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Abstract
Besides chemical composition, microstructure plays a key role to control the properties of engineering materials. A strong 
correlation exists between microstructure and many mechanical and physical properties of a metal. It has the utmost impor-
tance to understand the microstructure and distinguish the microstructure accurately for the appropriate selection of engineer-
ing materials in product fabrication. Computer vision and machine learning play a major role to extract the feature and predict 
the most probable class of a 7-class microstructural image with a high degree of accuracy. Features contain information 
about the image, and the classification function is defined in terms of features. Feature selection plays an important role in 
the classification problem to improve the classification accuracy and also to reduce the computational time by eliminating 
redundant or non-influential features. The current research aims at classifying microstructure image datasets by an improved 
wrapper-filter based feature selection method using texture-based feature descriptor. Before applying the feature selection 
method, a feature descriptor, called rotational local tetra pattern (RLTrP), is applied to extract the features from the input 
images. Then, an ensemble of three filter methods is developed by considering the union of the top-n features selected by 
Chi-square, Fisher score, and Gini impurity-based filter methods. The objective of this ensemble is to combine all possible 
important features selected by three filter methods which will be used to create an initial population of the wrapper-based 
meta-heuristic feature selection algorithm called, harmony search (HS). The novelty of this HS method lies in the objective 
function, which is defined as a function of Pearson correlation coefficient and mutual information to calculate the fitness 
value. The proposed method not only optimizes features with reduced dimension but also improves the performance of 
classification accuracy of the 7-class microstructural images. Moreover, the proposed HS model has also been compared 
with some standard optimization algorithms like whale optimization algorithm, particle swarm optimization, and Grey wolf 
optimization on the present dataset, and in every case, the HS method ensures better agreement between feature selection 
and classification accuracy than the other methods.
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Introduction

Understanding the microstructure of metal is the major con-
cern of material science. The variation of microstructure 
arises due to irregularly shaped crystals, grain size, the ori-
entation of grain, phase distribution, etc., during thermo-
mechanical processing of materials. The variation of micro-
structure strongly influences many mechanical and physical 
properties of materials like hardness, strength, ductility, 
tensile strength, elongation, magnetic properties, etc. [1]. 
Microstructure characterization with machine learning tech-
niques is an important concept which helps to discover the 
material properties in material engineering. Many research-
ers attempt to extract the features from microstructural 
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images using numerous feature descriptors to solve different 
types of microstructural classification problems.

The microstructural images of metal can be obtained 
using light optical microscopy (LOM) or scanning electron 
microscopy (SEM) after proper processing through a method 
known as etching using a suitable chemical reagent. LOM 
is a very common available quantification technique for 
the steel micrograph, and the mixture of color appearances 
can be used to identify the complex phases. SEM gener-
ates images of a specimen by scanning the surface using 
a focused beam of high-energy electrons. Naturally, SEM 
does not produce color images, and it is usually represented 
as a grayscale image. SEM has many advantages over LOM 
due to its higher resolution, stronger magnification, better 
depth of field, and ability to the analysis of chemical and 
structural properties. Due to stronger contrast, SEM is useful 
to investigate the phase structure and particle. But in LOM 
many contrasts, color differences and more distinct views are 
found which make it an aesthetic approach to metallography. 
Besides higher resolution and magnification in SEM, elec-
tron back-scatter diffraction (EBSD) is a powerful method 
to analyze grain morphology, texture evolution during defor-
mation and phase transformations during heating and cool-
ing. EBSD is a robust technique in materials characteriza-
tion. However, due to some limitations in the EBSD method 
[2] microscope images are preferable for microstructure 
classification. Individually, the EBSD method is not self-
sufficient for effective microstructure classification. Britz 
et al. [3] in their research work have shown that through the 
correlation of EBSD and LOM, a characterization of the 
different microstructures is possible.

The microstructure images generated from different 
sources have variation in contrast, brightness, and color 
or gray-level intensities. Image texture can be defined as a 
visual pattern of repeated pixels that has some amount of 
variability in element appearance and relative position of 
adjacent elements. The analysis based on image texture has 
been successfully applied in different fields of engineering 
and medical applications [4–8]. Various successful attempts 
have been made by many researchers in microstructural anal-
ysis using textural image analysis.

For cast iron, gray-level co-occurrence matrix (GLCM) 
and local binary pattern (LBP) feature descriptors are used 
by Gajalakshmi et al. [9] to classify the 3-class microstruc-
tural images using the support vector machine (SVM). For 
steels, Webel et al. [10] have analyzed the microstructures 
using Haralick image texture features, calculated from the 
stepwise rotation of images to make them rotation variant. 
They have applied this method to distinguish microstruc-
tural images as pearlite, martensitic, and bainite using four 
texture features obtained from GLCM which are contrast, 
correlation, homogeneity, and energy. Kitahara et al. [11] 
have applied a transfer learning pipeline and unsupervised 

learning method to successfully classify two datasets of 
microstructural images of surface defects in steel. Gola et al. 
[12] have used rapid miner as a data mining platform with 
the support vector machine (SVM) to classify the images 
into three classes namely martensite, pearlite, and bainite. 
They have proved that the combination of the data mining 
process and microstructural parameters could be used in 
the classification of two-phase steels. Successful usage of 
texture-based features in the past has motivated us to explore 
the same by classifying the microstructural images.

Related Work

The major challenges to implement the feature engineering-
based machine learning algorithms are to handle the high 
dimensionality of the feature set and to enhance the effi-
ciency of the learning models. The feature selection (FS) 
method proves to be an effective way to overcome this chal-
lenge. The main objective of FS is to reduce the dimension 
of the features by eliminating redundant or irrelevant fea-
tures and to improve the prediction performance and achieve 
cost-effective performance. FS can be treated as a critical 
preprocessing step before the classification task to remove 
those features that carry no significant role to increase the 
classification performance. FS is a challenging task with a 
larger search space. As the number of features increases, the 
complexity is heightened due to feature interaction.

Depending on the utilized training data, learning meth-
ods, evaluation criterion, search strategies, and type of out-
put, FS methods can be classified into various categories 
[13]. FS methods can be divided into supervised, unsuper-
vised, and semi-supervised models based on utilized training 
data. Based on learning methods, these are divided into filter 
[14], wrapper [15], and embedded methods [16]. Two main 
factors that influence the FS process are the search tech-
niques and evaluation criteria. Search techniques examine 
the entire search space to find the optimal feature subsets 
and evaluation criteria evaluate the importance of feature to 
accompany the search process.

