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Abstract 
In the second part of the work, a two-step Bayesian framework is utilized for the estimation of values of the single-crystal 
elastic constants as well as the initial slip resistances of the different slip families in the primary α-phase components in 
the Ti alloys of different compositions. These estimations are based on the spherical indentation measurements presented 
in Part I of this series. The first step of the two-step Bayesian framework established a reduced-order model which captures 
the dependence of the indentation property as a function of the relevant crystal-level (intrinsic) material properties and the 
crystallographic lattice orientation in the indentation deformation zone. This reduced-order model is calibrated to high-
fidelity results obtained from suitable crystal-plasticity finite element  simulations. The second step involved the calibration 
of the indentation measurements obtained within the primary α-phase (from Part I of this series) to the reduced-order model 
established in the first step. It is demonstrated that the protocols described above result in the successful generation of a 
comprehensive dataset of single-crystal elastic–plastic properties across a collection of Ti alloys while accounting for the 
implicit uncertainties in the spherical indentation measurements.
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Introduction

As discussed in Part I of this series, the spherical indentation 
stress–strain protocols offer novel avenues for interrogat-
ing the mechanical responses of individual grains in a poly-
crystalline sample. Although these measurements provided 
good insights into the role of grain orientation on the single-
crystal mechanical response, especially the grain-level ani-
sotropy, the measurements obtained cannot be used directly 
to inform the values of the material parameters typically 
found in crystal elastic–plastic theories. This is because most 
crystal elastic–plastic theories use specific intrinsic single-
crystal properties as material parameters. For example, for 
the α-Ti hcp crystals studied here, the needed single-crystal 
properties would include the five elastic stiffness param-
eters,{C11,C12,C44,C13,C33} , as well as the slip resistances 
of the different potential slip systems, {spr, sba, spyr−a, spyr−ca} . 
Currently employed strategies for extracting the values of 
these intrinsic material properties from indentation tests 
have generally involved the calibration of physics-based 
finite element (FE) models of these tests to the correspond-
ing set of experimental indentation measurements [1–4]. It 
is pointed out that the estimation of intrinsic material param-
eters is very robust when this calibration is attempted in the 
form of the normalized indentation stress–strain curves as 
opposed to directly matching the load–displacement curve 
[2, 5, 6]. This is because it is very difficult to discern either 
the elastic loading segment or the initiation of yield directly 
from the measured load–displacement curves in indentation. 
In prior work, indentation stress–strain curves were shown 
to be valuable in reliably extracting the initial slip resistance 
in a polycrystalline sample of Fe-3%-Si using indentation 
measurements performed in multiple grains [2].

In recent work [3], a two-step Bayesian framework was 
demonstrated for the extraction of intrinsic crystal-level 
elastic properties from indentation measurements in poly-
crystalline cubic and hcp metal samples. The first step in 
this protocol established a high fidelity reduced-order (i.e., 
surrogate) model that took the crystal orientation and the 
single-crystal elastic stiffness parameters and predicted 
the indentation modulus (defined in Eq. 1 in Part I of this 
series). This low-computational cost reduced-order model 
was established using Bayesian linear regression (BLR) [3, 
7, 8] and a training dataset obtained by establishing a suita-
ble physics-based FE model of the spherical indentation test. 
The second step then calibrated the intrinsic single-crystal 
properties of interest by matching a collection of experimen-
tally measured indentation moduli for selected grains in a 
polycrystalline sample with the reduced-order model estab-
lished in the first step. This second step of the protocol was 
accomplished using a Markov Chain Monte Carlo (MCMC) 
[3, 9–11] sampling strategy. One of the salient aspects of the 

proposed two-step Bayesian framework is that it provides 
an estimate of the uncertainty (quantified as variance) in 
the estimated crystal level properties. This novel two-step 
Bayesian framework has thus far been demonstrated only 
for the elastic stiffness parameters in one cubic metal and 
in one hcp metal.

In this work, the two-step Bayesian framework 
described above will be used on the spherical indentation 
dataset aggregated in Part I of this series. Our goal is to 
extract the values of both the single-crystal elastic con-
stants, {C11,C12,C44,C13,C33} , and the initial values of 
the slip resistances for the different potential slip families 
{spr, sba, spyr−a, spyr−ca} . Furthermore, we will quantify the 
uncertainties associated with the estimated values for all 
these parameters. The availability of the indentation dataset 
covering the broad range of  α-Ti compositions studied in 
Part I of this series offers an unprecedented opportunity for 
the critical validation of the two-step Bayesian framework 
described above. Furthermore, this study represents the 
first application of these protocols for estimating the slip 
resistances of the different slip families in a single thermo-
dynamic phase (here, hcp  α-Ti). The presence of multiple 
slip families with a high degree of plastic anisotropy in the 
slip resistances of the different slip families adds signifi-
cantly to the challenges involved in the establishment of a 
reliable surrogate model in the first step of the two-step 
Bayesian framework. Furthermore, the computational cost 
of the physics-based simulation of the indentation (needed 
to establish the training data needed to calibrate the reduced-
order model) is several orders of magnitude higher when 
crystal plasticity theories are implemented [12–14]. Success 
in the tasks undertaken critically depends on the develop-
ment and implementation of a versatile and highly efficient 
design strategy that optimally selects the inputs for the exe-
cution of the very expensive physics-based crystal plasticity 
simulation of the spherical indentation experiment. Such a 
strategy is presented and implemented in this study. It is 
shown that the protocols presented here produce a compre-
hensive and reliable dataset of single-crystal elastic–plastic 
parameter values across a collection of  α-Ti compositions.

