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Abstract
Integrated computational materials engineering (ICME) facilitates efficient approaches to new material discovery and design, 
as well as optimization of existing materials. Computational models provide a way to rapidly screen candidate material 
designs such that materials can be tailored for specific applications in the product design cycle. Uncertainty is ubiquitous in 
ICME process–structure–property workflows; it represents a major barrier to the effective use of modeling results for high-
confidence decision support in materials design and development. This work addresses microstructure statistical uncertainties, 
and demonstrates an approach to quantify, reduce, and propagate these uncertainties through structure–property linkages 
to provide robust quantification of uncertainties in output properties of interest. Further, this work demonstrates the use of 
Gaussian process machine learning models to significantly decrease the computational cost of the aforementioned robust 
uncertainty quantification.
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Introduction

Integrated computational materials engineering (ICME) 
is a bold, transformative initiative calling for a paradigm 
shift in the way that materials design and development are 
approached at a fundamental level [1]. Traditional material 
science practices have emphasized a sequential approach to 
materials development that spans discovery to deployment 
and commonly takes 10–20 years. As a result of this long 
process of materials development, design engineers have tra-
ditionally selected from existing materials in design, rather 
than developing new or modified materials for specific appli-
cations [2]. ICME aims to accelerate the materials design 
and development process, focusing on the integration of 
modeling and simulation within the context of uncertainty, 
robust design, and information systems [3].

One of the challenges in using existing computational 
modeling capabilities to accelerate materials development 

is robustly quantifying uncertainty associated with complex 
process–structure–property–performance (PSPP) linkages 
of a material system. To this end, a standard visualization 
tool to communicate these relationships for a given appli-
cation and material system was developed in the form of 
PSPP maps. These maps highlight causality relationships, as 
well as delineating independent variables [4]. A PSPP map 
also highlights the important process parameters that influ-
ence each relationship to clarify what phenomena modelers/
experimentalists should focus on to develop application-
specific materials.

Uncertainty is manifested in all stages from materials 
processing through engineering component performance. 
Computational modeling of materials introduces unique 
uncertainties that differ from those encountered in experi-
mental research. As such, there is a rapidly developing body 
of research that rigorously couples uncertainty quantifica-
tion (UQ) with ICME workflows [5–7]. Recent advances in 
UQ for fatigue modeling [8, 9] have established the use of 
Bayesian and genetic algorithm techniques for crystal plas-
ticity model parameter and model form UQ. Additionally, 
Bayesian inference and Taylor expansion-based uncertainty 
propagation methods have been used to propagate uncer-
tainties associated with model reduction error, data sparsity 
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error, and microstructural uncertainty using a crystal plastic-
ity finite element modeling (CPFEM) model for dual-phase 
alpha–beta-titanium alloys [10, 11].

This work focuses on UQ as it pertains to structure–prop-
erty linkages relevant to the design of engineering alloys for 
fatigue critical applications, specifically alpha–beta-titanium 
alloys such as Ti–6Al–4V (hereafter referred to as Ti-64 or 
simply as titanium alloys) used, for example,, in naval avia-
tion components. Reliable prognosis and inspection of such 
components requires understanding of physical mechanisms 
that drive fatigue behavior. The mechanisms of fatigue crack 
formation and growth in high cycle fatigue for Ti-64 depend 
on microstructure attributes [3]. ICME workflows can be 
constructed to model these fatigue responses. In this regard, 
there is a need to develop UQ protocols within these ICME 
workflows to assure robust estimates of lifetime or relative 
fatigue resistance of various candidate microstructure forms 
for a given material system.

To build uncertainty-informed workflows to provide deci-
sion support for development of fatigue critical engineering 
alloys, robust design concepts can be utilized. Robust design 
has gained widespread attention in ICME with applications 
in reliable decision-making for complex engineering systems 
[12], seeking solutions that are relatively insensitive to small 
changes in uncertain quantities [13]. This work demonstrates 
Uncertainty Quantification and Propagation (UQP) proto-
cols that can be utilized to integrate UQ methodology with 
state-of-the-art robust design methods such as the inductive 
design exploration method (IDEM) [3, 14].

UQ in ICME should consider both the inherent, irreduc-
ible (i.e., aleatory) uncertainty in the system and uncertainty 
that can be reduced by increasing the knowledge of the sys-
tem (i.e., epistemic) [5, 11–14]. Recent research suggests 
that aleatory and epistemic uncertainty should be quanti-
fied independently using statistical propagation and interval 
methods, respectively [13, 15, 16]. Aleatory uncertainty in 
this space stems from the stochasticity of microstructure 
attributes that most closely correlate with material properties 
and in turn performance [17]. This work focuses primarily 
on the treatment of aleatory uncertainty. Epistemic UQ has 
been addressed in previous work [18], and its effects will 
also be included here.

Statistical methods have been explored for aleatory 
uncertainty quantification and propagation (UQP). Sandia 
National Laboratories’ Dakota toolkit largely focuses on 
forward propagation of uncertainty [19]. However, UQP 
for statistical distributions presents a large computational 
burden owing to dimensionality [20], so reduced-order sur-
rogate models are often used instead of high-fidelity com-
putational models. The surrogate modeling methods for 
UQP include Gaussian process (GP) regression models [6, 
21–23], and stochastic expansion methods (e.g., Polyno-
mial Chaos Expansion (PCE), partial differential equations) 

[24–26]. Owen et al. found little difference in quality of 
UQP resulting from these surrogate approaches. However, 
GP regression models are more flexible, having no experi-
mental design restrictions, and offer a much wider range 
of behavior descriptions beyond polynomial functions [27]. 
Additionally, GP models provide quantification of uncer-
tainty introduced by the surrogate model itself. The major 
drawback of GP models is that they lose efficiency in high 
dimensional spaces—particularly with greater than 12 vari-
ables [28]. However, the number of variables considered in 
this work does not exceed these limitations.

Methodology

The methodology used for digital representation of micro-
structures in this work is first presented in this Section. Next, 
the fatigue modeling strategy is laid out. Finally, UQ is dis-
cussed in the context of this work.

