged over the 28 grains. When 
the total strain is reported, the results are far off from the 
experimental data, especially in the plastic regime of the 
stress–strain curve. This is expected, because the experi-
mental results only measure the elastic component of the 
strain in both the elastic and plastic zones. For the elastic 
zone, both predictions give a more or less similar result. 
This is expected as the prediction of grain average elastic 
strain depends on the elastic constant used in the computa-
tion. In both total and elastic strain predictions, the elastic 
constants are the same. Another important observation is 

Fig. 7  Average absolute error measured as the absolute error between 
predicted and measured strain averaged across the 28 challenge 
grains, in Exx for PGD, elastic, and total strain reported

Fig. 8  Comparison of absolute error in Eyy for PGD, elastic, and total 
strain reported

Fig. 9  Comparison of absolute error in Ezz for PGD, elastic, and total 
strain reported

Fig. 10  Comparison of absolute error in Exy for PGD, elastic, and 
total strain reported



151Integrating Materials and Manufacturing Innovation (2021) 10:142–156 

1 3

that the prediction performance is better for the Eyy com-
ponent compared to the other two normal directions. This 
is the loading direction, and strains in this direction are 
much larger in magnitude than for the other directions. The 

shear strain predictions are presented in Figs. 10, 11 and 
12. Interestingly, the difference of absolute errors between 
the elastic strain and total strain cases for shear compo-
nents is much less compared to their normal counterparts. 
It appears that the shear strain components are closer to 
experimental value when the total strain was reported. 
The reasoning would be for shear components of strain, 
the amount of plastic strain is negligible according to our 
calculation.

The challenge requested only grain-averaged strain val-
ues. However, in this prediction framework, we also pre-
dict the local strain distribution inside each grain. Table 2 
shows the prediction of grain average strain component 
of Exx for challenge grain 12602. A demonstration of the 
local deformation field is presented in Figs. 13 and 14. The 
method uses the voxel-wise discretization of the domain and 
treats each voxel as a material point. The solution is given 
at each such material point. In order to sufficiently resolve 
the material, many material points within each grain are 
required. Thus, the method inherently captures both stress 
and strain locally within each grain. Specifically, for each 
applied displacement step, boundary conditions in terms 
of macroscopic deformation gradients are applied homoge-
neously throughout the domain and an iterative scheme is 
used to ensure compatibility within the domain, using the 
two-stage decomposition of plastic deformation common 
to many crystal plasticity routines. Further details of the 
method can be found in [37, 44]. In Fig. 13, the distribution 
of deformation gradient along the Y-axis is shown in the 
reference configuration at (a) S1 and (b) S6. Thus, with this 
method it is possible to identify sub-grain level deforma-
tion due to the applied loading conditions. Such capability 
is likely important for modeling damage because localized 
deformation drives damage evolution, such as for fatigue 
failure. Figure 14 shows the local changes in deformation 
gradient within challenge grain 12602.

Comparison of PGD‑Based Method and Genetic 
Algorithm

The PGD-based calibration method is applied to calibrate 
the five parameters simultaneously. The final values of 
these parameters are compared with the genetic algorithm, 
as shown in Table 2. In our work, we observed similar final 
solutions between PGD and genetic algorithm. This is 
confirmed by Figs. 14 and 5. However, in a general sense, 

Fig. 11  Comparison of absolute error in Eyz for PGD, elastic, and 
total strain reported

Fig. 12  Comparison of absolute error in Exz for PGD, elastic, and 
total strain reported

Table 2  Summary of reported 
values for strain component Exx 
in challenge grain 12602 at the 
six reporting points

Prediction state S1 S2 S3 S4 S5 S6

Total strain 0.000192 0.000225 0.000269 0.000791 0.001662 0.004119
Elastic strain 0.000192 0.000225 0.000281 0.000411 0.000274 0.000262
PGD calibration 0.000192 0.000225 0.000281 0.000421 0.000314 0.000313
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since the genetic algorithm usually converges to some local 
minimums, the final solution could be less optimal for the 
genetic algorithm than the PGD method, i.e., confidence in 
obtaining a best-case optimization is lower for the genetic 
algorithm. The genetic algorithm may also be sensitive to 
the initial settings, e.g., initial guesses, initially prescribed 
parameter space.