Two‑Step Bayesian Framework 
for the Estimation of Single‑Crystal 
Properties from Indentation Measurements

The two-step Bayesian framework utilized in this work is 
shown schematically in Fig. 1. The first step of the two-
step protocol involves the establishment of a reduced-order 
model that predicts the indentation properties of interest 
given the grain orientation and the relevant intrinsic sin-
gle-crystal properties. The crystallographic orientation of 
a grain relative to the sample frame (associated with the 



101Integrating Materials and Manufacturing Innovation (2021) 10:99–114 

1 3

indentation experiment) can be represented by a set of 
Bunge Euler angles g = {�1,Φ,�2} [15]. Since any rota-
tion about the sample surface normal does not affect the 
measured spherical indentation properties, it can be seen 
that the indentation properties are independent of �1 [15, 
16]. Let P∗

sim
 denote the simulated indentation property of 

interest and p denote the intrinsic single-crystal properties 
to be estimated. For the present work, p would be set as 
{C11,C12,C44,C13,C33} for the elastic single-crystal prop-
erties and as {spr, sba, spyr−a, spyr−ca} for the plastic single-
crystal properties, respectively. Likewise, P∗ would be set 
to the indentation modulus for the elastic properties and to 
indentation yield strength for the plastic properties, respec-
tively. For both analyses, the reduced-order model to be 
established in the first step of the two-step framework can 
then be expressed as:

where Kl
m

(
Φ,�2

)
 denotes the symmetrized surface spherical 

harmonics (SSH) basis [15] over the relevant orientation 
space of interest, and 

∼

P
q

() denotes a multivariate Legendre 
polynomial product basis. In other words, one can express 
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)
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(
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)
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nonnegative integer allowed to vary from 0 to the selected 
maximum degree, Q , i.e., qj ∈ [0,Q] . The use of Legendre 
polynomials provides an orthonormal basis over the range 
[-1, 1]. Therefore, each of the single-crystal properties of 
interest is rescaled in accordance with Eq. 2, where pmax

j
 and 

pmin
j

 are the maximum and minimum values of the j-th prop-
erty under consideration. In Eq. 1, M(l) enumerates the 
spherical harmonics that implicitly reflect the crystal sym-
metries of interest. Integers Q and L denote the truncation 
levels adopted in the use of Eq. 1. It should be noted that the 
model form used in Eq. 1 has been previously shown to 
produce compact representations for mechanical responses 
of crystalline solids [2, 3, 17, 18]. The model coefficients, 
A , can be trained via BLR using a database of FE simula-
tions of the indentation test [3]. The usage of BLR for build-
ing the surrogate model shown in Eq. 1 allows for the esti-
mation of the variance for predictions made for new sets of 
inputs (i.e., inputs not included in the training set). In fact, 
the predicted variances can be used to identify specific new 
inputs for generating additional training points (i.e., addi-
tional FE simulations of indentation tests) that maximize the 
potential for improving the model fidelity and reliability. 
One of the approaches employed in the literature selects the 
new training points based on regions of highest predictive 
variance [3].

This strategy for the optimal design of the training dataset 
is commonly referred to as a sequential D-optimal design 
[19–21]. During this process, the model coefficients A are 
rigorously tracked as new training data points are added. 
The systematic convergence of the model coefficients with 

Fig. 1  Schematic of the Bayesian two-step framework implemented 
for the extraction of intrinsic material properties via spherical inden-
tation measurements. In the first step, a reduced-order model is estab-
lished from physics-based finite element models. In the second step, 

sampling methods are implemented to establish the distributions on 
the intrinsic material parameters of interest using available experi-
ment indentation measurements



102 Integrating Materials and Manufacturing Innovation (2021) 10:99–114

1 3

the addition of the training data points provides objective 
guidance on when to stop adding new training data points.

The second step of the two-step Bayesian framework 
used in this work involves the estimation of the intrinsic 
material properties by calibrating the available measure-
ments on grains of different orientations in a polycrystal-
line sample to the reduced-order model built in the first 
step. This task involves the solution to an optimization 
problem that minimizes the difference between the meas-
urements and the corresponding predictions from the 
reduced-order model [3]. In this approach, the measured 
indentation property, P∗ , for a specific crystallographic 
orientation is modeled as differing from the simulated 
indentation property:

where � ∼ N(0, �2) denotes a stochastic noise term modeled 
as a normal distribution with a zero mean and variance �2 . 
Let { P∗

exp
,Gexp } denote the set of experimentally measured 

indentation properties, P∗
exp

 , at the corresponding crystal-
lographic orientations, Gexp . The likelihood for n experimen-
tal measurements (denoted { P∗

exp
,Gexp} ) is expressed as:

where �2 is modeled as a homoscedastic variance exhibited 
by the measured indentation property across the orientation 
parameter space. In previous studies [3, 22], multiple inden-
tation measurements were available for each grain orienta-
tion, and this information was used to provide an estimation 
of the variance. In the current study, only a single indenta-
tion measurement was available for each grain orientation. 
Thus, the variance, �2 , is treated as a stochastic variable. A 
Bayesian update of the joint distribution of stochastic vari-
ables, { p , �2 }, is expressed as:

Equation (5) presents a generalized formulation for indenta-
tion measurements, since direct knowledge of the variance is 
often unavailable. Prior work [3] has used a single-component 
Metropolis–Hastings sampler for the posterior updates that 
accepted/rejected proposed transitions based on an acceptance 
probability. Since the variance is being treated as unknown in 
the present generalized implementation, the sampling scheme 
needs to be suitably modified. The posterior updates in this 
work were performed by incorporating a Gibbs sampler that 
generates samples directly from fully determined distributions. 
The sampled sequences using this approach typically converge 
to respective distributions much faster than accept/reject-based 
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algorithms [23]. The integration of the two methods described 
above is referred as a Metropolis-within-Gibbs sampler [11, 
21]. Formally, the Metropolis-within-Gibbs sampler  
generates a Gibbs sequence, {p0, �2

0
, p1, �

2
1
,… , pN , �

2
N
} ,  

where the result ing samples converge to the  
marginal distributions, 
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)
 , respectively [23, 

24]. In practice, the sampler takes the form

where samples are drawn from the alternating conditional dis-
tributions while fixing the relevant random variables to the 
sampled value at step N . The main requirement of a Metropolis-
within-Gibbs sampler is the ability to sample from the condi-
tional distributions [23]. We will first consider sampling from 
the conditional distribution of the variance, �2 , for the fixed 
value, pN . We recognize conditional distribution of variance is 
pertained to the normally distributed values P∗

exp
 . When con-

sidering normally distributed observations, the conditional 
distribution of homoscedastic variance can be directly described 
by the scaled inverse Chi-squared distribution [21, 25–27]

where �̂2
(
P∗
exp

, pN ,Gexp

)
 denotes the best estimate of vari-

ance for the current parameters, pN , using the available data, 
i.e., �̂2 =

1

n

∑n

i

�
P∗
i
− P∗

sim
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�2 . We note that n and �̂2 
control the spread and scaling of the inverse Chi-squared 
distribution, respectively, and are often augmented using 
additional hyperparameters to further reflect prior beliefs 
about the variance. In this work, such augmentations are 
forgone. Thus, the scaled inverse Chi-squared distribution is 
fully determined for a given value, pN , and a candidate value 
for �2 can be readily sampled using the inverse transform 
sampling method [21, 25, 28].

Next, we turn our attention to sampling from the condi-
tional distribution of single-crystal properties. The condi-
tional distribution of the intrinsic material properties, p , 
for the observed experimental data and a known variance, 
�2
N

 , is expressed via Bayes rule as:

Considering a uniform prior for p(p) along with the 
likelihood function shown in Eq. 4, the conditional dis-
tribution of single-crystal properties is known up to a 
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normalizing constant. Consequently, MCMC methods 
[25] can be implemented in order to sample from the con-
ditional distribution on single-crystal properties. MCMC 
algorithms sample from a target posterior distribution by 
accepting/rejecting proposed transitions across a finite 
parameter space based on an acceptance probability

where q(∗ | ∗) denotes a proposal distribution from which 
possible transitions are generated. With the implementation 
of the acceptance criteria in Eq. (10), Metropolis–Hastings 
algorithms only necessitate knowledge of the sampled dis-
tribution of interest up to a normalizing constant [9]. In this 
work, the single-component Metropolis–Hastings algorithm 
is adopted from previous work [3, 10] in order to generate 
samples from the multivariate parameter space of intrinsic 
material properties. In summary, the hybrid sampling for-
mulation used in this work consisted of a Gibbs update for 
Eq. 6, followed by a Metropolis update for Eq. 7. We note 
that MCMC algorithms can require as many as N = 5000 
iterations in order to reliably converge. Furthermore, initial 
samples during a “burn in” phase are typically discarded; 
during this phase of sampling, the proposal distribution 
is tuned in order to reach an acceptance rate ~ 23% [29]. 
Note also that the direct computation of P∗

sim
 from the FE 

simulations is impractical as it requires n × N evaluations. 
Therefore, the availability of a reduced-order model to pre-
dict the simulated values is invaluable for the computations 
described above.