DeCost et  al. [17] have applied visual features as a 
generic microstructural signature to classify 7-class micro-
structure images (brass/bronze, ductile cast iron, gray cast 
iron, hypoeutectoid steel, malleable cast iron, superalloy, 
and annealing twin) using a SVM model as a classifier. The 
proposed algorithm has shown to be effective with a fivefold 
cross-validation accuracy of 83%. Chowdhury et al. [18] 
have applied several feature extraction methods based on 
texture and shape statistics and also use the pretrained con-
volutional neural network (CNN) to compute feature vector 
on the microstructural dataset for 2-class classification prob-
lem. These feature vectors are processed with six different 
techniques that include principle component analysis (PCA), 
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ANOVA F-statistic (ANOVA), Fisher score, Chi-square, and 
Gini index to reduce the dimension of the feature vector.

Gola et al. [19] have proposed to use three different types 
of parameters, namely morphological, textural, and sub-
structural to determine the features for reliable classification 
of microstructural images. In total, they have computed 75 
parameters and they have chosen genetic algorithm (GA) as 
a FS method to reduce the dimension of the parameters. The 
potential limitation of their research work is that they have 
attempted to reduce the dimension of parameters maintain-
ing the classification accuracy, so no improvement of accu-
racy after parameter selection has been observed.

A variety of search techniques have been applied by the 
researchers to find the best feature subset from a high-dimen-
sional feature set [13]. These searching methods include 
complete search, greedy search, heuristic search, and ran-
dom search. However, the problem lies in the fact that they 
consume too much time to find the best possible solution 
and many times getting trapped in local optima. A trade-off 
is required between heuristic and meta-heuristic methods to 
find an efficient global search technique to improve the qual-
ity of FS problems. Most of the meta-heuristic algorithms 
have taken inspiration from different sources such as GA 
which is biologically inspired, particle swarm optimization 
which is swarm-based, and harmony search (HS) which is 
physics-based. Meta-heuristic works in an iterative manner 
along with the subordinate heuristics. It is a guided random 
search technique. It is not starting from a single point rather 
it starts from multiple points and performs random search 
and tries to explore the entire search space. It includes the 
method to avoid getting trapped into local optima and uses 
search experience intelligently to guide further solutions.

HS is a physics-based meta-heuristic method that pro-
vides a problem-independent optimal solution by iteratively 
examining the entire search space. The HS algorithm is a 
population-based meta-heuristic algorithm, and it is inspired 
by the improvisation process of music players. HS algorithm 
simulates the concept of searching for better harmony in the 
musical processed. The motivation behind the selection of 
the HS algorithm in the present work is that it has shown 
impressive performance in FS in different domains [20].

Das et al. [21] have proposed an algorithm based on HS to 
reduce the feature set in handwritten Bangla word recogni-
tion problem. The HS-based wrapper FS method is capable 
to reduce the dimension of feature vector from 65 to 48 fea-
tures, and the proposed algorithm has shown to be effective 
to enhance the classification accuracy when compared to 
some standard evolutionary algorithms like GA and PSO.

Gholami et al. [22] have proposed a FS method-based 
HS algorithm with some modification to the improvisation 
step. The algorithm is evaluated using the datasets of 18 
benchmark problems from the UC Irvine Machine Learn-
ing Repository and demonstrates its ability to reduce the 

dataset compare with other FS methods. Zainuddin et al. 
[23] have applied the HS algorithm for FS for epileptic 
seizure detection and prediction using UCI benchmark 
datasets, and they have used wavelet neural networks as a 
classifier. Moayedikia et al. [24] have proposed a technique 
named SYMON which uses HS algorithm and symmetrical 
uncertainty to compute the optimal feature subset for high-
dimensional imbalanced datasets on especially the microar-
ray datasets. Nekkaa1 and Boughaci [25] have proposed a 
hybrid model comprising of HS algorithm and stochastic 
local search for FS using UCI benchmark datasets

Dash [26] uses a two-stage FS method for high-dimen-
sional microarray dataset. This method includes a tech-
nique that combines HS algorithm and Pareto optimization 
approach. Adaptive HS algorithm-based gene selection 
technique is applied in the first stage to generate the top 100 
features and in the second stage multi-criterion, and Pareto 
optimal solution is applied to find out the optimal feature 
subset. The statistical analysis report shows the superiority 
of this model as compared to other considered approaches.

Ramos et al. [27] have used HS algorithm to select a dis-
criminant subset of features with the optimum-path forest 
classifier for identifying non-technical losses in power dis-
tribution systems. Huang et al. [28] have used a self-adap-
tive HS (SAHS) algorithm with SVM classifier to locate the 
optimal feature subsets for music genre classification. HS 
algorithm as FS has also been applied for accurate classifi-
cation of speech emotion using the dataset from the Berlin 
German emotion database (EMODB) and Chinese Elderly 
emotion database (EESDB) [29]. Saha et al. [30] have used 
an HS algorithm based on cosine similarity and minimal-
redundancy maximal relevance (mRMR) for FS in facial 
emotion recognition problems with improvements in overall 
classification accuracy.

Motivation and Contributions

In data mining and machine learning, the features extracted 
by some means often come up with a huge number of fea-
tures and among them some are extraneous and correlated 
features. In this context, the main objective of FS is to find 
out a set of uncorrelated features with reduced dimensional-
ity to be used for the classification process under considera-
tion. However, discovering an optimal subset of features that 
results in maximization of classification accuracy is still a 
less explored area in the domain of microstructural image 
classification. This motivates us to propose a FS method 
applied to texture-based features extracted from microstruc-
tural images.

Regarding the feature vector considered here for classi-
fication, it is to be noted that there are a few reasons why 
the proposed method performs better. There are many 
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texture-based feature descriptors found in the literature; 
among them local binary pattern (LBP) is one of the most 
popular ones which has been used in varied domains over 
the years. However, in the basic LBP, to capture local infor-
mation around a pixel in an image, it only considers the 8 
neighboring pixels. On the other hand, local tetra pattern 
(LTrP), an extension of the basic LBP, does this by consider-
ing two layers of the neighboring pixels. That is why LTrP 
method and its variants can extract better texture information 
of the input image which, in turn, helps in classifying the 
input images belonging to different classes. However, for 
achieving better classification using this texture-based fea-
ture vector through a FS method, we need the most unique 
and relevant features from the input feature vector. The FS 
method does that job by finding the most relevant features 
out of the high-dimensional input feature vector. Our present 
work attempts to address these issues. In a nutshell, the main 
contributions of our work include:

•	 To the best of our knowledge, this is the first study that 
explores texture-based rotation variant LTrP (RLTrP) in 
the microstructural image classification.