Digital Representation of Microstructures

Ensembles of Statistical Volume Elements (SVEs) were 
generated for a range of microstructure variants of Ti64 
for analysis via CPFEM using ABAQUS [29]. SVEs were 
generated using an open-source tool called DREAM.3D 
[30] that digitally reconstructs or instantiates statistically 
realistic geometric representations of the grains compris-
ing a polycrystal. In this work, synthetic microstructures 
were instantiated using realistic microstructure statistics. 
The model was fully voxelated and grain boundaries were 
introduced consistent with misorientation distribution tar-
gets using DREAM.3D; grain boundaries are impenetrable 
to slip in this formulation. Previous work by Kern [31] has 
studied mesh sensitivity for the model used in this work.

Simulation outputs each integration point included the 
2nd Piola–Kirchhoff stress, Green strain, and inelastic strain 
tensor based on cumulative shear on various slip systems, 
all in the intermediate isoclinic configuration of crystal 
plasticity [32]. Deformed configuration Cauchy stress was 
also obtained for each integration point, termed simply as 
“stress” in the following. Likewise, the inelastic strain tensor 
was mapped into the current configuration. Common macro-
scopic polycrystal quantities of interest may be determined 
based on deformed configuration stress, elastic strain, and 
inelastic strain, such as elastic stiffness or yield strength. A 
statistically homogeneous Representative Volume Element 
(RVE) suitable for computing these stiffness or strength 
responses is relatively limited in size in terms of number 
of grains/phases required for convergence (on the order 
of several hundred or thousands of grains). However, the 
concept of evaluating a RVE to compute surrogate fatigue 
crack formation driving forces (so-called Fatigue Indicator 
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Parameters or FIPs) is not practical due to our interest here 
in the minimum fatigue life (e.g., corresponding to maxi-
mum FIPs among a large population) [33, 34], as it would 
require a RVE of excessive size and high computational 
cost of simulations. Consequently, ensembles of SVEs were 
used to compute the statistical distribution of extreme value 
FIP response [35]; both the SVE size (sufficiently large to 
incorporate important nearest neighbor grain/phase spa-
tial correlations) and number of SVEs in each ensemble of 
simulations needs to be determined to compute meaningful 
estimates of mean FIP responses along with their variance.

Modeling Fatigue

The microstructure-sensitive FEM model employs a multi-
plicative decomposition of the deformation gradient, a rate-
sensitive power law flow rule for the slip system shearing 
rates and associated slip system hardening rules. The models 
were implemented as User MATerial (UMAT) subroutines 
in ABAQUS. The initial Ti-64 crystal plasticity model was 
developed by Mayeur and McDowell [36] which considers 
the primary alpha-phase separately from the alpha–beta-col-
ony phase by accounting for distinct three-dimensional slip 
geometry in each phase. Additionally, it accounts for dislo-
cation structure and crystallographic texture. Zhang et al. 
[37] expanded the constitutive model to capture length scale 
effects associated with dislocation interactions between vari-
ous microstructure features for both monotonic and cyclic 
loading. Smith et al. calibrated [32] elastic constants, critical 
resolved shear stress (CRSS) values and other power law 
flow rule parameters. In this work the CPFEM model of 
Smith et al. [32] was used with one modification; the drag 
stress was comprised of only the CRSS value and not the 
initial threshold stress.

The primary alpha-phase in the CPFEM model includes 
24 active slip systems: three basal 

⟨
112̄0

⟩
(0001) , three 

prismatic ⟨1120⟩{1010} , six 〈a〉 first-order pyramidal ⟨
112̄0

⟩
{101̄1} , and 12 〈c + a〉  

⟨
112̄3

⟩
{101̄1} second-order 

pyramidal. Alpha–beta-colony phase grains consist of alter-
nating laths of secondary alpha- and beta-phase, which due 
too computational constraints are homogenized in the model. 
Therefore, the colony phase grains contain 12 active slip sys-
tem for each of the hcp and bcc crystal structures: three basal ⟨
112̄0

⟩
(0001) , three prismatic ⟨1120⟩{1010} , six 〈a〉 first-

order pyramidal 
⟨
112̄0

⟩
{101̄1} , and 12 ⟨111⟩{110} bcc slip 

systems. The proper crystallographic orientation is main-
tained between the colony secondary alpha- and beta-phase 
with the Burgers Orientation Relationship (BOR), which is 
defined as (0001)�∕∕{101}� and 

�
112̄0

�
𝛼
∕∕⟨111⟩𝛽 . The crit-

ical resolved shear stress in the colony phase is strengthened 
by 25% relative that of the primary alpha for basal and pris-
matic slip systems. A Hall–Petch relation is applied to the 
threshold stress for slip in both the primary and secondary 

alpha-phases. Slip transfer between grains is not explicitly 
considered, i.e., grain boundaries are treated as impenetrable 
surfaces that enforce compatibility between grains.

Naturally, there is uncertainty associated with any 
model form, and past work [18] has explored some aspects 
of model form and model parameter uncertainty for this 
CPFEM model. However, the main focus of the present work 
was to establish and demonstrate a framework for quantifi-
cation and propagation of aleatory uncertainty associated 
with statistical distributions of key microstructure attributes. 
As such, model form uncertainty associated with the con-
stitutive crystal plasticity model was not explored here; of 
course, this is a parallel UQP research issue in its own right 
worthy of focus in future efforts.

The use of FIPs as surrogate driving force measures for 
fatigue crack formation and microstructurally small trans-
granular growth has been well established [35, 38, 39]. Cas-
telluccio and McDowell [40] demonstrated strong correla-
tion between a FIP based on Fatemi–Socie [41] (hereafter 
referred to as just FIP) and the range of cyclic crack tip 
displacement (ΔCTD) for cracks along the interface of slip 
bands and matrix in single crystal or in homogeneous single 
crystals. McDowell and Berard [42] explored similar param-
eters for small fatigue crack growth based on analogy to the 
ΔJ-Integral of elastic–plastic fracture mechanics to identify 
the driving force. FIPs serve as a surrogate measure for the 
driving forces for fatigue crack formation and subsequent 
growth. In recent years, correlations of various FIPs with 
high-fidelity experimental studies for transgranular small 
fatigue crack formation and early growth within polycrys-
tals have been explored [44, 45], including variants of the 
particular FIP considered here. Nicolas et al. [46] found that 
a variant of the Fatemi–Socie based FIP provided the suf-
ficient information to support high confidence correlations, 
arguing on the basis of having introduced more variables 
than other candidate FIP measures considered; however, the 
preceding works on similarity of this FIP to mixed mode ΔJ 
[41] and the strong correlation with ΔCTD for small cracks 
at slip bands in single crystals [40] suggest connection of 
these forms to mixed mode driving force (sliding and open-
ing) for small transgranular fatigue cracks. Additional FIPs 
have been introduced for fatigue crack formation driven by 
slip impingement on grain or phase boundaries [38, 43]. As 
the primary intent of the present work is to introduce a meth-
odology for UQ for SP relations based on computed FIPs, we 
select the FIP based on the Fatemi–Socie parameter as the 
basis for its demonstration. The same methodology could be 
applied to other FIP definitions. This issue of FIP selection 
concerns model form uncertainty, which has received focus 
of prior studies exploring detailed experimental correlations 
(e.g., [45]).

