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Abstract
Stitching partially overlapping image tiles into a montage is a common requirement for materials microscopy. We developed 
ITKMontage, a new module for the open-source Insight Toolkit (ITK), capable of robustly and quickly generating extremely 
large, high-bit-depth montages within the memory constraints of standard workstations. The phase correlation method is at 
the core of our pairwise tile registration algorithm. Precise alignment of tiles acquired in typical raster patterns is enhanced 
with sub-pixel fitting and cropping to overlap. Fast Fourier transform (FFT)-based correlation is improved through a vari-
ety of padding methods and an added adjustable bias toward an expected translation. To arrange the tiles into the overall 
montage, we use global least squares minimization with outlier detection and removal. To blend tiles smoothly, each tile’s 
contribution is weighted by the distance from the tile’s edge. Results are demonstrated on several material science data sets 
and 3D images. Results compare favorably to ImageJ/Fiji plugin Image Stitching. The tool is integrated into the DREAM.3D 
software suite for multidimensional, multimodal microstructural data.
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Introduction

A cornerstone of materials science is that the internal 
structure of materials strongly determines properties and 
performance. Characterization of such internal struc-
ture is critical for quantitative analysis of this structure-
properties relationship; however, the structure features of 
interest often span a hierarchy of length scales that could 
extend well into the macroscopic range in both 2 and 3 
dimensions, complicating the characterization process. 
This behavior is observed for a variety of materials sys-
tems, including crystalline materials that are relevant to 
both geological samples and structural alloys, composite 
materials, and biological materials, including volumetric 
rendering of the human body. Materials exhibit long wave-
length heterogeneity and develop both unique structure 

morphologies (sometimes referred to as the material 
fabric) and preferred crystal orientations (texture) that 
can extend to meter-long scales. To characterize these 
structures, biologists, geologists, and materials scientists 
make extensive use of various imaging techniques, such 
as transmission and scanning electron microscopy modes, 
bright-field optical microscopy, and polarized-light optical 
microscopy. A common approach for allowing these tech-
niques to characterize regions that are sufficiently large 
enough to capture relevant hierarchical structure is to col-
lect multiple image units, or tiles, with overlapping local 
fields of view. These tiles may then be stitched together to 
form a single montage image that exhibits a field of view 
far larger than the instrument would be able to capture at 
the same spatial resolution of the individual tiles. This 
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Fig. 1   Data set: an organic matrix composite (data set name: 
OMC14), 3 × 3 tiles, 12% overlap (a). Montage without smooth 
blending (b). Final montage, size 3547 × 2666 pixels (c)
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montage approach to image collection is frequently used in 
materials science, and several instrument vendors provide 
built-in capabilities for collecting such data sets. A small 
example is given in Fig. 1. If significant field of view is 
needed to capture the structure scale of interest, or if simi-
larly high local resolution is needed to resolve features of 
interest, these montage data sets can quickly increase in 
size, both in terms of the number of collected tiles and the 
resolution of each tile.

Further, these large data sets may present challenges for 
analysis and interpretation, particularly if sample prepara-
tion or acquisition conditions yield images that are not ideal 
for automated processing or segmentation. In such cases, 
human manual segmentation may be needed, and such 
human intervention is rather untenable for extremely wide 
area montages, or for the large three-dimensional (3D) data 
sets that are being increasingly used to characterize structure 
[7, 20, 25]. Consequently, the analyst benefits from image 
processing tools that operate on the image montages (or 
their prepared unit tiles) to bring the image data into a close 
approximation of ideal conditions. For example, individual 
image tiles often exhibit a nonlinear background contrast. 
If images tiles are stitched together without correcting this 
background contrast, the resulting montage may exhibit 
characteristic “stitch lines”, as shown in Fig. 1b. The con-
ditions of the montage image can be improved by suitably 
leveling, smoothing, or blending the contrast, achieving a 
self-consistent montage field [3, 10, 14].

One of the oldest digital montaging software packages 
is the ImageJ plugin Image Stitching developed by Prei-
bisch et al. [19]. The Stitching Plugin (2D–5D) is able to 
reconstruct large images/stacks from an arbitrary number 
of tiled input images/stacks, making use of the Fourier Shift 
Theorem that computes all possible translations (x, y[, z]) 
between two 2D/3D images at once, yielding the best over-
lap in terms of the cross correlation measure. If more than 
two input images/stacks are used the correct placement of all 
tiles is determined using a global optimization. The stitching 
is able to align an arbitrary amount of channels, and supports 
time-lapse registration. To remove brightness differences at 
the tile borders, nonlinear intensity blending can be applied.