•	 An unsupervised FS technique based on the HS algo-
rithm is introduced to find an optimal subset of informa-
tive features for improving microstructural image clas-
sification.

•	 The initial population of the HS algorithm is created by 
forming an ensemble of three filter methods, namely Chi-
square, Fisher score, and Gini impurity.

•	 Instead of using a classifier, PCC and MI values are used 
to estimate the fitness value which boosts up our pro-
posed FS method.

•	 Experimental results demonstrate that the proposed 
wrapper-filter method outperforms other standard meta-
heuristic-based FS methods

•	 Impressive results are obtained in classifying 7-class 
microstructural images with significantly less number 
of features.

The remaining section of this paper is presented as fol-
lows: “Preliminaries” section presents a brief overview of 
the concepts of the method used in the work. The proposed 
model is described in “Proposed Model” section. A brief 
description of the HS algorithm and the characteristics of the 
proposed FS method with objective function for improve-
ment are also presented in “Proposed Model” section. The 
results and discussion are presented in “Results and Discus-
sion” section. The research study of the literature is con-
cluded in “Conclusion” with the outline of future work.

Preliminaries

We describe five different feature descriptors in “Feature 
descriptors” section, the three filter methods used in our 
work in “Dimensionality Reduction” section. The PCC and 
MI used to define the objective function in the HS algorithm 
are described in “Objective Functions” section.

Feature Descriptors

Local variation in intensity is characterized as texture. Image 
textures are complex visual patterns characterized by shape, 
size, color, and intensity in an image or selected region of 
an image. The textures are determined based on the coarse-
ness, fineness, regularity, smoothness, etc. Multiple feature 
descriptors use the image texture to compute the features 
of an image.

Gray‑Level Co‑occurrence Matrices (GLCM)

Haralick [31] proposed a set of 2D square matrices known 
as GLCM, a matrix that counts the directional differences 
between intensities of the neighboring pixels in the image. 
It is also termed as co-occurrence distribution. From the 
GLCM, the texture measures are computed and these tex-
ture measures imply the variation of intensity at the pixel of 
interest. Haralick features are computed employing GLCM, 
which are second-order statistical measures. The co-occur-
rence matrix with dimension XK × XK as follows:

XK implies the number of gray levels in the image. GLCM 
can be computed at any angle and at any offset. Each element 
[i, j] of this co-occurrence matrix is determined by the sum 
of the number of times with value i is adjacent to a pixel 
with value j.

Scale Invariant Feature Transform (SIFT)

Lowe [32] created an excellent algorithm known as SIFT 
to extract invariant features from images. This algorithm 
is attractive for finding interest points in an image. The 
prime characteristics of this algorithm are that the features 
are invariant to image scale and rotation, and it contributes 
a potent matching across a range of affine distortion, the 
addition of noise, and variation in illumination. The pro-
cedure to generate the set of image features is a multi-step 
pipeline process that involves scale-space extrema detection, 

⎡⎢⎢⎢⎣

s(1, 1) s(1, 2) s(1, 3) s(1,XK)

s(2, 1) s(2, 2) s(2, 3) s(2,XK)

.. .. .. ..

s(XK , 1) .. .. s(XK ,XK)

⎤⎥⎥⎥⎦
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keypoint localization, orientation assignment, and keypoint 
descriptor.

In the first stage, a scale space is created using an approxi-
mation based on difference of Gaussian (DoG) technique. 
DoG images are formed using the Gaussian blur operator 
at each octave of the scale space. The interest points that 
are invariant to scale and orientation are searched over all 
scales and image locations. In the keypoint localization step, 
each pixel in the DoG image is compared to its neighbor-
ing pixels. Keypoints are selected based on the pixel that is 
local maximums or minimums. All the low-contrast points 
are excluded from the final set of keypoints. In the next step, 
one or more orientations are assigned based upon gradient 
histogram technique to each keypoint to make it rotation 
invariant. Peaks in the histogram are considered as the domi-
nant orientations. In the final step, the computation of the 
feature descriptor for each keypoint is performed. The result-
ing feature vector consists of 128 orientation histograms.

Oriented FAST and Rotated BRIEF (ORB)

ORB [33] is built as a combination of FAST and BRIEF 
techniques as a very fast binary descriptor for feature extrac-
tion. ORB produces an optimized mix-and-match result of 
FAST and rotated BRIEF. Both FAST and BRIEF are well-
known feature descriptors because of their good perfor-
mance and low cost. Multi-scale feature-based scale pyramid 
of the image is used in the ORB algorithm. At each scale of 
the image, pyramid FAST and rotated BRIEF are applied. 
Once ORB has created a pyramid, FAST feature detection 
algorithm uses the corner detection mechanism to detect the 
keypoints. For detecting intensity change, the corner orienta-
tion is followed by intensity centroids using Rosin’s method 
[34]. The FAST, Harris corner measures, and Rosin method 
are used at each scale of an image pyramid.

To search the top-n points with the strongest FAST 
responses, Harris corner measures are applied on the key-
points at each level. The center of gravity of an image is 
computed with moments to improve the rotation invariance 
property of this method. For correspondence search, ORB 
uses multi-probe locally sensitive hashing (MP-LSH), which 
searches for matches in neighboring buckets when a match 
fails.

Local Binary Patterns (LBP)

Ojala et al. in their paper [35] have first introduced a tex-
ture-based feature operator called LBP. It is quite effective 
in encapsulating texture information without any costly 
computation.

The original description can be found in [35]. Let there 
are Ns gray pixels surrounding a center pixel at 

(
Xcen, Ycen

)
 

having a radius of RLBP unit. Therefore, lth pixel position can 
be easily calculated from Eq. (1).

For center pixel and all Ns surrounding pixels, the gray-
scale intensity can be represented as Ic, I0, I1,… ., INs−1

, 
respectively. According to [36], we can define a binary pat-
tern for every possible center pixel with the help of its all Ns 
neighboring pixels’ grayscale intensity. We can define the 
binary pattern as follows:

where

We can obtain the decimal equivalent of the binary pat-
tern in the following way

For RLBP = 1 ,  Ns becomes 8.  Therefore,  for 
RLBP = 1 andNs = 8. BinFeature becomes an 8-bit binary pat-
tern, or its decimal equivalent ranges from 0 to 255. Gener-
ally, the histogram containing the frequency of occurrence 
of all these decimal values is used as a feature.