In the post-competition stage, the results were repro-
duced using new calibration values. The absolute average 
error compared to the experimental data is shown in Figs. 6, 

7, 8, 9, 10, and  11. Just like in the previous section, the 
presentation of results is divided into elastic and plastic 
zones for all the grains identified at different experimental 
points. In all the figures, one can observe that the differ-
ence of error between the PGD-calibrated prediction and 
genetic algorithm is small. Hence, it is confirmed that the 
PGD-calibrated material model can achieve the same level 
of accuracy as the genetic algorithm calibrated model, at 
least in this case. This has significant implications for the 
computational aspects of calibration for large-scale problems 

Fig. 13  Representation of the 
predicted local YY-component 
of deformation gradient (in 
the loading direction) for the 
challenge grains at a S1, and 
b S6. Note that the color scale 
bars are different, because the 
deformation gradients are sub-
stantially larger in S6

Fig. 14  Distribution of the YY 
component of the deformation 
gradient in challenge grain 
12602 at a strain point 1, and 
b strain point 6. The deformed 
configuration is shown with 
a factor of ten increase in the 
deformation field. Note that the 
color scales on (a) and (b) are 
different, so that the deforma-
tions can be seen within the 
grains more clearly
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using crystal plasticity. Using this fast and advanced mate-
rial identification technique, calibration can be more detailed 
and more demanding material models with broader param-
eter sets can also be used to solve practical problems.

Conclusions

The PGD-based method of calibration is a promising alterna-
tive to the more conventional genetic optimization-based meth-
ods for calibration of complex material models. The article 
shows the evidence of the efficacy of the method by showing 
the prediction for both genetic optimization method and PGD-
based method. The FFT-based method used in this article is 
a viable alternative to using finite element-based methods, in 
this case. In addition, although the challenge asked for predic-
tion of local grain-average elastic strain tensor, the method can 
also predict local strain or stress fields. In future, a combined 
data-driven material parameter identification method with 
mechanistic data-driven reduced order methods may be devel-
oped, so that both prediction and calibration become faster and 
thus more useful for design of materials.

Appendix A: Data‑Driven PGD‑Based 
Surrogate Modeling

For computational purposes, the PGD approximation [10] 
can also be written in the following incremental form by 
considering that the f n−1 is computed previously

or for notation simplification,

Assuming a database of f is known for some selected sam-
pling points in the parameter space D = D1 ×⋯ ×Dd , the 
HOPGD seeks an L2 projection of the data as follows [10]:

(15)f n(�1,�2, ...,�d) = f n−1 + Fn
1
(�1)F

n
2
(�2)⋯Fn

d
(�d)

(16)f n(�1,�2, ...,�d) = f n−1 + F1(�1)F2(�2)⋯Fd(�d)

where w is a sampling index equal to 1 or 0, depending on 
the sampling strategy in the parameter space D . This means 
the approximated function f n minimizes only the error on 
selected sampling points.

Considering the incremental form of f n (16), the problem 
(17) can be converted to a local minimization problem as 
below.

which can be equivalently written in an integral form with 
(F1,… ,Fd) as unknown variables to solve

where the test function �f = �
∏d

i=1
Fi = �F

1
F
2
...Fd +⋯+

F
1
F
2
...�Fd . Thus, for a target function f and having estimated 

the n − 1 rank of PGD approximation f n−1 , the next step 
consists of computing the new separated modes F1,F2, ...,Fd 
at rank n using the above equation.