Crystal Plasticity Finite Element Model 
for Spherical Indentation

The establishment of the reduced-order model needed for 
the calibration of the slip resistances requires data generated 
from physics-based models of the indentation experiment 
that account for the influence of the slip resistances on the 
indentation measurements. These physics-based models can 
be developed using the established crystal plasticity theories 
[12, 30, 31] and their implementations in the finite element 
code ABAQUS. In these models, the local deformation in 
a crystalline region is assumed to be accommodated exclu-
sively by crystallographic slip on available slip systems [32]. 
The imposed plastic velocity gradient tensor, LP , is related 
to the shearing rates, �̇�𝛼 ( � indexes available slip systems), 
as:

(10)

�
�
p∗
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�pN
�
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⎛
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where S� is the Schmid tensor computed using the slip plane 
normal, n� , and slip direction m� . The visco-plastic power 
law commonly used to model the slip activity on slip system 
� due to an imposed resolved shear stress �� is expressed as:

where �̇�0 is a reference shear rate, m is the rate sensitiv-
ity parameter, and s� is the resistance to slip on the � slip 
system. Generally, the slip resistances, s� , are prescribed 
through hardening laws to capture the overall strain harden-
ing characteristics exhibited by the material. In this work, 
only the initial values of the slip resistances are of interest; 
consequently, s� are assigned constant values in each of the 
FE simulations of the indentation experiment performed in 
this study. Furthermore, the different slip systems in a single 
class of slip systems are all assigned the same slip resistance 
value. The different classes of the slip systems considered in 
the FE simulations along with the variables denoting their 
slip resistance are summarized in Table 1.

The FE model developed and utilized in prior work 
[2] was designed to predict the indentation yield strength 
using a loading history very similar to the one used in the 
actual indentation experiment. This FE model consisted 
of a deformable sample that followed the crystal plasticity 
material model described in Eqs. (11, 12), and a rigid hemi-
spherical indenter in frictionless contact with the deformable 
sample. Three-dimensional continuum elements (C3D8 solid 
elements, ABAQUS [33]) were used to mesh the deformable 
sample. The FE mesh was designed such that the primary 
indentation zone exhibited the highest mesh density. The FE 
mesh was made progressively coarser as one moved away 
from the primary indentation deformed zone toward the free 
boundaries of the sample. A large deformed sample size 

was needed to accurately capture the decay of the stress and 

(11)LP =
∑
𝛼

�̇�𝛼S𝛼 , S𝛼 = m𝛼 ⊗ n𝛼

(12)�̇�𝛼 = �̇�0
||||
𝜏𝛼

s𝛼

||||
1

m

sign(𝜏𝛼)

Table 1  Slip systems and the corresponding slip resistances consid-
ered in the crystal plasticity finite element simulations of the spheri-
cal indentation experiments. In total, 24 slip systems are considered 
for the primary  α grains

Slip system Initial slip 
parameter

Slip elements Number 
of slip 
systems

Prismatic spr {11̄01} <112̄0> 3
Basal sba {0001} <112̄0> 3
Pyramidal < a > spyr−a

{
11̄01

}
<112̄0> 6

Pyramidal < c + a > spyr−ca

{
11̄01

}
<112̄3> 12
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strain fields in the deformed sample; the resulting FE mesh 
consisted of 126,560 elements.

Extension of the prior FE model to the indentation meas-
urements in hcp crystals encountered additional challenges 
due to (i) the higher levels of plastic anisotropy exhibited 
by the hcp crystals (e.g., the pyramidal < c + a > slip resist-
ance is significantly larger than the prismatic slip resistance), 
and (ii) the significantly larger parameter space covering the 
expected ranges for each of the four slip resistance param-
eters identified in Table 1. The main consequence of these 
factors is a substantial increase in the FE model size as well 
as the number of FE simulations for the present work. In 

order to address these challenges, an improved FE model 
with a higher computational efficiency was needed and was 
developed. This new FE model is shown in Fig. 2a,b. In 
this new model, instead of coarsening the sample regions 
further away from the primary zone of indentation, infinite 
elements designed to simulate the effect of an infinite elastic 
domain were employed (see Fig. 2b). A similar approach 
was successfully employed in related prior work [34–36], 
where substantial savings in the computational cost were 
realized. Infinite elements implement suitable decay func-
tions in the direction toward the free surface allowing the 
emulation of infinite elastic domains [33]. The size of the 

Fig. 2  a Schematic of the FE model used in this study with a rigid 
indenter (gray) on top of a deformable sample (this schematic is 
not drawn to scale). b Cut section of the FE mesh used in this study 
showing the continuum (C3D8) elements in light yellow, and the infi-

nite (CIN3D8) elements in dark green. c Predicted load–displacement 
curves in multiple load-unload cycles for an hcp single crystal for 
three declination angles of 0o , 45o and 90o . d Indentation stress–strain 
curve corresponding to the simulations shown in (c)
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primary indentation zone was selected to be larger than the 
estimated values of the contact diameter in the experiments 
(see Part I of this series). For the present study, a primary 
deformation zone of size 0.76 × 0.76 × 1.14μm directly 
under the rigid indenter of radius 15.2μm was meshed using 
13,500 C3D8 elements, while the deformation zones out-
side the primary indentation zone were meshed using 2700 
CIN3D8 elements (eight-noded hexahedral infinite elements; 
ABAQUS [33]). Surface-to-surface hard frictionless con-
tact was used to simulate the contact between the deform-
able sample and the rigid indenter. Indentation stress–strain 
curves were computed by simulating loading and unloading 
segments producing a loading history similar to the one used 
in the actual indentation experiment (see Fig. 2c).