Implementation of LBP

For implementation purpose, we take a value of RLBP = 1 
and Ns = 8 , so we get an image segment of 3 × 3 to com-
pute a 8-bit binary pattern for each pixel considering all 
its 8 neighbors. Consider the following example given in 
Fig. 1, where value of Ic = 83 i.e., the grayscale intensity; all 
8 neighbors’ grayscale values are also shown in Fig. 1. For 
each neighboring pixel, a value of 0 or 1 is assigned depend-
ing on Eq. 3. Ultimately, for each pixel considering its all 
8 neighbors, we end up with an 8-bit binary code, which in 
turn is converted into its decimal value. This 3x3 grayscale 
image segment gives us the binary pattern 11100011, and 
this binary pattern gives a decimal value of 227.

Rotational Variant LBP

The binary pattern obtained from LBP often contains 
unnecessary details. Therefore, often rotational variant LBP 
(RLBP) is used to get rid of the unnecessary information. 

(1)

(
Xl, Yl

)
=

(
Xcen + RLBP cos

(
2�l

Ns

)
, Ycen − RLBP sin

(
2�l

Ns

))

[
l ∈

{
0, 1,…… .., Ns − 1

}]

(2)BinFeature =
{
F1

(
I0, Ic

)
,F1

(
I1, Ic

)
,…F1

(
INp−1

, Ic

)}

(3)F1(x) =

{
1, if x ≥ 0

0, if x < 0

(4)

LBPfunction(Ns,RLBP)

(
Ic, I1,……… ., INs−1

)
=

Ns−1∑
k=0

F1

(
Ik − Ic

)
2k
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In [35], RLBP is obtained by rotating the binary pattern to 
obtain the least decimal value.

For RLBP = 1 and Ns = 8, total possible unique values that 
can be obtained are 36.

The binary pattern obtained in Fig. 1 can be left-rotated 
with continuation to form the minimum possible decimal 
value.

(11,100,011)2 = 227 (00,111,110)2 = 062
(11,000,111)2 = 199 (01,111,100)2 = 124
(10,001,111)2 = 143 (01,111,100)2 = 248
(00,011,111)2 = 031 (11,110,001)2 = 241
Min Binary Pattern: (00,011,111)2 = 031

Local Tetra Pattern (LTrP)

There are various reasons for which LBP has been widely 
used as a texture-based feature. It is computationally less 

(5)RotLBP(Ns−1)

(
Ic, I1,……… ., INs−1

)
= min

{
Rotate

(
Binfeature, i|0 ≤ i ≤ Ns − 1

)}

expensive and it is immune to different lighting effects due 
to the use of the F1 for binary pattern generation. But there 
are few drawbacks, as it uses the first layer of surrounding 
pixels to generate the binary pattern; hence, it has a huge 
chance of missing out key features of center pixel locality. It 
can be overcome by using a rather deeper layer of surround-
ing pixels to generate features. Murala et al. proposed LTrP 
as texture-based operators in [36] to overcome the limita-
tions of LBP. They have adopted the idea of different local 
patterns such as LBP [35], local ternary pattern (LTP) [37], 
and LDP [38] to define LTrP. The description of the feature 
is as follows:

Given Im, an image segment, we take the first order deriv-
ative along 0° and 90°. We

denote first-order derivative by, Im1
�

(
Ic
)|� = 0◦, 90◦.

Here I0◦ and I90◦ are actually the grayscale intensity 

of the pixels aligned with the center pixel at 0° and 90° 
respectively.

From the value of derivatives, the direction of the center 
pixel can be considered by the following function:

As there are two possible I0◦ pixels for a center pixel, 
and same for I90◦ , for each center pixel, we can have four 
distinct directions considering all possible combinations. 
These directions are used for encoding the image segment 
into a tetra pattern, by defining second-order LTrP, in the 
following way:

(6)Im1
(0◦)

= I(0◦) − Ic

(7)Im1
90◦

= I90◦ − Ic

(8)Direction1
�
Ic
�
=

⎧⎪⎨⎪⎩

1, if I1
0◦
≥ 0, I1

90◦
≥ 0

2, if I1
0◦
< 0, I1

90◦
≥ 0

3, if I1
0◦
< 0, I1

90◦
< 0

4, if I1
0◦
≥ 0, I1

90◦
< 0

(9)
LTrP2

(
Ic
)
={

F2

(
Direction1

(
Ic
)
,Direction1

(
I0
))
,F2

(
Direction1

(
Ic
)
,Direction1

(
I1
))
,……… ,

F2

(
Direction1

(
Ic
)
,Direction1

(
INs−1

))
}

(10)F2

(
Direction1

(
Ic
)
,Direction1

(
Il
))

=

{
0, if Direction1

(
Ic
)
= Direction1

(
Il
)

Direction1
(
Il
)
, else

Fig. 1   Illustration of LBP calculation process for a 3 x 3 gray image 
window, where N

s
= 8 , and R

LBP
= 1 . a Image segment with actual 

grayscale intensity values, b image segment with grayscale values 
being replaced with binary value. The binary pattern is generated 
according to clockwise notation shown in the diagram. The binary 
pattern = 11,110,001. Here, 1 represents neighboring pixel intensity is 
greater than center pixel value, 0 vice versa



7Integrating Materials and Manufacturing Innovation (2021) 10:1–19	

1 3

Therefore, we get an 8-bit tetra pattern LTrP2
(
Ic
)
 ; this 

tetra pattern can in turn generate three 8-bit binary patterns. 
We can get the three binary patterns in the following way.

Let Direction1
(
Gc

)
= 4,

As each center pixel can have four unique directions, 
4 × 3 = 12 binary patterns can be attained from  Eq. (11). 
Murala et al. in [36] also suggested 13 binary patterns based 
on the magnitude of the local difference operator.

Therefore, thirteenth binary pattern can be defined as 
follows:

Rotational Variant Local Tetra Pattern: (RLTrP)

The method of “Rotational Variant LBP” section can be 
incorporated into each of the thirteen binary patterns of 
LTrP to obtain RLTrP.