The follow-up package by the same authors, BigSt​itche​r, 
is still under active development in beta status. BigStitcher 
allows simple and efficient alignment of multi-tile and multi-
angle image data sets, for example acquired by light sheet, 
widefield or confocal microscopes. The software supports 
images of almost arbitrary size ranging from very small 
images up to volumes in the range of many terabytes, that are 
for example produced when acquiring cleared tissue samples 
using light sheet microscopy.

ZetaS​titch​er [16] is a tool designed to stitch large volu-
metric images such as those produced by light sheet fluo-
rescence microscopes, on which it is primarily focused. 

Its development was started some months before ours, and 
largely continued concurrently to development of the present 
work.

Microscopy Image Stitching Tool (MIST) [4] is being 
developed at the National Institute of Standards and Tech-
nology for rapid and accurate stitching of large 2D time-
lapse mosaics. MIST estimates the mechanical stage model 
parameters (actuator backlash, and stage repeatability r) 
from computed pairwise translations and then minimizes 
stitching errors by optimizing the translations within a (4r)2 
square area. MIST has a performance-oriented implemen-
tation utilizing multicore hybrid CPU/GPU computing 
resources.

The first three of these previous or concurrent packages 
are licensed under GNU General Public License (either 
version 2 or 3). This license’s viral copyleft nature makes 
it unsuitable for incorporation into liberally licensed open-
source software, as well as proprietary software. MIST has a 
liberal, BSD-like licen​se, but it is 2D-only which somewhat 
limits its applicability. Furthermore, it is written in Java as 
a plug-in for ImageJ so its incorporation into other software 
is not easy.

The Insig​ht Toolk​it(ITK) [11, 17] is an open-source, 
cross-platform library that provides developers with an 
extensive suite of software tools for image analysis. Devel-
oped using open science methodologies, ITK builds on a 
proven, spatially oriented architecture for processing, seg-
mentation, and registration of scientific images in two, three, 
or more dimensions. Its liberal Apache 2.0 license allows 
incorporation of the code into a wide range of software 
projects, including proprietary software. We present here 
a montaging software package implemented as a remote 
module for ITK called ITKMontage, with a focus on scal-
ability, speed, and accuracy. The montaging tools are also 
made available in the end-user software suite DREAM.3D 
[8], which is specifically targeted toward the needs of the 
materials community.

Methods

ITKMo​ntage​ takes a list of images in a grid layout and 
their approximate expected position from the mechanical 
control system of the microscope. Each pair of adjacent 
images is registered (Sect. 2.2), and a set of best candidate 
translations are recorded. The final position of each tile 
is determined by least squares minimization (Sect. 2.3). 
The case of non-grid layout is not explicitly handled, but 
might be accomplished by inserting blank (all-black) tiles 
to achieve, e.g., circular shape.

Once optimized positions are computed, the tiles can 
be blended into a single montage image. Overlapping 
parts of tiles are weighted using distance from the closest 

https://imagej.net/BigStitcher
https://github.com/lens-biophotonics/ZetaStitcher
https://isg.nist.gov/deepzoomweb/resources/csmet/pages/image_stitching/image_stitching.html
https://github.com/usnistgov/MIST/blob/master/LICENSE.txt
https://itk.org/
https://github.com/InsightSoftwareConsortium/ITKMontage
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edge to achieve a smooth blend (Fig. 1). The software 
provides a debugging option during blending that outputs 
random uniform colors, which is useful for understand-
ing the behavior of the registration or blending process. 
See Fig. 10(left) for a visualization of this uniform color 
blending.

Correction of Intensity Inhomogeneity

Pixel intensities for the same material can be uneven 
across an image as a result of uneven illumination, camera 
position, or other experimental conditions. It is desirable 
to correct this intensity inhomogeneity even before regis-
tering, but especially before fusing the tiles within a larger 
montage. We accomplish this by using ITK’s N4BiasField-
CorrectionImageFilter, that maximizes frequency content 
within a tile. This bias correction method was contributed 
by Tustison et al. [23, 24] and is an extension of work by 
Sled et al. [21].

The algorithm assumes a simple parametric model 
(Gaussian) for the intensity bias field and does not require 
segmentation of the underlying image. The basic algo-
rithm iterates between sharpening the intensity histogram 
of the corrected input image and spatially smoothing those 
results via a B-spline scalar field estimate of the bias field. 
A visual example is given in Fig. 2.