Indentation simulations were performed in various 
hcp single-crystal orientations using the new FE model 
described above. As examples, the simulated load–displace-
ment curves and the extracted indentation stress–strain data 
points from these curves are presented for three selected dec-
lination angles of 0◦ , 45◦ , and 90◦ in Fig. 2c, d , respectively. 
The slip resistances for these examples are taken from the 
prior work of Bridier et al. [37] on the primary alpha in Ti-
6Al-4 V. As expected, it is clearly seen that both the stiffness 
and strength are highest for the grains with the c-axis paral-
lel to the indentation direction, which then decrease with an 
increase in the declination angle. These results match well 
the trends seen in the measurements (in Part I of this series). 
As further validation, the results from the new FE model 
were compared against previously reported results for inden-
tation simulations using both isotropic  J2 plasticity theory 
[6] and for selected bcc single-crystal orientations [2].

Crystal plasticity FE models of spherical indentation 
can provide important insights into the relative extents of 
the different slip modes in a given indentation test. For this 
purpose, the cumulative slip activity in each of the four slip 
families was computed as a suitably defined equivalent plas-
tic strain:

where f  indexes each of the slip families identified in 
Table 1, �̇fp is the symmetric component of the velocity gra-
dient tensor defined in Eq. 11 while including slip activities 
on only the slip systems belonging to a single slip family. 
The FE-predicted equivalent plastic strain contours on a lon-
gitudinal section through the sample are plotted in Fig. 3 for 
each of the four slip families from the simulations discussed 
above. The plots reveal that the declination angle has a large 
influence on the slip activities in the primary deformation 
zone of the spherical indentation. More specifically, it is 
observed that (i) the indentation parallel to the c-axis is 
dominated by pyramidal < c + a > slip activity along with a 

(13)𝜀f
eq
= ∫

√
2

3
�̇
f
p ∶ �̇

f
pdt

significant contribution from basal slip, and (ii) the basal and 
prism slip dominated the response at the higher declination 
angles of 45◦ and 90◦ . Although it appears from Fig. 3 that 
the basal slip dominated for the declination angle of 45◦ and 
prism slip dominated for the declination angle of 90◦ , one 
should note that these plots can change significantly in other 
longitudinal sections in the same simulation, and also are 
expected to be sensitive to the other Bunge-Euler angle �2 
needed to identify the grain orientation. It is generally seen 
that the pyramidal slip and basal slip influenced the indenta-
tion plastic response at small declination angles, while the 
prism slip and basal slip almost exclusively influenced the 
indentation plastic response at the higher declination angles. 
In addition, the pyramidal < a > slip did not play a major role 
in the simulations shown in Fig. 3.

The observed slip activities in Fig.  3 do explain the 
decrease in the indentation yield strength with an increase 
in the declination angle. The activation of the harder pyrami-
dal < c + a > slip is indeed mainly responsible for the higher 
indentation yield strengths at the very low declination 
angles. The activation of the easier prism slip systems is 
responsible for the lower indentation yield strengths at high 
declination angles. These observations are consistent with 
prior reports in the literature [38].

The new FE model developed for this study provided a 
significant increase in computational efficiency compared 
to the FE model used in our prior work [2]. The new model 
required 101 to 136 min using 8 CPU cores on Georgia 
Tech’s Hive computing cluster to simulate the indentations 
at the different declination angles, whereas the previous 
model with 126,560 C3D8 elements took 182–245 min for 
the same simulations.

Application to Estimation of Single‑Crystal 
Elastic Constants

We now revert back to the primary task of extracting 
intrinsic single-crystal properties from indentation meas-
urements presented in Part I of this series. More specifi-
cally, we focus first on the single-crystal elastic constants, 
p = {C11,C12,C44,C33,C13} . For this case { P∗

exp
,Gexp } (see 

Sect. 2) would correspond to the experimentally measured 
combinations of the indentation modulus and the corre-
sponding grain orientations for a selected alloy. We recall 
that the main requirement for sampling the distribution on 
the unknown single-crystal elastic constants is the ability 
to efficiently evaluate the likelihood function in Eq. 4. In 
other words, we need a high fidelity reduced-order model 
that captures the dependence of indentation modulus on 
the orientation of the indented grain and a prescribed set 
of single-crystal elastic constants. As already mentioned, 
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such a high fidelity reduced-order model applicable to a 
wide range of hcp metals is already available [3, 22] 
(expressed in Eq. 1), and is adopted for the present study. 
We note that this reduced-order model leveraged a data-
base of 2200 finite element elastic indentation simulations 

performed within the bounds 80 ≤ C11 ≤ 240GPa, 
40 ≤ C12 ≤ 120GPa, 30 ≤ C44 ≤ 90GPa, 70 ≤ C33 ≤ 210

GPa, and 30 ≤ C13 ≤ 90  GPa. Given the elastic trans-
versely isotropic behavior of hcp materials, only the 

Fig. 3  FE-predicted cumulative slip activities in the four slip families for an hcp single crystal subjected to indentation at three different declina-
tion angles of 0◦ , 45◦ , and 90◦
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orientation space defined by 0◦,≤ Φ ≤ 90◦,needs to be 
considered in our analyses [3].