An alternating fixed point algorithm can be used to solve 
this problem for the mode functions. The rank n can start 
from 1 and incrementally increases to a finite number which 
is determined by the convergence of the approximation, i.e., 
‖wf − wf n‖ ≤ �‖wf‖ . More details can be found in [10]. 
Sparse sampling can overcome the exponentially increasing 
complexity of the right-hand side integral in equation (19).

(17)

⎧
⎪⎨⎪⎩

Find f n ∈ Vn ⊂ L2(D) s.t.

f n = argmin
f n∗∈Vn

�
1

2
∥ wf n∗ − wf ∥2

L2(D)

�

(18)

(F1,… ,Fd) = argmin
F∗
1
∈L2(D1),…,F∗

d
∈L2(Dd)

1

2
∥ wf n−1

+ w

d∏
i=1

F∗
i
− wf ∥2

L2(D)

(19)
∫
D

w

d∏
i=1

Fi�f d�1 … d�d

= ∫
D

(wf − wf n−1)�f d�1 … d�d

Fig. 15  Adaptive sampling 
strategy for data generation. 
Black: sampling pints (data), 
Red: current optimum
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Appendix B: Sampling Strategy 
for PGD‑Based Materials Identification

The sampling strategy adopted in our work was proposed by 
[11]. We summarize here the main idea of the methodology. 
Assuming a parameter space D (usually large enough) has 
been chosen, we aim at limiting the necessary number of 
data points in the parameter identification procedure. Hence, 
the idea consists in incrementally enriching the database and 
using the optimization results to guide the sampling. This 
results in an adaptive sparse grid in D and is suitable even 
for a high dimensional space. The main procedure is shown 
as below and in Fig. 15.

• Start from the predefined space D , sample the central 
axes of the space by adding two points at the extremi-
ties of each axis and one point at the center. In a two-
dimensional space, this axis sampling results in a sparse 
grid of five points, as shown in Fig. 15a. Analogically, for 
an n-dimensional space, this number of points is 2n + 1 , 
which scales only linearly with n. This is advantageous 
for high dimensionality cases.

• With the first-level sampling, we can construct the 
first PGD surrogate model and perform a first round of 
optimization by following the 4 steps described in the 
"Proper Generalized Decomposition-Based Material 
Parameter Identification" section. This optimization can 
be done with a gradient-based algorithm (e.g., SQP) with 
a multi-start strategy [11] for finding the global optimum. 
Here we can simply compare the final objective function 
J of different local minimums and chose the best one as 
the global optimum. An example of this is indicated by 
a red point in Fig. 15a.

• Since the quality of the PGD model is based on data (i.e., 
grid), we need to further sample the space D to check 
the convergence. The idea is to go into a sub-level of the 
space, where the global optimum is located, then perform 
the axis sampling in that subspace, see, e.g., Fig. 15b. 
The global optimum will be changed with the updated 
PGD model or stay close to the previous one. Depending 
on whether convergence is reached, the space can be fur-
ther sampled in the same way or considered as the final 
one. In Fig. 15, convergence is clearly reached at level 3.

Remark: the optimization at each level has to be done with 
initial guesses randomly chosen in the global space D , even 
though the data enrichment is locally performed.

Appendix C: FCC slip systems

See Table 3.

Table 3  Miller indices of active the slip directions and planes for an 
FCC crystal lattice

Slip 
system 
number

slip direc-
tion

slip plane Slip 
system 
number

slip direc-
tion

slip plane

1 [1̄01] (111) 7 [101] (1̄11)

2 [1̄10] (111) 8 [110] (1̄11)

3 [01̄1] (111) 9 [01̄1] (1̄11)

4 [011] (1̄1̄1) 10 [011] (11̄1)

5 [1̄10] (1̄1̄1) 11 [110] (11̄1)

6 [101] (1̄1̄1) 12 [1̄01] (11̄1)



155Integrating Materials and Manufacturing Innovation (2021) 10:142–156 

1 3

Acknowledgements The authors would like to acknowledge the 
support of National Science Foundation (NSF, USA) grants CMMI-
1762035 and CMMI-1934367; and award no. 70NANB19H005 from 
U.S. Department of Commerce, National Institute of Standards and 
Technology as part of the Center for Hierarchical Materials Design 
(CHiMaD), USA. This work was completed while Orion Kafka held a 
National Research Council Postdoctoral Research Associateship at the 
National Institute of Standards and Technology.