Our examp​le computes bias field for each tile sepa-
rately, as we are aiming for generality. Bias field which 
varies from tile to tile can be due to heterogeneities in 
the sample that lead to local surface height variation as a 
result of non-uniform polishing. If a bias field is expected 
to be the same for every tile, it can be estimated only once 
in order to save computation time.

Pairwise Registration

We started from an existing ITK software module [1], 
then updated it to work with modern compilers and added 

various code improvements. The updated software module 
provides a framework for phase correlation registration 
[12], comprised of the following steps, some of which can 
be customized: 

1.	 Resampling and padding the image tiles to the same 
spacing and size. We implemented zero padding, mir-
ror padding, and mirror padding with exponential decay.

2.	 Compute the fast Fourier transform (FFT) of the two 
images.

3.	 Compute the ratio of the two resulting spectra.
4.	 Apply a Butterworth band-pass filter in the frequency 

domain. This improves resistance to noise (high-
frequency content) and image heterogeneity (low-
frequency content), e.g., due to lighting variations in 
microscopes.

5.	 Compute the inverse FFT of the cross-power spectrum.
6.	 Find the maximum peak in the cross-power spectrum 

and estimate the needed translation. In this step, we 
optionally restrict peak search to the maximum expected 
deviation from the initial tile position, suppress the triv-
ial zero solution, and bias the search toward the expected 
position. We keep a few highest peaks, in case the high-
est one is judged an outlier by the optimization proce-
dure later on.

Bias toward the expected position is implemented by 
reducing a correlation factor by multiplication with 
e−f∗(d∕s)

2 , where f is distance penalty factor, d is a pixel’s 
distance from the expected peak location, and s is image 
size.

Due to finite image resolution and content, the phase cor-
relation peak can be spread across multiple pixels. We there-
fore allow adjacent peaks to be merged; the default merge 
distance is 1 pixel.

In real tile image data sets, translation offsets between 
images are rarely integer multiples of the pixel spacing. 
To account for this expected discrepancy, we incorporate 
sub-pixel interpolation as an option during the peak find-
ing. We implemented both parabolic fitting and cosine fit-
ting [18] to determine the sub-pixel peak location. These 
methods attempt to determine an exact position of an 
intensity peak in the real cross-correlation surface. Both 
of these fitting methods assume a function fit to the inten-
sities of the pixel containing the peak, as well as two adja-
cent pixels (Fig. 3). We also implemented zero-crossing 
in the frequency domain over the weighted mean phase 
of the complex phase correlation [22]. After translating 
the image back according to the integer peak offset, the 
fractional subpixel offset, �x , along a given dimension is 
estimated from the complex phase correlation in the fre-
quency domain:

Fig. 2   Example of bias correction on an image of the titanium alloy 
Ti-7Al. Left: original tile. Middle: corrected tile. Right: estimated 
multiplicative bias (re-scaled to 0–255 range). A material pixel hav-
ing intensity 140 in the corrected image might have intensity of 149 
near top-left, but only 128 near the bottom right corner in the original 
image

https://github.com/InsightSoftwareConsortium/ITKMontage/blob/master/examples/CompleteMontage.cxx
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where the offset estimated by the phase, �(Xk) to angular 
frequency �k is weighted by the power |Sk|.

When computing the registration between tile pairs, the 
input images are cropped to the overlapping region, which 
we found to significantly increase registration reliability and 
improve computational performance.

Global Optimization of Tile Positions

Localization of the best tile positions is formulated as a 
global optimization of an over-determined linear system 
following [19], formed by one equation for each tile pair i:

where ci is the confidence of the pairwise registration (inten-
sity of the cross-correlation peak), ti is translation differ-
ence to the initial tile position, pf  is position of the ‘fixed’ 
(left/top/shallow) tile, pm is position of the ‘moving’ (right/
bottom/deep) tile. Note: while ci could cancel out mathe-
matically, the magnitude of coefficients in the linear system 
affects each equation’s residual error in L

2
 norm minimiza-

tion, thus controlling the importance of that equation.
We also add a final equation to constrain the top left tile 

to have position 0:

where ca =
∑n−1

i=0
ci

n
 is the average confidence, and n is the 

number of registration pairs.
The unknown positions p have the same dimension as the 

translations on the right-hand side, usually 2D or 3D.