Implementation of Proposed Feature Descriptor

For feature extraction, we have used the grayscale image; 
therefore, all the input color images are converted into 
grayscale image before feature extraction algorithm takes 
place. Main characteristic of LTrP feature extraction pro-
cedure is that, unlike LBP, we do not generate the tetra pat-
terns solely based on grayscale intensity; rather, we take 
the direction of a pixel, with respect to the horizontal and 

(11)
BinLTrPDirection = F3(LTrP

2
(
Ic
)
[l]|l = 0, 1,… ,Ns − 1)|Direction=1,2,3

(12)F3(x)|Direction=� =

{
1, if x = �

0, if x ≠ �

(13)MIl
=

√
Im1

0◦

(
Il
)2

+ Im1
90◦

(
Iml

)2

(14)Bin13 =
{
F1

(
Ml −MIc

)|l = 0, 1,…… ., 7
}

vertical neighboring pixels. The direction is given by Eq. 8. 
Figure 2 describes all four directions possible from Eq. 8. 
For all other 8 neighboring pixels, we have calculated their 
corresponding directions with respect to the center pixel. 
Hence, for generating tetra pattern for each pixel, we take 
a 5 × 5 window. We have taken one example where center 
pixel direction is assumed to be 1.

In Fig. 3, red block indicates the center pixel and the 
blue boxes indicate the neighboring pixel of concern. All 
the directions of the neighboring pixels can be calculated 
using Eq. 8. The directions are 4, 3, 1, 3, 1, 2, 3, and 1 from 
top left to right and bottom left to right. The tetra pattern 
can be generated using Eqs. 9 and 10 using these directions.

Tetra pattern: 4 3 0 3 0 2 3 0
This tetra pattern is used to generate 3 binary patterns 

using Eqs. 11 and 12.
Binary pattern 1: 1 0 0 0 0 0 0 0 | Dir = 4
Binary pattern 2: 0 1 0 1 0 0 1 0 | Dir = 3
Binary pattern 3: 0 0 0 0 0 1 0 0 | Dir = 2
This process will repeat for all other three possible direc-

tions of the center pixel in total giving 12 binary patterns. 
Thirteenth pattern is generated using magnitude of differ-
ence for any one sequence using Eqs. 13 and 14.

The magnitude difference of center pixel is : √
(8 − 4)2 + (9 − 4)2 = 6

The corresponding magnitudes are, respectively, √
(5 − 7)2 + (9 − 7)2 = 2.8  ,  

√
(3 − 9)2 + (1 − 9)2 = 10  , √

(9 − 1)2 + (5 − 1)2 = 8.9  ,  
√
(1 − 8)2 + (2 − 8)2 = 9.2  , √

(8 − 2)2 + (9 − 2)2 = 9.2  ,  
√
(4 − 3)2 + (2 − 3)2 = 1.4  , √

(3 − 8)2 + (3 − 8)2 = 7 , 
√
(7 − 3)2 + (4 − 3)2 = 6.

Therefore, binary pattern generated by these magnitudes 
is : 1 1 1 1 0 1 0

Rotational variant is used for all these binary patterns to 
generate the least decimal values which are used to calcu-
late the histogram for the given image, which are fed to a 
machine learning model.

In Fig. 4, we have generated 13 LTrP rotational variant 
images. For each image, we have replaced the actual pixel 
intensity with the rotational variant decimal value of LTrP 
code for a particular center pixel.

In Fig.  5, the proposed feature extraction method is 
explained visually. At the first step, each image is converted 
into a grayscale image, which is then transformed into the 13 
LTrP images. Each image is then used to generate frequency 
density histogram of the pixel values in the range of 0–255. 
The rotational variant is used to generate final features.

Dimensionality Reduction

The above-mentioned feature descriptors are used to clas-
sify the microstructure images. More number of features 
generally imply better information and better discriminative 
capability. However, due to the presence of some irrelevant, Fig. 2   Visualizing all four directions generated from Eq. 8



8	 Integrating Materials and Manufacturing Innovation (2021) 10:1–19

1 3

noisy, and redundant features, the performance of the clas-
sifier is usually degraded. Therefore, to maintain or improve 
the classifier accuracy it becomes necessary to apply FS 
techniques to avoid the curse of dimensionality. In stage 1, 
an ensemble of filter methods is developed by considering 
the union of the top-ranked features of Chi-square, Fisher 
score, and Gini impurity. A brief description of these filters 
is given below.

Chi‑Square

Chi-square ( �2 ) [39] is very useful in FS which tests the sta-
tistically significant relationship or contingency between the 
features. The Chi-square statistical test of independence is 
a method appropriate for testing independence between two 
categorical variables. The null hypothesis of this statistical 
test implies that there is no difference between the categori-
cal variables. The computation of �2 value is straightforward 
and is given by

where r denotes the number of distinct values in the fea-
tures, c is the number of distinct values in of the classes. fij 
is the observed value, and eij is the expected value. A higher 
value of �2 indicates that there is no relationship between 
the features and features with the best Chi-square scores are 
selected as informative features

Fisher Score

Fisher score [40] is one of the most acceptable similarity-
based supervised filter methods. It selects each feature inde-
pendently based on their score under the Fisher criterion. 
Fisher score is the ratio of class variance to within-class 
variance to evaluate feature importance. Fisher score of ith 
feature is computed as

(15)�2 =

r∑
i=1

c∑
j=1

(
fij − eij

)2
eij

Fig. 3   Illustration of tetra pattern generation. Here, red block is used to indicate the center pixel and blue block is used to indicate neighboring 
pixel
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Fig. 4   Original sample color micrograph of one gray cast iron, its grayscale image and all 13 images generated by our proposed feature extrac-
tion method
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Fig. 5   a–b. Pictorial representation of the proposed feature extraction method
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where uj and �j represent the mean and standard deviation 
of jth class, respectively, corresponding to the ith feature, and 
u represents the mean of all classes. After evaluation of the 
Fisher score of each independent feature, the top-n ranked 
features with the largest score are selected as a suboptimal 
subset of features.

Gini Index

Gini impurity or Gini index is a popular metric that is used 
in CART (classification and regression tree) and decision 
tree algorithm for FS [41]. It is an assessment of the possibil-
ity of incorrect classification of a randomly chosen element 
from the dataset conforming to the distribution of labels in 
the subset. It is computationally efficient and takes a shorter 
time for execution. Mathematically, Gini impurity for a set 
of items with n classes can be computed as

where pi be the probability of choosing a sample of a 
certain classification labeled with i. Gini impurity lower 
bounded by 0 implies that this an ideal split that corresponds 
to all the members of the set attached to the same class, i.e. 
the class is perfectly separated. The opposite is true when 
members of the set are randomly distributed across differ-
ent classes.