FIPs were computed for each element in the discretized 
microstructures of each SVE and volume averaged over a 
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user-defined finite damage process zone. This alleviates 
mesh sensitivity and regularizes the numerical solution, 
in addition to reflecting the physical damage process zone. 
The averaging volume was held fixed across different simu-
lations to facilitate comparison of fatigue resistance. FIPs 
were computed based on the third full cycle of three fully 
reversed, strain-controlled uniaxial loading cycles to pro-
mote elastic–plastic shakedown in the simulations (e.g., 
primary stress redistribution to accommodate heterogene-
ity of plastic deformation among grains). We assume at the 
outset a cyclic stress–strain material response consistent 
with cyclic stability, and hence in this work we are not con-
sidering material transients (e.g., cyclic hardening or soften-
ing) that occur over many cycles in fatigue. Przybyla and 
McDowell [47] studied the effect of elastic–plastic shake-
down on FIP distributions and showed that as elastic–plastic 
shakedown occurs over the first few cycles, the variability 
in extreme value FIPs decreases and FIP values converge to 
extreme value distributions. All FIP distributions presented 
in this work converged to a Fréchet distribution with an R2 
value of at least 0.95. Castelluccio and McDowell [48, 49] 
introduced the concept of grain banding, in which the digi-
tal, discretized grains of SVEs are split into bands along 
crystallographic slip planes to be used to define domains for 
volume averaging. They concluded that the concept of band 
averaging should correlate well with polycrystals in which 
cracks nucleate and initially grow along crystallographic 
planes in the nucleant grain. The width of these bands is 
usually maintained at one or two element dimensions (fixed 
element/voxel size). This reduces the FIP averaging domain 
to regions within the grain, but results in bands with vari-
ous volumes. Following the SBA approach of Stopka and 
McDowell [50], which built on the band averaging scheme 
as proposed by Castelluccio and McDowell, the bands were 
further divided into sub-band regions as shown in Fig. 1. 

Additionally, the first and last band of each grain was 
absorbed into the second and second-to-last band, respec-
tively, to eliminate bands having too few elements. Each 
band was then analyzed so that unique combinations of eight 
elements which were closest to one another could be iden-
tified and designated as unique sub-band regions. Volume 
averaging then took place over these sub-band regions, pro-
viding a regularized averaging volume on the scale of the 
damage process zone.

The FIPs were calculated as a post-processing operation. 
The deformed configuration Cauchy stress in the uniaxial 
loading direction and inelastic strain tensor for each element 
was reported during the maximum compressive to tensile 
segments of cyclic straining. Using the inelastic strain ten-
sor, the eigenvalue problem was solved to find the maximum 
cyclic plastic shear strain range, on slip system � , given by 
Δ��

p
 . The maximum stress normal to this slip plane was then 

computed as ��
n
 in a similar fashion. The FIP was calculated 

using Eq. (1), where �y is the macroscopic yield of the mate-
rial and k is a constant that mediates the influence of the 
peak normal stress acting on the slip plane (k = 1 is assumed 
in this work).

Uncertainty Quantification

Uncertainty in ICME workflows arises from several sources:

•	 Microstructure statistics uncertainty (MSU) is the 
inherent uncertainty in the quantification of the various 
microstructure attributes. MSU results from natural sto-
chasticity in microstructures that emerges from the PS 

(1)FIP� =
Δ��

p

2

[
1 + k

��
n

�y

]

Fig. 1   Ti64 statistical volume 
element (left) and a diagram of 
bands and sub-bands from one 
grain (right) [17]
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linkages. Once quantified, it must be propagated through 
SP linkages to determine uncertainty in output properties 
of interest.

•	 Model uncertainty (MU) is a combination of the uncer-
tainty associated with the formulation of the constitu-
tive model, the nature of the computational model (e.g., 
boundary conditions), the model parameters, numerical 
methods, meshing, convergence criteria, the number and 
size of SVEs used to compute distributions of FIPs, and 
model prediction uncertainty introduced when reduced 
order models are used as surrogates for more expensive 
high-fidelity ICME models.

Uncertainty is often specified in terms of a probability 
density function (PDF) or interval bounds [13]. Intervals are 
an appropriate model to describe uncertainty when uncertain 
values range between specific known bounds with no addi-
tional information concerning variations, frequencies, pref-
erences, etc. [51]. This is typical of MU. The focus of this 
work was uncertainty associated with randomness of micro-
structure (MSU) for which PDFs are an appropriate model. 
Here we did not focus on epistemic uncertainty associated 
with numerical mesh refinement or convergence criteria.

Cai and Mahadevan [16] used statistical methods to inves-
tigate uncertainty in the initial conditions and manufacturing 
process parameters on the microstructure and mechanical 
properties of materials. They propagate MSU to an uncer-
tainty of macroscopic mechanical properties of the material 
using computational models.

One major difficultly that arises with this sort of uncer-
tainty propagation is establishing precise cause and effect 
linkages between processing, structure and properties, across 
which uncertainty should be propagated. In design engineer-
ing, quality function deployment (QFD) tools are used to call 
attention to the customer needs. These QFD tools provide 
a structured approach to define customer requirements and 
translate them to engineers in the form of engineering attrib-
utes. A PSPP map is an analogous system design chart for 
materials design that helps materials engineers easily iden-
tify important linkages [4]. PSPP maps provide key micro-
structural subsystems, primary links of these subsystems to 
properties they control, and the stages of processing that 
govern their dynamic evolution [4].

In this work, uncertainty in microstructre attributes was 
propagated from the “structure” column of a PSPP map to 
the “property” column, to establish workflows allowing 
design engineers to robustly quantify uncertainty in mate-
rial properties of interest.