�x = −

∑N

k=1

�(Xk)�Sk�2

�k

∑N

k=1
�Sk�2

−cipf + cipm = citi

cap0 = 0

As the formulated linear system of equations is very 
sparse (just two nonzero entries per equation), we use 
Eigen’s conju​gate gradi​ent solve​r for sparse least-square 
problems [9].

If a tile’s position residual error exceeds an absolute and 
relative error, it is deemed an outlier. If more than one tile 
position is considered an outlier, the one having the highest 
residual error is adjusted in each iteration. Adjusting means 
replacement of a tile’s translation by the next highest cor-
relation peak for that tile pair. If all possible translation can-
didates are exhausted, the tile position is given negligibly 
small weight ( ci → 0 ), thus effectively eliminating it from 
the global optimization. The iterative process stops once no 
tile position is considered an outlier.

Both the absolute and relative thresholds are adjustable 
by the user. The default absolute threshold for the residual 
error is 1 pixel size, while the default relative threshold is 3 
standard deviations, ti

?

<3𝜎ti . This relative comparison uses 
translation differences (right-hand side of the linear system 
being optimized), not residual errors. This approach caters 
to typical microscope stages that usually have consistent 
deviations.

Tile Blending

Smooth blending is achieved by weighting each pixel’s con-
tribution by distance from the tile’s edge. A synthetic exam-
ple given in Fig. 4.

If a certain pixel of the output montage is being covered 
by 3 input tiles, its color is calculated as cp =

c
1
d
1
+c

2
d
2
+c

3
d
3

d
1
+d

2
+d

3

 , 
where ci are colors of corresponding pixels of the input tiles 
and di are distances of those pixels from the input tiles’ clos-
est edge.

If sub-pixel precision is not requested, or the transform 
happens to align all the input tiles to integer pixel coordi-
nates (with � = 0.0001 of pixel size), interpolation is not 
used. Otherwise, linear interpolation is performed, which 
provides a good performance / accuracy trade-off. The soft-
ware also provides for B-spline and truncated windowed-
sinc interpolation, methods that provide higher intensity 
fidelity at the cost of computation time.

Results

The ITKMontage software module was implemented 
using high-quality development practices, such as code 
reviews and abundant testing. We implemented automated 
unit tests with both real and synthetic data, where the syn-
thetic data consists of artificially constructed tiles hav-
ing known ’ground truth’. Additionally, we implemented 
continuous integration testing. Automated tests use tile 

Fig. 3   The three samples ( x − 1, x, x + 1 ) around the peak are inter-
polated with a function (blue, red, green) that does not necessarily 
match the underlying ground truth (black). The displacement (peaks’ 
projection onto abscissa) from the analytically determined parametric 
peak will differ from reality depending on how well the chosen para-
metric function matches the ground truth

https://eigen.tuxfamily.org/dox/classEigen_1_1LeastSquaresConjugateGradient.html
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configuration files compatible with Image​J/FIJI monta​
ging tools​ [19].

A caching mechanism can reuse image FFTs for improved 
performance. Support for image streaming (processing an 
image piece-by-piece instead of all at once) can reduce 
peak memory usage when operating on very high resolution 
images. Stitching is performed in two stages, both capable of 
streaming. The first stage registers the tiles, with tile transla-
tions found by loading a limited number of tiles into memory 
at a given time. The second stage can generate the output 
montage image by resampling and blending the resulting 
montage on a region-by-region basis.

Computational performance is primarily determined by the 
FFT implementation used for the frequency-domain based 
phase correlation estimation. Per ITK FFT infrastructure, 
actual FFT computation can be delegated to either the Visual 
Numerics Library (VNL) that is bundled with ITK, the Intel 
Matrix Kernel Library (MKL), the Fastest Fourier Transform 
in the West (FFTW) library, or CUDA FFT (cuFFT).
ITKMontage is available as a remot​e modul​e in Insig​ht 

Toolk​it 5.1.0 and later. The provided GitHub link includes 
the test data featured in this paper. We have also integrated 
this montaging software module into an end-user applica-
tion primarily oriented for material science, DREAM​.3D 
[8], Fig. 11.

Qualitative Results

We evaluated our stitching software on material science 
microscope images, shown in Figs. 1, 2, 3, 4, 5, 6, 7, and 8. 
However, the tool works well for other types of data, e.g., 
Figs. 9 and 10. Visual inspection of these Figures shows 
high-quality montages without visible stitch lines.