Declarations 

Conflict of interest The authors report no conflicting interests.

References

 1. Francois MM,  Sun A, King WE, Henson  NJ, Tourret D,  Bronk-
horst CA, Carlson NN, Newman CK,  Haut TS, Bakosi J et al 
(2017) Modeling of additive manufacturing processes for metals: 
challenges and opportunities. Curr Opin Solid State Mater Sci 
21(4)

 2. Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS (2016) The 
metallurgy and processing science of metal additive manufactur-
ing. Int Mater Rev 61(5):315–360

 3. Smith J, Xiong W, Yan W, Lin S, Cheng P, Kafka OL, Wagner 
GJ, Cao J, Liu WK (2016) Linking process, structure, property, 
and performance for metal-based additive manufacturing: com-
putational approaches with experimental support. Comput Mech 
57(4):583–610

 4. Yihong K, Tan XP, Wang P, Nai MLS, Loh NH, Liu E, Tor 
SB (2018) Anisotropy and heterogeneity of microstructure and 
mechanical properties in metal additive manufacturing: a critical 
review. Mater Design 139:565–586

 5. Li C, Liu ZY, Fang XY, Guo YB (2018) Residual stress in metal 
additive manufacturing. Procedia Cirp 71:348–353

 6. Benzing JT, Liew LA, Hrabe N, DelRio FW (2020) Tracking 
defects and microstructural heterogeneities in meso-scale tensile 
specimens excised from additively manufactured parts. Exp Mech 
60(2):165–170

 7. Kafka OL, Jones KK, Yu C, Cheng P, Liu WK (2021) Image-
based multiscale modeling with spatially varying microstructures 
from experiments: demonstration with additively manufactured 
metal in fatigue and fracture. J Mech Phys Solids 150: 104350

 8. Prithivirajan V, Sangid MD (2018) The role of defects and criti-
cal pore size analysis in the fatigue response of additively manu-
factured IN718 via crystal plasticity. Mater Design 150:139–153

 9. Gorelik M (2017) Additive manufacturing in the context of 
structural integrity. Int J Fatigue 94:168–177

 10. Lu Y, Blal N, Gravouil A (2018) Adaptive sparse grid based 
HOPGD: toward a nonintrusive strategy for constructing space-
time welding computational vademecum. Int J Numer Meth Eng 
114(13):1438–1461

 11. Lu Y, Blal N, Gravouil A (2019) Datadriven HOPGD based 
computational vademecum for welding parameter identification. 
Comput Mech 64(1):47–62

 12. Chipperfield A,  Fleming P, Pohlheim H,  Fonseca C (1994) 
Genetic algorithm toolbox for use with MATLAB. Citeseer

 13. Beaudoin AJ, Obstalecki M, Storer R, Tayon W, Mach J, Ken-
esei P, Lienert U (2012) Validation of a crystal plasticity model 
using high energy diffraction microscopy. Modell Simul Mater 
Sci Eng 20(2):024006

 14. Prithivirajan V, Ravi P, Naragani D, Sangid MD (2021) Direct 
comparison of microstructure-sensitive fatigue crack initiation 

via crystal plasticity simulations and in situ high-energy x-ray 
experiments. Mater Design 197:109216

 15. Turner TJ, Shade PA, Bernier JV, Li SF, Schuren JC, Kenesei P, 
Suter RM, Almer J (2017) Crystal plasticity model validation 
using combined high-energy diffraction microscopy data for a 
Ti-7Al specimen. Metall Mater Trans A 48(2):627–647