Another challenge that complicates the uncertainty 
propagation process is the immense computational cost of 
brute force PDF propagation using high-fidelity computa-
tional simulations, including the ones needed to investigate 

fatigue performance of a polycrystalline material based 
on crystal plasticity. The Monte Carlo (MC) method is 
commonly used to propagate uncertainty through compu-
tational simulations. PDFs are randomly sampled and the 
model is run for each of the sampled inputs to generate 
an output distribution [19]. The disadvantage of MC is 
that a large number of samples are required to accurately 
estimate the output statistics. Therefore, as a practical con-
cession, surrogate modeling techniques are often used to 
propagate statistical uncertainty.

Surrogate modeling techniques employed for UQP con-
sist primarily of Gaussian process (GP) regression models 
[6, 21–23] and stochastic expansion methods (e.g., poly-
nomial chaos expansion (PCE), partial differential equa-
tions) [24–26]. Owen et al. [27] found little difference in 
the robustness of UQP between these two methodologies. 
However, GP regression provides quantification of uncer-
tainty introduced by the surrogate model [28]; thus, GP 
regression was used in this work.

The GP model can be thought of as a surrogate for the 
high-fidelity CPFEM model that takes as inputs the micro-
structure statistics and, when adequately trained, renders 
accurate predictions of output quantities of interest. The 
inner workings of this surrogate model consist of a kernel 
object, or covariance function, that acts as a prior distribu-
tion, with hyperparameters that are optimized with train-
ing data [52]. In this work, a Matérn kernel function was 
used to approximate the SP linkages.

A Matérn kernel is a stationary kernel that is a generali-
zation of the infinitely differentiable radial basis function 
kernel. The generalization allows for the user to determine 
the differentiability of the kernel function with a param-
eter ν. This controls the smoothness of the resulting func-
tion. Additionally, the Matérn kernel is parameterized by 
a length-scale parameter l > 0, which can be a scalar for 
isotropic variation or a vector with the same length as the 
input vector x for anisotropic variation. The Matérn kernel 
[28] is given by

These GP surrogate models were trained with an ini-
tial ten point training set sampled from the microstructure 
space using Latin hypercube sampling (LHS) and validated 
using the leave one out cross validation (LOOCV) method. 
The LOOCV method was used to compare the quality of 
predictions from the surrogate model with predictions 
from the high-fidelity ICME model, and an uncertainty-
driven adaptive sampling method was employed, wherein 
new samples were chosen based on locations in the design 
space having the highest predicted GP uncertainty.

(2)
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Results and Discussion

In this section, the results of this research are discussed in 
detail. First, in Sect. “Ti-64 PSPP Map”, a PSPP map is 
presented for Ti-64, and the structure–property linkages 
being modeled are highlighted. Second, in Sect. “Uncer-
tainty Quantification and Reduction for CPFEM Simula-
tions”, the epistemic uncertainty, or noise, in the predicted 
modulus of elasticity, yield strength, and distribution of 
extreme value FIPs was quantified and reduced to a level 
that allowed for a reasonable trade-off between compu-
tational cost per simulation, and reliability of prediction 
results. Next, in Sect. “Training and Validation of Gauss-
ian Process Surrogate Models”, GP models were trained 
as surrogates for the CPFEM model, and the results of 
models trained with reduced levels of epistemic uncer-
tainty were compared with GP models trained with data 
with greater uncertainty to demonstrate the value of uncer-
tainty reduction. Finally, in Sect. “Propagation of Aleatory 
Microstructure Statistic Uncertainty”, aleatory uncertainty 
in the form of probability distributions of microstructure 
statistics was propagated from structure to responses/prop-
erties using the GP surrogate models, and resulting uncer-
tainty in properties of interest are presented.

All CPFEM simulations used to compute FIPs in this 
work were based on the third full cycle of three fully 
reversed, strain-controlled uniaxial computational strain 
cycles with periodic boundary conditions at a strain ampli-
tude of 0.6%. Room temperature and quasistatic strain rate 
conditions were employed. To represent statistical distri-
butions of potential sites for fatigue crack formation, local 
quantities were computed at every integration point/ele-
ment within the digital microstructures, after which vol-
ume averaging was performed to compute FIPs. No more 
than one FIP was taken from each grain to prevent local-
ized characterization. Since the nonlocal sub-band aver-
aging scheme for the FIP considers every combination of 
eight neighboring elements, we only consider the top SBA 
FIP from each grain in order to avoid duplicative count-
ing of SBA FIPs that are directly adjacent within a given 
grain (and therefore arguably related to the same crack 
formation process). We then extract the top SBA FIPs to 
characterize an extreme value distribution. These were 
fit to a Fréchet extreme value distribution to enable com-
parison of trends in the extreme value distribution of FIPs 
among various SVE ensembles. Additional test parameters 
for all simulations in Sects. “Uncertainty Quantification 
and Reduction for CPFEM Simulations”, “Training and 
Validation of Gaussian Process Surrogate Models”, and 
“Propagation of Aleatory Microstructure Statistic Uncer-
tainty” are given in Table 1.

Ti‑64 PSPP Map

The first step toward robustly propagating MSU through 
structure–property linkages to quantify uncertainty in 
properties of interest was to define the PSPP map for the 
material system of interest, in this case Ti-64. Next, the 
structure–property linkages that are to be modeled must be 
identified and the associated microstructural features must 
be understood. The PSPP map for Ti-64 for fatigue critical 
applications is shown in Fig. 2. Microstructure attributes 
that were addressed by the CPFEM model in this work are 
highlighted in green along with the properties linked to these 
microstructure attributes.

The PSPP map is rather complicated and contains seven 
important microstructural attributes. This work considered 
only three such attributes were considered; grain size and 
spatial statistics, crystallographic texture, and phase infor-
mation. These were, respectively, quantified in terms of aver-
age grain size, a categorical texture type (such as random 
texture, or transverse texture), and the volume fractions of 
primary alpha-phase in the alpha–beta-alloy. Similar meth-
odology to that demonstrated in this work could be applied 
to the additional four microstructure attributes in white 
boxes in the structure column in Fig. 2 to further improve 
the UQ for properties of interest in the design of Ti-64 for 
fatigue critical applications. These additional attributes are 
expected to be of great importance for metals additive manu-
facturing, for example. Moreover, process-structure linkages 
can be considered that precede but propagate uncertainty 
through the structure–property linkages.