Objective Function

For FS purpose, an agent which is kept in the memory is 
treated as a harmony. The accuracy of the proposed HS 
method is dependent on the objective function which is 
determined by the computation using PCC and MI. A brief 
description of these two methods is given below.

Pearson Correlation Coefficient (PCC)

In statistics, PCC measures the linear correlation between 
variables X and Y. It has a value between -1 and +1. PCC 
is often represented as rxy . We can obtain the value of rxy by 
the following formula:

(16)Fi =

c∑
j=1

nj ∗
�
uj − u

�2

c∑
j=1

nj ∗ �2
j

(17)G(s) =

n∑
i=1

pi ∗ (1 − pi)

(18)rxy =
𝛴n

i=1

�
xi − x̄

��
yi − ȳ

�
√
𝛴n

i=1

�
xi − x̄

�2√
𝛴n

i=1

�
yi − ȳ

�2

where   rxy is the PCC value,   xi   and   yi represent  ith 
sample in X and Y, respectively, and n is the total number 
of samples.

For the FS problem, the features are defined as:

where Ninstance is total number of instances in the feature 
set.

We define,

w h e r e  ri
xy

 i s  P C C  va l u e  c a l c u l a t e d  f ro m 
Feature(∶, k)and Class, k ∈

{
1, 2,… .Ninstance

}
.

Hence,

Mutual Information (MI)

MI is a measure between two (possibly multi-dimensional) 
random variables X and Y that quantifies the amount of 
information obtained about one random variable, through 
the other random variable. MI is given by

where Pxy(x, y) is the joint probability density function of X 
and Y and Px(x) and Py(y) are the marginal density functions. 
MI determines how similar the joint distribution Pxy(x, y) is 
to the products of the factored marginal distributions. If X 
and Y are completely unrelated, then Pxy(x, y) would equal 
Px(x)Py(y) , and this integral would be zero.

We define,

Hence,

(19)Feature =

⎡
⎢⎢⎢⎢⎣

x1
1

x1
2

… x1
NFeature

x2
1

x2
2

… x2
NFeature

⋮ ⋮ ⋮

x
Ninstance

1
x
Ninstance

2
x
Ninstance

NFeature

⎤
⎥⎥⎥⎥⎦

(20)Class =

⎡⎢⎢⎢⎣

y1

y2

⋮

yNinstance

⎤⎥⎥⎥⎦

(21)PCCfeature =

[
r1
xy

r2
xy

… r
NFeature

xy

]

(22)pcc
�
hi
�
=

∑NFeature

k=1
PCCfeature(k) ∗ hk

i∑NFeature

k=1
hk
i

(23)I(X; Y) =
∑

x∈X,y∈Y

Pxy(x, y) log
Pxy(x, y)

Px(x)Py(y)

MI
feature

=

[
I(Feature(∶, 1);Class) I(Feature(∶, 1);Class) … I(Feature(∶, 1);Class)

]



12	 Integrating Materials and Manufacturing Innovation (2021) 10:1–19

1 3

Classifier

Three different types of classifiers, namely SVM, random 
forest (RF), and K-nearest neighbor (KNN), are used to 
determine the classification accuracy of the optimal feature 
subsets obtained by the proposed HA algorithm-based FS 
process. It is to be noted that the proposed one is an unsu-
pervised FS method, so it has not used any classifier for per-
formance evaluation of the feature subsets. We evaluate the 
optimal feature subset using SVM classifier where the non-
linearity is introduced by the polynomial kernel for trans-
forming data points to a higher-dimensional feature space.

KNN is another classifier (nonparametric algorithm) used 
in this paper. It is also called a lazy learner algorithm or an 
instance-based classifier because in the training method it 
does not learn from the training set immediately; instead, it 
saves the training examples. At the time of classification, it 
finds the K training examples 

(
x1, y1

)
,
(
x2, y2

)
,…… .,

(
xk, yk

)
 

that are closed to the test example x and predicts the most 
frequent class among those yi ‘s that is much similar to the 
new data.

RF is an ensemble of tree-based supervised learning 
algorithms used in this work. RF is constructed from deci-
sion trees on randomly selected data samples. The intention 
of the RF is to minimize the variance of the decision trees 
and produce better results in the final class of prediction by 
means of voting among decision trees. The number of trees 
used in the forest for the present work is 500.

Proposed Model

Multiple feature descriptors, namely basic LBP, RLTrP, 
GLCM, ORB, and SIFT, are used to extract the features 
from the microstructural images. The features estimated 
from these five different feature descriptors are individu-
ally trained with SVM, RF, and KNN classifiers to obtain 
the classification accuracy, and the results are compared to 
judge best among the five feature descriptors that produce 
the highest classification accuracy by the majority of the 
classifiers. Finally, this feature set has opted for FS using 
the proposed wrapper-filter-based HA algorithm-based FS 
method.

From the literature survey about FS methods, it can be 
observed that the general trend of the researchers in dif-
ferent areas is to use the wrapper-filter combination as it 
ensures a good trade-off between both filter and wrapper 
methods. Going by this trend, the proposed work introduces 

(24)mi
�
hi
�
=

∑NFeature

k=1
MIfeature(k) ∗ hk

i∑NFeature

k=1
hk
i

a wrapper-filter FS method for the classification of micro-
structure images. Initially, it forms an ensemble of three fil-
ter methods for finding informative features and setting up 
as an input to the wrapper method for further improvement 
in terms of dimension reduction and enhancement of clas-
sification accuracy. As a wrapper method, a meta-heuristic 
method called the HS algorithm is applied to get the minimal 
subset of features with maximal classification accuracy.

Feature Selection Using Filter Method

A wide variety of filter methods may be used for ranking 
of features. However, each of the methods has not shown 
equally efficient results for a definite feature set. To make 
stage 1 more efficient and robust, a combination of three 
filter methods belonging to distinct categories, namely Chi-
square (statistics-based), Fisher score (entropy-based), and 
Gini impurity (similarity-based), is used. The union opera-
tion is performed for combining the top-ranked features of 
each of the three filter methods, thereby forming the ensem-
ble of filter methods to obtain important features. The main 
purpose of this ensemble is to retain the important features 
that may get missed by any individual filter method.

The approach that followed in this research work is sche-
matically represented in Fig. 6.