For each Ti alloy studied experimentally in Part I of this 
series, the likelihood function (Eq. 4) for a particular alloy is 
computed using the reduced-order model mentioned above 
(Eq. 1), and a posterior distribution of the elastic constants 
for the selected alloy is sampled using multivariate MCMC 
chains described in Sect. 2. These resulting distributions are 
tabulated and summarized in Fig. 4. The computed posteri-
ors are sharpest for C44 , followed by C33 and C11 . Estimates 
for C12 and C13 show a significant amount of uncertainty 

relative to the other elastic parameters. The relatively high 
uncertainty exhibited by C12 and C13 is indicative of a smaller 
influence of these elastic parameters on the indentation mod-
ulus (i.e., sensitivity) across the orientation space.

The elastic constants for selected alloys computed from 
the sampled MCMC chains are compared to elastic con-
stants previously reported in the literature in Table 2. In 
general, estimates are found to be in good agreement with 
those reported in the literature [39–41]. In particular, very 
good agreement is found between the elastic constants com-
puted here and those reported for CP-Ti. Furthermore, all the 

Fig. 4  Top: distributions of single-crystal elastic constants extracted 
for alloys considered in this work. BW denotes the bin width for the 
distributions in a given column. Bottom: the means and correspond-

ing standard deviations of the extracted single-crystal elastic con-
stants are summarized
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elastic constants reported for Ti6242 fall within a standard 
deviation of the values computed in this work.

It should be recognized that each sampled set of elas-
tic constants from the Markov Chain presents a realization 
of a possible mean indentation modulus function across 
the orientation space. One way to understand and visual-
ize the uncertainties expressed in Fig. 4 is to analyze the 
mean indentation modulus predictions across the orientation 
space resulting from the sampled MCMC chains. The mean 

predictions for the indentation modulus are shown in Fig. 5 
for the different α-Ti phases studied. The tightest predictions 
across the orientation space were obtained in the MCMC 
chains sampled for CP-Ti and Ti64. Indeed, the posteriors 
for C11 , C33 , and C12 shown in Fig. 4 were slightly sharper for 
CP-Ti and Ti64 compared to those for the other alloys. We 
believe that the sharpness of the posteriors is largely affected 
by the number of measurements and their distribution in the 
orientation space. Of course, more measurements generally 

Table 2  Comparison of 
estimated elastic constants 
for selected alloys to elastic 
constants reported in the 
literature. The mean and 
corresponding standard 
deviation computed using the 
sampled MCMC chains are 
shown for the current work

Material C11(GPa) C12(GPa) C44(GPa) C33(GPa) C13(GPa) Reference

CP-Ti 159 ± 13 92 ± 19 48 ± 4 185 ± 13 53 ± 16 Current Work
162 92 47 181 69 Fisher and Renken [39]

Ti64 150 ± 14 88 ± 22 38 ± 3 189 ± 12 53 ± 14 Current work
149–176 81–118 42–47 137–181 41–69 Heldman et al.[41]

Ti6242 134 ± 14 70 ± 30 52 ± 7 153 ± 19 57 ± 17 Current Work
141 77 49 163 58 Kim et al. [40]

Fig. 5  Predictions of indentation modulus versus declination angle sampled using MCMC chains and the reduced-order model
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help sharpen the posteriors. In the present case, Ti64 had 
the most available number of experimental measurements 
(67), and Ti811 had the fewest (31). Secondly, the number 
of measurements close to the zero declination angle also 
seems to play an important role. This is because this meas-
urement shows some of the highest sensitivities for some of 
the single-crystal elastic parameters. Furthermore, it is also 
generally seen that a higher precision in the experimental 
measurements (reflected by less scatter in the plots of inden-
tation modulus versus the declination angle) leads to sharper 
extracted posteriors for the single-crystal elastic constants.

Application to Estimation of Initial Slip 
Resistances

Attention is now turned to the extraction of the initial slip 
resistance values for the different slip families (i.e., 
p = {spr, sba, spyr−a, spyr−ca} ) for all of the alloys studied in 
Part I of this series. For this application, { P∗

exp
,Gexp } would 

denote the combinations of the experimentally measured 
indentation yield strengths and the corresponding grain 
orientations for any selected alloy. Unlike the previous 
application in Sect. 4, we first need to establish a high-
fidelity reduced-order model covering a suitable parameter 
space as such a model has not yet been established. Such a 
model was previously established for bcc single crystals 
using a single slip resistance parameter [2]. Building on 
this prior experience, it was decided to pursue a reduced-
order model to predict the indentation yield normalized by 
the prismatic slip resistance. In other words, our goal is to 
establish P̂∗(r, g), defined as P∗

sim
(p, g) ≈ sprP̂

∗(r, g), where 
r =

{
sba

spr
,
spyr−a

spr
,
spyr−ca

spr

}
 . Therefore, the inputs to the desired 

reduced-order model span a five-dimensional space.