Uncertainty Quantification and Reduction 
for CPFEM Simulations

The stochastic nature of polycrystalline microstructures 
leads to noise or variability in the output responses/prop-
erties from CPFEM simulations for a limited set of SVE 
ensembles. The selection of the SVE size and number of 
SVEs in each ensemble provides an opportunity to reduce 
epistemic uncertainty associated with the extreme value 
distribution of FIPs [18]. In order to train GP surrogate 
models, it is important to understand the level of noise in 
the training set, and to reduce the noise enough for data 

Table 1   Computational 
simulation parameters

Parameter Value

Strain rate 0.001 s−1

# of applied cycles 3
Load ratio − 1
Temperature 300 K
Elements per SVE 303

Boundary conditions Periodic
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trends to be discernable. Due to the significant compu-
tational expense of high-fidelity CPFEM simulations, a 
trade-off must be made between reducing this source of 
noise along with limiting the volume of material simu-
lated. Rather than focusing on the uncertainty associated 
with realistic representation of microstructure, which 
concerns process-structure relations or materials charac-
terization and microstructure reconstruction, we instead 
focus on the methodology for projecting uncertainty of 
assigned distributions of key microstructure attributes 
during the instantiation process of building SVEs. The 
same methodology can then be extended to consider more 
realistic and costly estimates of variability of measured 
microstructures.

To find a reasonable trade-off between these conflict-
ing goals, a study of the volume of simulated material 
(e.g., number of SVE instantiation of microstructure of a 
given size comprising the ensemble) versus noise in out-
put responses/properties of interest was conducted. For this 
study, four different crystallographic textures commonly 
seen in Ti-64 were considered; random (no distinct texture), 
transverse, β-annealed, and basal-transverse. The 〈0001〉 pole 
figures for each texture are shown in Fig. 3.

Of the four crystallographic textures studied, Ti-64 hav-
ing basal-transverse (BT) texture resulted in the largest 
degree of noise in resultant extreme value distributions of 
FIPs. Specifically, if two different ensembles of SVEs are 
instantiated from the exact same microstructure statistics, 
(e.g., basal-transverse texture, 30% primary alpha-volume 
fraction, and 30 μm average grain size) and each ensemble 
is subjected to the exact same loading conditions, the 99th 
percentile predicted FIP from the resulting extreme value 
(EV) distribution of FIPs will be slightly different from one 
ensemble of SVE instantiations to another. This difference 
in output given the same target input is what we refer to as 
noise. According to this definition of noise, BT texture cre-
ates the noisiest results of any of the four textures studied 
herein. For this reason, and to limit the computational bur-
den of this study, the study of the trade-off between noise 
and volume of simulated material was carried out for only 
the BT texture. Once a final volume of simulated material 
was chosen, the other three textures were simulated to con-
firm that they resulted in less noise. In previous work [18] 
a more detailed study of model form and model parameter 
uncertainty was carried out for a nominal microstructure 
having basal-transverse texture, 30% primary alpha-volume 

Fig. 2   PSPP map for Ti-64 used in fatigue critical applications with structure–property linkages considered in this work highlighted in green



383Integrating Materials and Manufacturing Innovation (2020) 9:376–393	

1 3

fraction, and 30 μm average grain size using this model, so 
for this work a simplified noise quantification and reduction 
was undertaken to facilitate clarity in the presentation of the 
GP regression processes.

To quantify noise in extreme value FIP response of 
Ti-64 due to the number and size of SVEs in an ensemble, 
synthetic microstructures were instantiated. These micro-
structures had basal-transverse crystallographic texture, 
30% primary alpha-phase by volume, and equiaxed grains 
with an average equivalent spherical diameter grain size of 
30 μm and a lognormal distribution. The standard deviation 
was set to 7.5 μm and max and min cutoffs for grain size 
were ± 2 standard deviations from the mean. This choice 
of statistics for volume fraction of primary alpha-phase 
and average grain size were chosen to represent a common 
Ti-64 system on which the Uncertainty Quantification and 
Reduction (UQR) workflow could be demonstrated. These 
microstructure statistics were used to instantiated 60 differ-
ent ensembles of SVEs. The ensembles were made up of all 
12 combinations of three different SVE sizes; 100, 200, and 
300 grains per SVE, and five different numbers of SVEs 
per ensemble; 10, 15, 20, 25, 30, having at least 200 grains 
per SVE or 20 SVEs per ensemble (i.e., combinations like 
10 SVEs and 100 grains per SVE were not included). Each 
ensemble size was instantiated five times to compute the 

noise in predicted 99th percentile EV FIP response. Figure 4 
presents the results of this study.

The noise in 99th percentile predicted EV FIP response 
(FIP99) for all 12 ensemble sizes is shown in Fig. 4. The 
x-axis shows the total number of grains in an ensemble 
(e.g., for an ensemble having 30 SVEs and 200 grains per 
SVE the total simulated material volume is 6000 grains). 
The y-axis shows the noise in predicted FIPs across the five 
instantiations of each ensemble size. This noise value was 
calculated using a LOOCV-like approach, wherein the dif-
ference between each instantiation of a given ensemble size 
and the average of the other four instantiations of that size 
was calculated, and then the average of this metric for all 
five instantiations was plotted. Equations (3) and (4) were 
used to calculate this noise value, where n is the number of 
instantiations of a given ensemble size (in this case n = 5), 
and FIP99,i is the predicted 99th percentile EV FIP for a 
given ensemble instantiation.

Here,

The results of the noise study for the basal-transverse 
textured Ti-64 show that, as expected, noise decreases as 
the simulated material volume (and thus computational 
expense) increase. As shown in previous work [18] the bal-
ance of grains per SVE and number of SVEs per ensemble 
also influences uncertainty, as can be seen when comparing 

(3)
Noise =

∑n

i=1

� ���FIP99,i−FIPLOO
���

FIPLOO

�

n

(4)
FIPLOO =

�∑n

j=1
FIP99,i

�
− FIP99,i

n − 1

Fig. 3   Pole figures of crystallographic textures used in Ti64 FIP noise 
study

Fig. 4   Simulated material volume in ensemble versus noise of 99th 
percentile predicted EV FIP response
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the results of ensembles with the same simulated material 
volume. For example, the ensembles having 20 SVEs and 
300 grains per SVE produced less noisy responses than 
the ensembles having 30 SVEs and 200 grains per SVE, 
despite comprising the same cumulative simulated volume 
of material. This illustrates the importance of optimizing 
both number of SVEs and grains per SVE before commit-
ting significant computational resources to studying FIP 
response of a material. For the purposes of this work, the 
noise remained quite high even with the least noisy dataset, 
at 31.37% for ensembles having 300 grains per SVE and 30 
SVEs per ensemble. To avoid excessive computational cost 
to run training simulations for a GP model, the ensemble 
size of SVEs was limited to 9000 grains; however, it is likely 
that noise could be reduced further by increasing ensemble 
size. Additional steps were taken to reduce this noise more 
efficiently.