Feature Selection Using Harmony Search

Geem and Kim et al. [42] introduced a meta-heuristic opti-
mization algorithm called HS algorithm. This method took 
inspiration from musical harmony, a way to determine the 
merit of musical performance. Musical harmony is a com-
bination of sounds considered pleasing for an aesthetic point 
of view. Music performance seeks a great state (best pos-
sible harmony) determined by aesthetic estimation, while 
optimizing problem seeks the best state, determined by an 
objective function.

As described in [42], the HS algorithm has the following 
steps:

Step 1: initialize the problem and its parameters.

For FS purposes, we determine an agent as a harmony, which 
is to be stored in HM. A chromosome is a vector consists of 
1 s and 0 s, of length NFeature . It is to be noted that 1 at any 
index represents the selection of the corresponding feature 
at that index, and 0 represents reverse. Population is the col-
lection of individual features and here each individual is a 
harmony. Population size is number of harmony present in 
the population. The fitness of the agent is determined by the 
objective function described in “Objective function” section.

Step 2: Initialize HM.
HM is designed as follows,
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A harmony can be described as follows,
(25)

HM =

⎡
⎢⎢⎢⎢⎣

h1
h2
⋮

hNharmony

⎤
⎥⎥⎥⎥⎦

�
Nharmony is total number of harmony inHM

�

(26)hi =
{
h1
i
h2
i
… h

NFeature.

i

}

Initially, the HM is filled with random harmonies and 
the HM is sorted according to the scores of the harmonies 
generated by the objective function.

Step 3: Improvise a new harmony from HM.
In the improvising procedure, a new harmony is generated 

by selecting the value of a random harmony from the HM, 
for each of the j ∈

{
1, 2,…… ,NFeature

}
 and constructing 

the harmony in the following way:

(27)himprovised =
[
h1
rand1

h2
rand2

… h
NFeature.

randNFeature

]

Fig. 6   Block diagram of the proposed wrapper-filter-based feature selection method used for classifying microstructural images
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where randj is the index of the randomly chosen harmony 
from HM for j ∈

{
1, 2,…… ,NFeature

}
 .

Step 4: Update HM
The fitness value is calculated using the objective func-

tion for himprovised . If himprovised overperforms than hNharmony
 

(which is the least performing harmony), then hNharmony
 is 

replaced with himprovised . HM is kept sorted according to the 
fitness value calculated by the objective function.

Step 5: Termination
Until the stopping criterion is met for this process, the 

method continues from Step 3.
Objective Function:
The objective function is defined as follows,

As described in (28), Fobjective

(
hi
)
 consists of two parts, 

pcc
(
hi
)
&mi

(
hi
)
.

Results and Discussion

For the implementation of the proposed method, MATLAB 
2018b programming platform has been used. The hardware 
used for experimentation are Intel® 3rd Generation Core™ 
i7 3570 processor with 16 GB RAM. Source code of the fea-
ture extraction and FS methods can be found at the GitHub 
links provided in [43] and [44].

Description of the Dataset

The micrographs are collected from the publicly available 
Cambridge Dissemination of IT for the Promotion of Mate-
rials Science (DoITPoMS) micrograph library [45]. Some 
sample images used in the classification are shown in Fig. 7. 
The image dataset consists of micrographs from seven differ-
ent categories, namely annealing twin, brass/bronze, ductile 
cast iron, gray cast iron, malleable cast iron, nickel-based 
superalloy, and white cast iron. Each of the original images 
is cropped into 16 number of square images of size 128x128 
pixel. To avoid conflict in the feature extraction process, the 
cropped images with scale bars are manually excluded from 
the dataset. Finally, a total of 1201 number of cropped are 
used in the classification process. The details of the micro-
graph are listed in Table 1. No filtering process or noise 
cancelation process is applied to the image dataset for the 
preprocessing of the image.

This section demonstrates the results of classifying the 
7-class microstructural images using the proposed wrapper-
filter-based FS method where texture-based features are 
given as input. Initially, the features of images are extracted 
using five different feature descriptors (LBP, RLTrP, GLCM, 
ORB, and SIFT) and the classification task is performed by 

(28)Fobjective

(
hi
)
= pcc

(
hi
)
∗ mi

(
hi
)

three different classifiers such as SVM, RF, and KNN. After 
comparing the test accuracy, the best feature descriptor is 
selected for the wrapper-filter FS process. In this classifica-
tion task, 80% of the image samples are randomly chosen 
as training data and the rest 20% as testing data. To find out 
the most informative features in stage 1, an ensemble of 
the top-ranked features from the three filter methods (Chi-
square, Fisher, and Gini impurity) is used which is created 
by forming a union of top-n % features. The objective of 
this union operation is to combine the best n-features and 
to avoid feeding less informative features for FS at stage 2 
using the HS algorithm. The success of the HS algorithm in 
microstructural classification is shown in Table 4.

The performance comparison of classification models for 
five feature descriptors is presented in Table 2. The results 
obtained by comparing feature descriptor and classifier com-
binations indicate that RLTrP has achieved the highest clas-
sification accuracy of 93.57%, 88.11%, and 87.35% using 
SVM, KNN, and RF classifiers, respectively, among oth-
ers with 468 features. The SVM has yielded the maximum 
classification accuracy among the three classifiers. Figure 8 
shows the graphical variation of the accuracies obtained 
using three classifiers with the features extracted with 
RLTrP. The other three feature descriptors, namely LBP, 
SIFT, and GLCM, have also shown promising accuracy with 
these three classifiers.

To find the optimum number of significant features in 
the filter method, an approach is taken by determining test 
accuracies for different percentages of top-ranked features 
obtained by the ensembles of the three filter ranking meth-
ods. The variation of test accuracies with these features 
obtained from the union of the three ranking methods is 
listed in Table 3 and depicted in Fig. 9. It is clear from Fig. 9 
that the best optimum result is obtained when 50% of the 
ranked features are considered. This reduced feature set with 
399 number of features is selected as an input to the HS 
algorithm in stage 2 for performing further FS. The objec-
tive of the filter method is to select the important features, 
thereby guiding the search process performed in the wrapper 
method. The filter method in the first phase is capable of 
reducing the dimension of features by 15%.