Quantitative Results

As ground truth for an image montage is not generally 
known, we developed a generator that takes an input image 
and splits it into a specified number of tiles with overlap. 
The simulated positions of tiles are allowed to vary, approxi-
mating real-world conditions. The chosen tiles are resampled 
from the original image using windowed-sinc interpolation. 
The heterogeneity bias was not simulated, partly because 
of the low impact it has on sub-pixel accuracy, and partly 
because of the effort required for implementation .

Fig. 4   Blending. Top: smooth blend of 4 uniformly colored, overlap-
ping rectangles. Bottom: overlapping regions of tiles are weighted by 
the Euclidean distance from the tile’s edge

Fig. 5   Montage example: medium carbon steel (data set name: MCS), 
3 × 3 tiles, overlap 11% (top). Final size 3588 × 2706 pixels (bottom)

https://imagej.net/Image_Stitching
https://imagej.net/Image_Stitching
https://github.com/InsightSoftwareConsortium/ITKMontage
https://github.com/InsightSoftwareConsortium/ITK/releases/tag/v5.1.0
https://github.com/InsightSoftwareConsortium/ITK/releases/tag/v5.1.0
http://dream3d.bluequartz.net/
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Testing reveals that Image​J/FIJI monta​ging tools​ [19] 
usually has slightly better sub-pixel accuracy (Figs. 13 and 
14). But it is an order of magnitude slower on the test com-
puter, probably because the code is single-threaded. Our 
implementation performs well even when using the sin-
gle-threaded FFT implementation provided by the Visual 
Numerics Library (VNL) that comes bundled with ITK. 
It performs similarly when using the Intel Matrix Kernel 
Library (MKL), since our code is multi-threaded and test 
cases consist of a sufficient number of tiles to fully exploit 
the parallelism of the test computer. The test computer uti-
lized the following configuration: AMD Ryzen 7 PRO 1700 
CPU (8 cores, 16 threads) @ 3.0 GHz with 32 GB of RAM.

The ground truth tests and parameters used are provided 
in Table 1. Table 2 and the charts of Figs. 13 and 14 below 
show accuracy. Table 4 presents execution speed.

It is interesting to note that in most cases the pairwise 
registration error (Table 3) is less than total error (pairwise 

+ global optimization). This suggest that global optimization 
step usually leads to compounding of errors, not their anni-
hilation. It is therefore the prime target for possible future 
improvement.

We used default options for both ITKMontage and 
ImageJ, see Fig. 12.

Figures 13 and 14 show norm of deviations from ground 
truth positions of ImageJ/Fiji and ITKMontage, where the 
X-axis is tile number and Y-axis is its discrepancy with 
respect to ground truth. Y-axis units are whole pixels. Most 
deviations are under a pixel. For ITKMontage, four peak 
interpolation algorithms are shown. Integer values mean no 
interpolation. Parabolic (the default), cosine, and weighted 
mean phase interpolation are shown in Fig. 3.

For generating these results, we used Fiji version 1.52p, 
ITK revision 67eb78ed from 2020-07-10 and ITKMon-
tage revision b1e41dd from 2020-07-24.

Fig. 6   Montage example: titanium alloy Ti-7Al, 18 × 18 tiles, overlap 
50% (top). Final size 9155 × 9139 pixels (bottom)

Fig. 7   Montage example: titanium alloy Ti-6Al-4V, 10 × 10 tiles, 
overlap 50% (top). Final size 5224 × 5221 pixels (bottom)

https://imagej.net/Image_Stitching
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Selected Limitations

While ITKMontage provides state-of-the-art capabilities for 
leveling and stitching montage images, the stitching portion 
of the tool operates by computing relative tile translations 
alone. There are no provisions for correcting the myriad 
noise or distortions often found for optical, electron-optical, 
and digital imaging systems. For managing these distortions, 
we recommend the user correct the individual image tiles 
prior to montage stitching [2, 15].