To further reduce noise in FIP99, a FIP thresholding study 
was carried out. First, ensembles of 300 grains per SVE 
and 30 SVEs per ensemble were instantiated for all four 
textures of interest; random, transverse, beta-annealed, and 
basal-transverse. Then, using the same method of calculat-
ing noise as previously shown in Eqs. (3) and (4), the noise 
in FIP99 across five instantiations generated from ostensibly 
identical microstructure statistics was calculated. Figure 5 
shows the results for all four textures. The left-most points 
show the noise in FIP99 when using just the top 100 FIPs to 
characterize the EV distribution. As shown previously, the 
noise in results from the basal-transverse textured material is 
31.7% and, as expected, the noise is lower for the other three 
textures. For a given ensemble, with 30 SVEs and 27000 
voxels per SVE (each SVE is a cube having dimensions of 
30 × 30 × 30 voxels) there are 810,000 unique FIPs generated 
from which approximately 4,500,000 unique SBA FIPs are 

produced. The top SBA FIP from each grain in the ensemble 
makes up a sub-group of 9000 FIPs from which we can sam-
ple to generate EV distributions. As seen in Fig. 5, the EV 
distribution is characterized using the top 1–10% of these 
EV FIPs. It is preferable to limit the number of FIPs used to 
avoid over-influencing the resultant FIP distributions with 
lower FIPs that are not of as much interest when characteriz-
ing a material’s resistance to fatigue failure. Figure 5 shows 
that, for the given loading parameters, including 400 top 
FIPs in the EV distribution used to compute FIP99 appears 
to provide the best compromise of reducing noise while still 
focusing on the highest extreme values of FIPs.

The results of this UQR study show that the noise in FIP99 
for Ti-64 with 30% primary alpha-phase by volume, and 
equiaxed grains with an average equivalent spherical diam-
eter grain size of 30 μm and a lognormal distribution with 
a standard deviation of 7.5 μm, can be reduced to 7.72%, 
7.87%, 10.81%, and 15.91% for beta-annealed, transverse, 
random, and basal-transverse textures, respectively. Com-
pared with an initial noise value of 180.06% for the basal-
transverse texture without optimization of ensemble size and 
FIP threshold, this represents an order of magnitude reduc-
tion in uncertainty. Having reduced noise to such an extent, 
the next step is to train GP surrogate models to predict FIP99 
more effectively.

Training and Validation of Gaussian Process 
Surrogate Models

High-fidelity CPFEM simulations used to predict fatigue 
performance of materials by quantifying predicted EV FIP 
response are quite expensive. To propagate uncertainty asso-
ciated with microstructure statistics for a material such as 
Ti-64 from known distributions of microstructure attributes 
to output properties of interest like FIP99 and yield strength, 
it is necessary to reduce the computational cost of making 
such predictions. For example, to reasonably characterize an 
output distribution of FIP99 response given input distribu-
tions of average grain size and volume fraction of primary 
alpha-phase, a Monte Carlo approach might use 10,000 sam-
ples (100 bins across each input distribution). However, to 
generate one sample using and ensemble of 30 SVEs and 
300 grains per SVE requires about 200 h of CPU time to 
complete three fully reversed loading cycles for a strain 
amplitude of 0.6% with a high-fidelity CPFEM simulation 
as defined previously in Sect. “Results and Discussion”. This 
means that to propagate uncertainty in one material with 
a two dimensional input uncertainty space would require 
2,000,000 CPU hours, or ~ 230 years of CPU time. Clearly, 
this is prohibitively expensive, which is why a surrogate 
model was used to replace the high-fidelity CPFEM model 
to propagate uncertainty.

Fig. 5   FIP thresholding versus noise in 99th percentile EV FIP 
response for four common textures seen in Ti-64
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In the present work, Gaussian Process (GP) regression 
models were trained using the results of CPFEM simulations 
for FIP99 and yield strength values generated across an input 
space of average grain size and volume fraction of primary 
alpha-phase ranging from 10 to 60 μm, and 0.3–0.6, respec-
tively. Texture was included as a third, categorical, input and 
two textures were used; random and transverse. These two 
textures were used to demonstrate multiple texture inputs 
while the other two textures studied in Sect. “Uncertainty 
Quantification and Reduction for CPFEM Simulations” were 
not included to reduce computational cost of training sets, 
and avoid redundant demonstration of the uncertainty propa-
gation process; however, the same process would equally 
apply for beta-annealed and basal-transverse textures.

A LHS strategy was used to sample from the two con-
tinuous inputs; average grain size, and volume fraction of 
primary alpha-phase. For the initial training set, 10 samples 
were taken from the input space for each texture. To generate 
training data for the GP surrogate models predicting 99th 
percentile EV FIPs, the same HCF loading conditions as 
described previously in Sect. “Results and Discussion” were 
used and the ensembles for each training point consisted of 
30 SVEs and 300 grains per SVE. The EV distributions of 

SBA FIPs were characterized using the top 400 FIPs from 
the sub group of EV FIPs as described in Sect. “Uncertainty 
Quantification and Reduction for CPFEM Simulations”.

The GP surrogate model was trained using a linear com-
bination of a Matérn kernel and a white noise kernel, the lat-
ter of which was included to capture the noise in the training 
data. The Resulting GP models for each texture consist of 
two input dimensions (average grain size, and volume frac-
tion of primary alpha-phase) and two outputs (predicted 99th 
percentile EV FIPs, and standard deviation in the predicted 
values). Figure 6 shows a cross Section of the GP surrogate 
model’s prior and posterior distributions and training data 
for FIP99 from Ti-64 having a random texture. It is important 
to note that each point along the x-axis in this plot has a dif-
ferent volume fraction of primary alpha-phase, which can 
be regarded as a third dimension out of the page. This plot 
is shown this way simply to allow the reader to see clearly 
how a GP surrogate model addresses UQ for the additional 
uncertainty associated with its fit per se. This uncertainty 
is shown by the gray shading surrounding the black curve 
which represents the mean prediction of the GP model. Not 
surprisingly, uncertainty in GP predictions is higher further 
away from training points. The multi-colored oscillating 

Fig. 6   2D slice of (top) prior 
and (bottom) posterior distribu-
tions from random texture GP 
model predicting 99th percentile 
EV FIPs
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curves represent 10 of the theoretically infinite instantiations 
of the curve, where the black prediction curve represents the 
mean value of all instantiations, and the gray shaded area 
represents one standard deviation from the mean in either 
direction.