 16. Air Force Research Laboratory (AFRL) Additive Manufactur-
ing (AM) Modeling Challenge Series. https:// mater ials- data- 
facil ity. github. io/ MID3AS- AM- Chall enge/. February 2021. 
Accessed 4 March 2021

 17. Haouala S, Lucarini S, LLorca J, Segurado J (2020) Simulation 
of the hall-petch effect in FCC polycrystals by means of strain 
gradient crystal plasticity and FFT homogenization. J Mech 
Phys Solids 134:103755

 18. Roters F,  Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, 
Raabe D (2010) Overview of constitutive laws, kinematics, 
homogenization and multiscale methods in crystal plasticity 
finite-element modeling: theory, experiments, applications. Acta 
Mater 58(4):1152–1211

 19. Cheng Yu, Kafka OL, Liu WK (2019) Self-consistent cluster-
ing analysis for multiscale modeling at finite strains. Comput 
Methods Appl Mech Eng 349:339–359

 20. Lebensohn RA (2001) N-site modeling of a 3D viscoplas-
tic polycrystal using fast Fourier transform. Acta Mater 
49(14):2723–2737

 21. Kapoor K, Ravi P, Noraas R, Park J-S, Venkatesh V, Sangid MD 
(2021) Modeling Ti-6Al-4V using crystal plasticity, calibrated 
with multi-scale experiments, to understand the effect of the ori-
entation and morphology of the � and � phases on time dependent 
cyclic loading. J Mech Phys Solids 146:104192

 22. Rovinellia A, Proudhon H, Lebensohn RA, Sangid MD (2020) 
Assessing the reliability of fast Fourier transform-based crystal 
plasticity simulations of a polycrystalline material near a crack 
tip. Int J Solids Struct 184:153–166

 23. Kafka OL, Yu C, Shakoor M, Liu Z, Wagner GJ, Liu WK 
(2018) Data-driven mechanistic modeling of influence of micro-
structure on high-cycle fatigue life of nickel titanium. JOM 
70(7):1154–1158

 24. Liu Z, Kafka OL, Yu C, Liu WK (2018) Data-driven self-con-
sistent clustering analysis of heterogeneous materials with crystal 
plasticity. In: Advances in computational plasticity, pp 221–242. 
Springer

 25. Deka D, Joseph DS, Ghosh S, Mills MJ (2006) Crystal plasticity 
modeling of deformation and creep in polycrystalline Ti-6242. 
Metall Mater Trans A 37(5):1371–1388

 26. Bhattacharyya M, Fau A, Nackenhorst U, Néron D, Ladevèze P 
(2018) A multi-temporal scale model reduction approach for the 
computation of fatigue damage. Comput Methods Appl Mech Eng 
340:630–656

 27. Goury O,  Amsallem D, Bordas SPA,  Liu WK, Kerfriden P 
(2016) Automatised selection of load paths to construct reduced-
order models in computational damage micromechanics: from 
dissipation-driven random selection to Bayesian optimization. 
Comput Mech 58(2):213–234

 28. Lu Y, Jones KK, Zhengtao G, Liu WK (2020) Adaptive hyper 
reduction for additive manufacturing thermal fluid analysis. Com-
put Methods Appl Mech Eng 372:113312

 29. Néron D,  Ladevèze P (2010) Proper generalized decomposition 
for multiscale and multiphysics problems. Arch Comput Methods 
Eng 17(4):351–372

 30. Ammar A,  Mokdad B, Chinesta F, Keunings R (2006) A new 
family of solvers for some classes of multidimensional partial 
differential equations encountered in kinetic theory modeling of 
complex fluids. J Nonnewton Fluid Mech 139(3):153–176