Establishing a Reduced‑Order Model for Indentation 
Yield

Our strategy for establishing the reduced-order model of 
interest identified above utilizes a Fourier representation 
similar to Eq. 1. This entails the use of Legendre poly-
nomials as basis for the dependence on the slip ratios,r 
and symmetrized SSH for the dependence on g.An 
advantage of this formulation is that by casting the 
reduced-order model in terms of the slip ratios, a signifi-
cant range of the initial slip resistance values can be effi-
ciently considered in the establishment of the reduced-
order model of interest. In order to establish the desired 
reduced-order model, a database of finite element simu-
lations populating the relevant parameter space is neces-
sary. The bounds of the parameter space were chosen as 
{0.75 ≤ sba

spr
≤ 2.0, 2.0 ≤ spyr−a

spr
≤ 4.5, 2.5 ≤ spyr−ca

spr
≤ 6.5} , 

based on values of slip resistances reported in the litera-
ture for the alpha phase of Ti alloys [1, 42–44], while the 
bounds of the orientation space were chosen to cover the 
relevant fundamental zone {0◦ < Φ < 90◦,0◦ ≤ �2 ≤ 60◦} 
[45]. A database of CPFEM-predicted indentation yield 
values was generated in two steps: (i) an initial database 
of 92 simulations was generated to cover the input space 
identified above in a roughly uniform manner (described 
in more detail later), and (ii) a sequential design process 
developed in recent work [3] that selects new inputs for 
CPFEM simulations based on an assessment of the maxi-
mum uncertainty in the predictions made using the avail-
able training data.

The truncation levels of the reduced-order model, {Q,L} 
in Eq. 1, are unknown a priori to observing any simulated 
data. Following prior studies [3], the truncation levels were 
treated as hyperparameters and selected in accordance with 
the model predictive capability judged by multiple error 
metrics (e.g., mean absolute error over training and test sets) 
during the sequential model building process. Given the sig-
nificant anisotropic response of hcp crystals, higher trunca-
tion levels for SSH (denoted by L) were anticipated for the 
present application. Thus, the initial model explored adopted 
truncation levels of Q = 1, L = 10 producing a total of 88 
Fourier coefficients from Eq. 1. An initial database is needed 
to start the overall model building effort. Inputs to FE simu-
lations used an arbitrarily chosen value for spr = 200MPa 
alongside 92 unique sets of slip ratios and crystallographic 
orientations, {r, g} , chosen from a five-dimensional Max Pro 
Latin Hypercube Design (LHD) [46]. It is emphasized that 
the truncation Q = 1 corresponds to linear terms expanded 
about the associated slip ratios. Following the establishment 
of the initial model, additional inputs to simulations were 
sequentially selected from a much denser five-dimensional 
Max Pro LHD of 1000 inputs based on the sequential design 
strategy outlined in previous work [3]. During this process, 
various truncation levels were evaluated while systemati-
cally increasing the truncation values. Improvement to the 
model was negligible after truncation levels of Q =1 and L
=14 (corresponding to a total of 160 Fourier coefficients 
in Eq. 1). Ultimately, a database of 312 simulations was 
generated wherein the last 52 simulations were used only to 
test the predictive capabilities of the model. The predictive 
performance of the model using the chosen truncation levels 
in this study ( Q=1, L=14) is shown in Fig. 6.

MCMC Sampling of Initial Slip Resistance 
Parameters

With a reduced-order model in place, attention is 
turned to the extraction of initial slip resistances 
p =

{
spr, sba, spyr−a, spyr−ca

}
 from the experimental meas-

urements presented in Part I of this series. The likelihood 
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shown in Eq. 4 can now be evaluated for an arbitrary set of 
prescribed slip resistances using the reduced-order model 
established in the previous section along with the measured 
indentation yield strengths across the orientation space 
for a particular alloy. We note that a major advantage to 
the formulation of the reduced-order model in accordance 
with normalized indentation yield and slip ratios is that it 
is unnecessary to directly bound the parameter space of slip 
resistances during the extraction process. Thus, a broad 
uniform distribution which only enforces the slip resist-
ances to be strictly positive was used for the prior. With the 
likelihood(s) and prior(s) established, multivariate MCMC 
chains of slip resistances were independently sampled for 
each alloy and the resulting distributions are tabulated and 
summarized in Fig. 7. The difference between the individ-
ual initial slip resistance parameters across the Ti alloys is 
apparent in Fig. 7. We note the relative uncertainty of the 
estimates can be ranked; prismatic with the lowest relative 
uncertainty, basal and pyramidal < c + a > exhibiting slightly 
more relative uncertainty and pyramidal < a > exhibiting the 
highest relative uncertainty. This ranking, which is consist-
ent across all alloys, can be seen as reflective of the influ-
ence on the indentation yield to changes in the initial slip 
resistance parameters (i.e., sensitivity). This ranking is also 
consistent with the slip activity seen from the indentation 
simulations, as discussed in Sect. 3.