The trained surrogate model for random textured 
Ti-64 is shown with both input dimensions in Fig.  7. 
The 10 training data sampled using LHS are shown in 
red in Fig. 7a, b. Figure 7a shows the GP model trained 
using data with noise reduction techniques as described 

in Sect. “Uncertainty Quantification and Reduction for 
CPFEM Simulations”. The adjusted performance metric 
shown on each plot is a measure of how well the surro-
gate model predicts the output property of interest, rela-
tive to the performance of the high-fidelity CPFEM model 
simulations with noise reduced. This was calculated using 
a LOOCV technique, wherein one training sample was 
removed and the model was trained with the remaining 
training samples, then the resulting model was used to 
predict the value of the output of interest given input 

Fig. 7   2D surface plots of GP model predictions of 99th percentile 
predicted EV FIPs for random textured Ti-64: a GP trained with less 
noisy data and b with more noisy data, and c with additional training 

data chosen with adaptive sampling; d adjusted scores of GP models 
versus number of training data for noisy data models
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dimensions of the training sample that was withheld. The 
difference between the prediction and the actual training 
sample was calculated as a fraction of the actual train-
ing sample value, and this process was repeated for every 
training point in the training set. The final score was calcu-
lated by subtracting the average error of all samples from 
1.000, thus a perfect score would be 1.000. The adjusted 
score is the GP prediction score divided by the score of 
the training data itself (i.e., if the training data has 10% 
noise the score of the training data is 0.9, and the adjusted 
score of the GP model is the original score divided by 
0.9). As such, an adjusted score of 1.000 represents a GP 
model that perfectly reproduces the CPFEM model. In this 
work, an adjusted score of 0.95 was set as the threshold for 
a “good” surrogate model.

Figure 7b shows a GP model trained with the same 10 
training samples from the input space, using noisy data pro-
duced from ensembles of 20 SVEs and 100 grains per SVE, 
and only the top 100 FIPs utilized when FIP thresholding. 
Figure 7c is a GP model trained with five additional train-
ing points, selected adaptively based on the points in the GP 
model with the highest standard deviation in predictions. 
With these additional five training data we see that the score 
improved to 0.7147; however, it remained substantially 
worse performing than the model trained on less noisy data, 
which had a score of 0.9673. Additionally, with 15 noisy 
training points compared with just 10 less noisy training 
data for the better performing model, the computational time 
of producing each training set was comparable, as the less 
noisy data was more expensive to produce per sample point.

Finally, Fig. 7d shows the score of the GP model versus 
the number of training points for the noisy training data. We 
can see that it is not clear that simply using more data would 
result in comparable performance. In fact, it is unlikely that 
the performance of a GP model trained on noisy data would 
ever approach the performance of the model trained on less 
noisy data, since the model can only make predictions with 
at best, the same amount of uncertainty as was present in 
its training data. Thus, the slightly more computationally 
expensive simulations needed to produce less noisy data 
were necessary to achieve strong surrogate model perfor-
mance such that uncertainty distributions could be reliably 
propagated using the surrogate models.

Next, the same process was carried out to train a GP 
model to predict FIP99 for al Ti-64 having transverse tex-
tures. Figure 8 shows these results. Figure 8a and b shows 
GP models trained using data with reduced noise. In this 
case the initial 10 training samples shown in Fig. 8a resulted 
in an adjusted score of 0.9369, slightly below the target per-
formance of 0.95, thus adaptive sampling was used to train 
the model further, choosing three subsequent training sam-
ples based on points where GP uncertainty was the high-
est. Figure 8b shows the resulting GP model after the three 

adaptively sampled training data were added, and the final 
adjusted score was 0.9814.

Similar to the process shown above for random texture, a 
GP model was trained on noisy data to compare as a baseline 
and Fig. 8c shows the model trained with 13 noisy training 
sample inputs resulted in a score of 0.7018. To provide a fair 
baseline comparison having comparable computational time 
to the well-performing, less-noisy data, five more training 
samples were added to the training set for the noisy train-
ing data using adaptive sampling. As expected, the perfor-
mance improved marginally, but as shown in Fig. 8d, with 
an adjusted score of 0.7644 the performance did not reach 
the target adjusted score of at least 0.95. Figure 8e shows the 
performance of the GP model trained on noisy data, versus 
the number of training samples used. We see that the per-
formance again appears to have hit a ceiling well below the 
performance of the model trained using less noisy data.

Lastly, GP models predicting yield strength were trained 
using the same input training samples. These training data 
were produced using CPFEM simulations. To attain yield 
strength a simple uniaxial tensile test was simulated to 1.2% 
strain and the 0.2% offset yield strength was attained from 
the resulting macroscopic polycrystalline stress–strain data. 
Polycrystalline stress–strain data are far less noisy than EV 
FIP data; a SVE comprising 500 grains was sufficient to 
generate reproducible data for yield strength with noise of 
less than 0.1%, effectively serving as a RVE. Additional 
parameters for these simulations are shown in Table 1. The 
resulting trained GP models for each texture are shown in 
Fig. 9 and both models performed well with the initial 10 
training samples, thus no further training data was needed. 
Additionally, modulus of elasticity was calculated from the 
macro stress–strain data for each sample. However, modu-
lus of elasticity was insensitive to change in average grain 
size and volume fraction of primary alpha-phase across the 
design space explored, thus it was unnecessary to train a 
surrogate model. The Young’s Modulus for random and 
transverse textured Ti-64 in this work were 124.4 GPa and 
146.2 GPa, respectively.