 31. Modesto D, Zlotnik S, Huerta A (2015) Proper generalized decom-
position for parameterized helmholtz problems in heterogeneous 

https://materials-data-facility.github.io/MID3AS-AM-Challenge/
https://materials-data-facility.github.io/MID3AS-AM-Challenge/


156 Integrating Materials and Manufacturing Innovation (2021) 10:142–156

1 3

and unbounded domains: application to harbor agitation. Comput 
Methods Appl Mech Eng 295:127–149

 32. Lu Y, Blal N, Gravouil A (2018) Multi-parametric space-time 
computational vademecum for parametric studies: application to 
real time welding simulations. Finite Elem Anal Des 139:62–72

 33. Tezzele M, Demo N, Stabile G, Mola A, Rozza G (2020) Enhanc-
ing CFD predictions in shape design problems by model and 
parameter space reduction. Adv Model Simul Eng Sci 7(1):1–19

 34. Shade PA, Blank Ba, Schuren JC, Turner TJ, Kenesei P, Goetze 
K, Suter RM, Bernier JV, Li SF, Lind J, Lienert U, Almer J (2015) 
A rotational and axial motion system load frame insert for in situ 
high energy x-ray studies. Rev Sci Instrum 86(9):093902

 35. Uchic M, Groeber M, Shah M, Callahan P, Shiveley A, Scott M, 
Chapman M, Spowart J (2016) An automated multi-modal serial 
sectioning system for characterization of grain-scale microstruc-
tures in engineering materials. In: De Graef M, Poulsen HF, Lewis 
A, Simmons J, Spanos G (eds) Proceedings of the 1st international 
conference on 3D materials science, pp 195–202. Springer

 36. ASTM E8 / E8M-16ae1 (2021) Standard test methods for tension 
testing of metallic materials

 37. Moulinec H, Suquet P (1998) A numerical method for comput-
ing the overall response of nonlinear composites with complex 
microstructure. Comput Methods Appl Mech Eng 157(1–2):69–94

 38. Kabel M, Böhlke T, Schneider M (2014) Efficient fixed point and 
Newton-Krylov solvers for FFT-based homogenization of elastic-
ity at large deformations. Comput Mech 54(6):1497–1514

 39. Frigo M, Johnson SG (2005) The design and implementation of 
FFTW3. In proceedings of the IEEE, pp 216–231

 40. Groeber MA, Jackson MA (2014) Dream 3D: a digital representa-
tion environment for the analysis of microstructure in 3D. Integr 
Mater Manuf Innov 3(1):56–72

 41. Wang Z, Stoica AD, Ma D,  Beese AM (2016) Diffraction and sin-
gle-crystal elastic constants of Inconel 625 at room and elevated 
temperatures determined by neutron diffraction. Mater Sci Eng A 
674:406–412

 42. Blal N, Gravouil A (2019) Non-intrusive data learning based 
computational homogenization of materials with uncertainties. 
Comput Mech 64(3):807–828

 43. Ghnatios C,  Masson F, Huerta A, Leygue A, Cueto E, Chinesta 
F (2012) Proper generalized decomposition based dynamic data-
driven control of thermal processes. Comput Methods Appl Mech 
Eng 213:29–41

 44. Shakoor M, Kafka OL, Yu C,  Liu WK (2019) Data science for 
finite strain mechanical science of ductile materials. Comput 
Mech 64(1):33–45


	Microscale Structure to Property Prediction for Additively Manufactured IN625 through Advanced Material Model Parameter Identification
	Abstract
	Introduction
	Problem Statement
	Data Provided
	Material
	Characterization

	Requested Predictions
	Calibration Data

	Material Modeling Methods
	Calibration Method
	Genetic Algorithm
	Proper Generalized Decomposition-Based Material Parameter Identification


	Discussion of Results
	Comparison of Absolute Errors Between Elastic and Total Strain
	Comparison of PGD-Based Method and Genetic Algorithm

	Conclusions
	Acknowledgements 
	References