The slip ratios for selected alloys computed from the 
sampled MCMC chains are compared to slip ratios found 
in the literature and shown in Table 3. In general, a good 
agreement is found between estimates obtained in this 
study and those reported in the literature. For example, the 
pyramidal < c + a > slip ratios fall between the estimates 

reported in the literature for CP-Ti and Ti64. The basal slip 
ratio extracted for CP-Ti also falls between the literature 
estimates. Finally, we note literature values reported for 
the basal slip ratio of Ti6242 and Ti64 are within a stand-
ard deviation of estimates obtained in the current work. 
It is emphasized that availability of reported estimates 
for initial slip resistance of slip systems in the literature 
varies from alloy to alloy (e.g., spyr−ca is not reported for 
Ti6242), and those reported seldom include a rigorous 
quantification of uncertainty. A major advantage of the 
approach presented here is the ability to readily compare 
all the extracted slip resistance parameters between alloys 
of interest with measures of uncertainty.

Similar to the extracted distribution of elastic constants, 
the MCMC predictions for indentation yield strengths 
across the orientation space can assist in further analyz-
ing the extracted distributions of initial slip resistances. 
The mean predictions of indentation yield strengths from 
the MCMC chains across the orientation space for a given 
alloy are compared to the available experimental data 
in inverse pole figure plots shown in Fig. 8; the corre-
sponding uncertainties are presented in Fig. 9. The mean 
predicted indentation yield strength contours are largely 
consistent with the experimentally reported indentation 
yield values. We note the largest uncertainties are gener-
ally in the [1,0,− 1,0] direction which typically coincides 
with fewer number of indentation measurements. The high 
predictive uncertainty is also indicative of a lower sen-
sitivity to any singular dominating slip system, that is, 
the uncertainty from multiple slip systems is propagated 
in the prediction for indentation yield. The measure of 
uncertainty provided by the MCMC prediction can provide 

Fig. 6  Left: predictive performance of the reduced-order model pro-
duced in this work for the prediction of the normalized indentation 
yield. Right: corresponding histograms of test (red) and train (blue) 

of absolute error for the predictions. Overlapped areas of histograms 
are shown in magenta
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guidance to where additional experiments may be per-
formed in order to sharpen the distributions of slip resist-
ances. Additional indents in areas of highest uncertainty 
are likely to improve the distributions on the estimated 
slip parameters. We note that recent work has explored a 
more systematic effort in the improvement of estimated 
parameter distributions and may be utilized in identifying 
additional experiments (e.g., for the pyramidal < a > slip 
resistance whose estimation showed relatively high levels 
of uncertainty) if desired [22].

Conclusions

Protocols for the Bayesian estimation of grain-scale elas-
tic–plastic properties from available experimental spherical 
indentation stress–strain measurements have been presented. 
The two-step Bayesian framework presented here enables the 
quantification and propagation of uncertainty in the observed 
experimental spherical indentation stress–strain measure-
ments to the extracted grain-scale properties. Although the 
associated physics-based finite element simulations are com-
putationally expensive, the generation of a suitable database 

Fig. 7  Top: distributions of initial slip resistances for the alloys con-
sidered in this work. BW denotes the fixed bin width for the distribu-
tions in a given column. Bottom: the means and corresponding stand-

ard deviations of the extracted initial slip resistances for the different  
α -Ti components are summarized
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presents a one-time cost in establishing a reduced-order 
model (Step (1) of the proposed two-step protocol). Once 
the reduced-order model is established, the calibration of the 
underlying intrinsic properties to available experimental data 
(Step (2) of the proposed two-step protocol) can be accom-
plished with relatively minimal computational resources. 
The present work highlights the strengths in dividing up 
the tasks involved in grain-scale properties estimation via 
spherical indentation into reduced-order model building 
and calibration steps. This is evidenced by the adoption of a 
reduced-order model built in a previous work, and used here 
to extract single-crystal elastic constants. Furthermore, the 
protocols presented here successfully demonstrate the gen-
eration of a consistent dataset of initial slip resistances, with 
quantified uncertainty, corresponding to multiple titanium 
alloys with differing chemical compositions. Due to the 

Table 3  Comparison of estimated slip resistance ratios for selected 
alloys to slip resistance ratios reported in the literature. The mean 
and corresponding standard deviation computed using the sampled 
MCMC chains are shown for the current work

Material spr(Mpa) sba

spr

spyr−ca

spr

Reference

CP-Ti 125 ± 9 1.6 ± 0.3 4.7 ± 0.7 Current work
150 2.3 7.4 Zambaldi et al. [1]
181 1.2 2.6 Gong et al. [44]

Ti64 231 ± 10 1.5 ± 0.2 3.5 ± 0.3 Current Work
370 1.1 1.6 Bridier et al. [37]
– 1.4 4.2 Bieler and Semiatin [42]

Ti6242 221 ± 18 1.6 ± 0.3 5.2 ± 0.6 Current Work
200–230 1.0–1.4 – Jun et al. [43]

Fig. 8  IPF contours for indentation yield strength predictions using reduced-order model and sample MCMC chains. The experimental measure-
ments used in the extraction process are shown as distinguished circles colored in accordance with their actual value
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formulation of normalized indentation yield, the extraction 
efforts are made much more robust, and additional alloys can 
be readily considered using the protocols established here. 
The generation of such a comprehensive dataset of grain-
scale properties using spherical indentation measurements 
is the first of its kind to the authors’ knowledge.
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