Results of HS Algorithm

In this section, the results of HS algorithm classifying the 
microstructural images are reported. Results presented in 
Table 4 demonstrate that the HS algorithm yields the best 
results (highest accuracy) with a lower number of features 
and SVM (polynomial). It achieves the highest test accuracy 
of 97.19%. In stage 2 the performance of the HS algorithm 
is compared with the other standard optimization algo-
rithms that include whale optimization algorithm (WOA) 
[46], particle swarm optimization (PSO) [47], and Grey wolf 
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Fig. 7   Examples of micrographs 
used in the present work: a 
annealing twin, b brass/bronze, 
c ductile cast iron, d gray cast 
iron, e malleable cast iron, f 
nickel-based superalloy, and g 
white cast iron
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optimization (GWO) [48]. The performance comparison is 
listed in Table 4. It is worth mentioning that the HS algo-
rithm has been consistent to outperform the state-of-the-art 
FS methods considered here for comparison both in terms 
of accuracy and percentage of feature reduction, and the HS 
algorithm is capable to reduce the features by 82%.

Parameter tuning is an important part of any FS method. 
Two important parameters of our method are population 
size and number of iterations. We have performed some 
experiments to set the optimal values of these parameters. 
Figure 10a shows that the accuracy starts off with 95.41% 
when the number of iterations is 300 and then increases the 
stair-case manner and reaches 97.19% at iteration 750 and 
finally it becomes stagnant and achieves maximum accuracy 
of 97.96% at iteration 1400. The changes in accuracy with 
population size as shown in Fig. 10(b) depict that the classi-
fication accuracy has reached 95.2% with population size 20 
and increased linearly until reached a maximum accuracy of 
97.96%. The maximum accuracy achieves when the popula-
tion size is 30, and with the increase of population from 30 
it has been observed that there is a sharp fall in the accuracy 
and it becomes stagnant around 95% accuracy. Figure 11 
depicts the graphical representation of test accuracy using 
our proposed model and also comparison with the other 
recent optimization algorithms.

The confusion matrix presented in Fig. 12 represents 
the classification performance of each class predicted by 
SVM after wrapper-filter feature selection. From this fig-
ure, it can be said that the proposed model is competent 

Table 1   Details of the micrograph dataset

Type of micrograph # of micrographs # of 
cropped 
images

Annealing twin 8 113
Brass/bronze 20 280
Ductile cast iron 16 254
Gray cast iron 8 118
Malleable cast iron 7 98
Nickel-based superalloy 8 128
White cast iron 15 210
Total 82 1201

Table 2   Five different feature descriptors and corresponding classification accuracies (in  %) without FS using different classifiers

Feature descriptor # of features SVM KNN RF

Test accuracy (%) Accuracy on 
fivefold CV 
(%)

Test accuracy (%) Accuracy on 
fivefold CV 
(%)

Test accuracy (%) Accuracy on 
fivefold CV (%)

LBP 256 94.64 91.73 85.71 85.61 89.54 87.24
RLTrP 468 95.15 93.57 85.46 88.11 91.84 87.35
GLCM 22 91.33 89.34 83.42 81.73 90.56 85.10
ORB 200 81.04 703.3 59.89 54.89 74.73 66.10
SIFT 100 89.95 84.92 84.92 83.28 88.36 84.44

Fig. 8   Variation of fivefold CV test accuracies for each feature 
descriptor and classifier without feature selection

Table 3   Fivefold CV test accuracy (in  %) of three classifiers for fea-
tures (extracted by RLTrP) obtained by the union of the different per-
centages of top-ranked features of the three filter methods

# of top-ranked 
features

Test accuracy (%) obtained by

SVM KNN RF

Entire 93.42 87.24 86.99
20% 92.19 88.27 87.04
30% 93.42 87.91 86.63
40% 93.83 87.81 87.45
50% 93.67 88.47 88.47
60% 93.47 85.46 88.78
70% 92.81 88.42 88.11
80% 93.57 87.76 87.60
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to classify every image of the test dataset of four classes 
(brass, gray cast iron, malleable cast iron, and white cast 
iron) but it misclassifies only one image of annealing twins, 
three images of ductile cast iron and seven images of nickel-
based superalloy.

Conclusion

The proposed work demonstrates the usefulness of the 
wrapper-filter-based FS method using the HS algorithm in 
classifying the microstructural images aided with some fil-
ter methods where texture-based features extracted from the 
said images are fed as input. By using the proposed wrapper-
filter FS method for microstructure classification, it has been 
observed as follows:

•	 Classification results for the 7-class microstructural data 
(annealing twin, brass/bronze, ductile cast iron, gray cast 
iron, malleable cast iron, nickel-based superalloy, and 

Fig. 9   Variation of fivefold CV classification accuracies (in   %) for 
different percentages of top-ranked features (extracted using RLTrP) 
obtained from ensemble of the three filter methods in stage 1

Table 4   Comparison of results 
obtained using the proposed 
FS model in stage 2 along with 
some standard optimization 
algorithms for classification of 
microstructural images

Bold values highlight the best result in all cases

FS method # of features (original) # of features (stage 1) # of features 
(stage 2)

Test accuracy (%) 
obtained using

SVM KNN RF

Proposed 468 399 84 97.19 86.73 91.82
WOA 256 94.90 84.69 90.31
GWO 261 94.39 85.97 89.03
PSO 280 94.13 84.95 89.80

Fig. 10   a Variation of accuracies with the number of iterations in the HS algorithm using the SVM classifier. b Variation of accuracies with 
population size in HS algorithm using the SVM classifier
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white cast iron) exhibit a high accuracy using texture-
based feature descriptor RLTrP with SVM classifier after 
applying our proposed wrapper-filter feature reduction 
model.

•	 The high classification accuracy exemplifies that the tex-
ture-based RLTrP feature descriptor is highly favorable 
for microstructure classification.

•	 Our proposed meta-heuristic-based HS algorithm applied 
at stage 2 for FS is also compared with some state-of-the-
art algorithms (WOA, GWO, and PSO) which confirms 
that our proposed method outperforms the others in terms 
of both classification accuracy and number of selected 
features.

•	 Classification results for the 7-class show that after stage 
1 (filter method) maximum classification accuracy is 
achieved by 93.67% and minimizes the number of fea-
tures by 14.7%. At the final stage, the proposed model is 
capable to achieve the highest classification accuracy of 
97.19% and minimizes the number of features by 82%.

•	 In the future, we can think of some other competent filter 
methods at stage 1 of this FS method. Besides, we can 
add some local search methods to enhance the exploita-
tion capability of the HS algorithm.

•	 We can explore some other texture-based features also or 
we can combine some texture-based features which can 
give complementary information about the input data.

•	 Another future scope would to apply this method to other 
microstructural datasets.
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