Other limitations pertain to image modes and data depth 
that are common in the physical sciences. Specifically, when 
one collects electron backscattered diffraction (EBSD) maps, 
or chemical spectra maps such as from energy dispersion 
spectroscopy (EDS), the underlying crystallographic or 
chemical spectra data must be transformed in addition to 
the grayscale or color image map. ITKMontage has no pro-
visions for stitching such data; however, selected examples 
of tools that correct these data sets are emerging, and may 

Fig. 8   Montage example: composite (data set name: MNML5), 6 
× 9 tiles, overlap 5% (top). Final size 7442 × 8334 pixels (bottom). 
0.2079 microns/pixel

Fig. 9   Montage example: visible human male (data set name: Visi-
bleHumanMale1608), 2 × 2 tiles, overlap 40% along X, 10% along Y 
(top). Final size 4096 × 2700 pixels (bottom)

Fig. 10   MRI ground truth example. (data set name: DzZ_T1). Shown 
here in configuration of 4 × 8 × 3 tiles, overlap 25%, 15% and 50% 
along the X, Y and Z axes. Original size 144 × 470 × 12 pixels. Tile 
sizes 44 × 68 × 6 pixels. Top-left: part of XY cross-section overlaid 
with randomly colored contributing regions. Top-right: 3D render-
ing of some tiles to show overlap along X and Y axes. Bottom-left: a 
complete YZ cross-section. Bottom-right: XY cross-section without 
overlay
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one day be incorporated into montage stitching tools [5, 6, 
13, 26].

Conclusion

We implemented an open-source, multidimensional scien-
tific image montaging software, and tested it with 2D and 
3D inputs. We provide source code examples of how to use 
it. The main example has support for noise reduction and 
bias correction. The employed bias correction algorithm 
relies on maximization of frequency content in the image.

The accuracy of ITKMontage and its DREAM.3D 
implementation are comparable to that of ImageJ plugin 
Image Stitching, while being about tenfold faster.

The core implementation features coarse-grained paral-
lelism to allow better processor utilization by overlapping 
different kinds of processing: input-output bound, mem-
ory-bound and CPU-bound. Memory usage can be limited 

Fig. 11   Screenshot of DREAM.3D end-user application

Table 1   Ground truth test case information

Ground Truth OMC MCS MNML5 VHM DzZ

Tiles 8 × 6 11 × 3 6 × 9 5 × 4 3 × 6 × 3
PixelCountX 3547 3588 7447 4096 144
PixelCountY 2666 2706 8346 2700 471
PixelCountZ 12
OverlapX 10% 20% 5% 15% 25%
OverlapY 10% 20% 5% 15% 15%
OverlapZ 50%
Note 16-bit 16-bit Color Color 16-bit

Table 2   Average pixel error for ground truth test cases

Bold signifies the best result for the data set

OMC MCS MNML5 VHM DzZ

Fiji 0.07 0.14 0.14 0.06 3.22
Integer 0.28 0.37 0.32 0.35 0.72
Parabolic 0.12 0.15 0.19 0.03 0.44
Cosine 0.22 0.28 0.21 0.24 0.61
WM phase 0.33 0.40 0.35 0.25 0.73

Table 3   Average pairwise registration error

Bold signifies the best result for the data set

OMC MCS MNML5 VHM DzZ

Integer 0.29 0.26 0.31 0.31 0.26
Parabolic 0.06 0.05 0.06 0.05 0.14
Cosine 0.21 0.19 0.23 0.22 0.21
WM phase 0.34 0.28 0.35 0.35 0.35

Table 4   Running time in seconds for ground truth test cases. All 
times include reading, registration, optimization, generation of the 
output montage and writing

Bold signifies the best result for the data set

OMC MCS MNML5 VHM DzZ

ITK+MKL 1.5 1.5 2.8 0.7 2.9
ITK+VNL 1.4 1.6 2.7 0.8 2.9
Fiji 11.1 9.5 58.7 11.8 37.7

Fig. 12   Options used for stitching plugin in Fiji
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through loading tiles from disk, on-demand. The tile merg-
ing (blending) filter is capable of streaming, which makes 
it possible to generate extremely large montages without 
exhausting system memory.

Comprehensive, automated regression tests were added 
to reproduce expected behavior, according to software 

quality and open science best practices. The ITKMontage 
C++ module is wrapped for use from Python, and avail-
able in the DREAM.3D graphical application and com-
mand line executable interfaces. As a result, large montage 
stitching is possible from a variety of sources.
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Fig. 13   Accuracy for OMC14 from Fig.  1, Medium Carbon Steel 
from Fig. 5 and MNML5 from Fig. 8

Fig. 14   Accuracy for Visible Human from Fig. 9 and DzZ_T1 from 
Fig.  10. For the 3D case, the errors accumulate with increasing tile 
numbers, most noticeably along Y coordinate, least along Z. As tile 
numbers are linearized, increase in Z with decreases in X and Y cre-
ates a noticeable stair shape in error magnitude
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