Propagation of Aleatory Microstructure Statistic 
Uncertainty

Having sufficiently trained surrogate models to stand in for 
high-fidelity CPFEM simulations, aleatory uncertainty in 
microstructure statistics can now be propagated through 
structure–property linkages in a robust manner. In this 
work, uncertainty in average grain size and volume fraction 
of primary alpha-phase are characterized as normal distri-
butions and uncertainty in these microstructure attributes 
is propagated to quantify statistical distributions showing 
uncertainty in FIP99 and yield strength of an Ti-64 having 
nominal microstructure statistics as follows; 0.45 nominal 
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volume fraction of primary alpha-phase with a standard 
deviation of 0.0075, and 35 μm nominal average grain size 
with a standard deviation in average grain size of 0.3 μm. It 
is worth clarifying that the grain size from grain to grain in 
a given material still varies with a lognormal distribution as 
described previously in Sect. “Uncertainty Quantification 
and Reduction for CPFEM Simulations”. However, we are 
also imparting an uncertainty in the average value of all of 
the grains across a given batch of material. That is to say, 
if a material manufacturer produces a nominal Ti-64 with 

an average grain size of 35 μm, one batch of material from 
the manufacturer may still have a slightly different average 
grain size value than another. In this work the uncertainty 
associated with this difference from batch to batch of pro-
duced material was characterized using normally distributed 
data, and the standard deviations for average grain size [53, 
54] and volume fraction of primary alpha-phase [55–58] are 
chosen to be realistic values based on literature. We note that 
the grain size distribution is still lognormal; however, here 
we added a normal distribution to the average value of the 

Fig. 8   2D surface plots of GP model predictions of 99th percentile 
EV FIPs for transverse textured Ti-64: a GP model trained on data 
with initial less noisy dataset, b with additional adaptive sampling, 

and c with more noisy data, and d with additional training data cho-
sen using adaptive sampling; e adjusted scores of GP models versus 
number of training data for noisy data models
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lognormal distribution of grain sizes. Alternative distribu-
tion types could be used with no difficulty. However, the 
purpose of this work is simply to establish and demonstrate a 
workflow by which this aleatory uncertainty can be robustly 
and reliably integrated using ICME. An original equipment 
manufacturer (OEM) could produce histograms of actual 
microstructure statistics measured from batch to batch of 
their produced material and replace the normal distributions 
used in this work with a different distribution type that is 
based on their particular data.

Figure 10 shows histograms of 10,000 samples taken 
from the normal distributions of each microstructure attrib-
ute, and a combined three-dimensional histogram showing 
the entire distribution of microstructures associated with 
a nominal microstructure having the attributes described 
above. For the combined histogram 100,000 samples were 
drawn from the two dimensional uncertainty distribution of 
the input space.

This input uncertainty distribution of microstructure 
statistics was then propagated through SP linkages using 

Fig. 9   2D surface plots of GP model predictions of yield strength for (left) random and (right) transverse textured Ti-64

Fig. 10   Normal distributions for (left) average grain size, (right) volume fraction of primary alpha-phase, and (bottom) both combined for a typi-
cal Ti-64 alloy
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the associated GP surrogate models to produce output dis-
tributions of predicted yield strength and FIP99 for Ti-64 
with both random texture and transverse texture subjected 
to the loading conditions described in Sect. “Uncertainty 
Quantification and Reduction for CPFEM Simulations”. The 
resulting distributions of uncertainty in output properties 
are shown in Fig. 11 and include both aleatory uncertainty 
resulting from microstructure statistics, and epistemic uncer-
tainty resulting from model uncertainty, as calculated from 
the standard deviation of GP predictions. To incorporate 
both input dimensions as well as GP model uncertainty, the 
input space was sampled 10,000 times (a multiple of 100 for 
each input parameter to ensure a reasonable normal distri-
bution) and at each of those 10,000 sample points, the GP 
model was sampled 100 times to get a distribution associated 
with the uncertainty in the GP predictions. This resulted in 
1,000,000 samples per texture, for a total count of 2,000,000 
samples shown in Fig. 11.

It is clear from Fig. 11 that the output distributions have 
different shapes. The transverse textured material has a much 
wider distribution of yield strength, which can be interpreted 
as a higher degree of uncertainty in yield strength. The 

transverse texture has a standard deviation of 10.56 MPa, 
compared with a standard deviation of 2.42 MPa from the 
random textured material. Conversely, the random textured 
material has a slightly higher uncertainty in predicted FIPs 
having a standard deviation of 5.82 × 10−6 compared with a 
standard deviation of 4.82 × 10−6 for the transverse textured 
material.

Finally, Fig. 12 shows the full workflow that has been 
established to quantify and propagate uncertainty in micro-
structure attributes through SP linkages in turn quantifying 
uncertainty in properties of interest. Surrogate models were 
used to replace SP linkages for yield strength and fatigue 
life, the latter of which was quantified using EV FIPs as a 
surrogate measure of fatigue. Elastic moduli were calculated 
directly using CPFEM simulations that were used to train the 
yield strength surrogate model, as modulus of elasticity is 
constant across the grain size and phase information input 
space and only changes with the categorical crystallographic 
texture input. Using surrogate models, uncertainty in phase 
information, grain size, and spatial statistics were propagated 
to quantify uncertainty in yield strength and 99th percentile 
EV FIPs using 10,000 random samples from the input space 

Fig. 11   Output uncertainty distributions for predicted 99th percentile EV FIPs and predicted yield strength for sample Ti-64 materials with (left) 
transverse texture and (right) random texture
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in just 40 s of CPU time, representing eight orders of magni-
tude reduction in CPU time compared with the same number 
of samples propagated using the high-fidelity CPFEM simu-
lations. That is to say, it would take ~ 180 million times more 
computational time to propagate this uncertainty through 
the CPFEM model without the GP surrogate model. This 
was achieved by training models with between 10 and 13 
samples, and introduces 1.86–2.27% increase in epistemic 
uncertainty in the form of noise.

Conclusion

In conclusion, uncertainty in predicted extreme value FIPs 
can be greatly reduced by using properly selected ensemble 
size and thresholding FIPs. The reduction of this uncer-
tainty results in less noisy data that can greatly improve the 
quality of a Gaussian process regression model trained on 
the data, and thus allow for a reasonably reliable surrogate 
model to be achieving 95% accuracy or better with as few as 
10–13 training samples. Using such a machine learning sur-
rogate model, uncertainty can be rapidly propagated through 
process–structure–property–performance linkages. In this 
paper the process of propagating uncertainty from structure 
to properties was demonstrated. Using the methodology 
established herein, and extending it to a full PSPP map, a 
material manufacturer could reliably and robustly predict 
uncertainty in performance of a part using their material, by 
understanding the uncertainty in their processing steps, and 
using computational models to predict performance from 

properties, properties from structure, and structure from 
processing.
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