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Abstract
With the advent of integrated computational materials engineering, there is a drive to exchange statistical confidence in a 
design obtained from repeated experimentation with one developed through modeling and simulation. Since these models 
are often missing physics or include incomplete knowledge or simplifying assumptions into their mathematical construct, 
they may not capture the physical system or process adequately over the entire domain. This can lead to a systematic dis-
crepancy, otherwise known as model misfit, between the model output and the system it represents over at least part of the 
domain. However, by accounting for this discrepancy in uncertainty analyses, reliable inference, and prediction on the model 
parameters and material behavior can be made despite the missing physics. The previous statement is contingent on two 
conditions: (1) the discrepancy is systematic, and (2) the structure of the discrepancy is well understood, which is required to 
minimize issues with non-identifiability among unknown model components. We illustrate these insights via a case study of 
inference and prediction in a phenomenological meso-scale VPSC crystal plasticity model, which does not contain physics 
describing the elastic regime of deformation. Inference is performed via a Bayesian approach enabled by posterior simula-
tion. Posterior uncertainty about unknown model parameters takes into account observation error, uncertainty stemming 
from aleatoric sample-to-sample variability, and model form error. Posterior uncertainty in the unknown Voce hardening 
parameters is propagated to generate a distribution of the stress–strain response in both the elastic and plastic regimes. 
Additionally, posterior predictive distributions are simulated to establish uncertainty bounds for future unobserved data.

Keywords Uncertainty quantification · Bayesian inference · Random effects · Crystal plasticity · VPSC · Model 
discrepancy

Mathematics Subject Classification 62F16

Introduction

A critical component to advancing the goals of integrated 
computational materials engineering (ICME) is the quan-
tification, propagation, and mitigation of the sources of 
uncertainty influencing model simulations and their predic-
tive power, formally referred to as uncertainty quantifica-
tion in the materials computational community. This is of 
particular interest and importance with efforts to develop 
model linkages where the input to large scale component 
models is generated from the output of models at smaller 
scales. The underlying goal is to account for the multitude 
of mechanisms and phenomena occurring at scales ranging 
from chemical bonds at the quantum and atomistic levels and 
grain interactions at the mesoscale contributing to the mac-
roscopic properties and performance of a design component. 
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While the benefits of such an approach are clear (improved 
model fidelity and design reliability), the effectiveness is 
contingent on the adoption and routine use of rigorous and 
reliable techniques for uncertainty quantification (UQ), 
propagation (UP), and mitigation (UM). Unaccounted error 
or uncertainty at the lower level models will lead to mac-
roscopic model outputs with compounded uncertainty and 
predictions with an unknown level of reliability.

Figure 1 summarizes the various types of uncertainty 
which are grouped into two primary categories: epistemic 
and aleatory. Both sources play a role in the model output 
and quality of parameter inference and, consequently, the 
propagation of uncertainty for predictions (or in the case of 
ICME, model linkages). Aleatory uncertainty is a descrip-
tion of the randomness in the system and could be due to 
natural physical randomness, which may manifest in the 
sample-to-sample variability among experimental tests, or 
due to the use of stochastic numerical methods. This form 
of uncertainty, while quantifiable, is not reducible. On the 
other hand, epistemic uncertainty is a result of omitted or 
missing knowledge or physics in the constitutive models, or 
from the use a variety of numerical techniques to simplify 
the computations. Since a model can always be improved by 
learning more about the system and incorporating the under-
standing into the model, this type of uncertainty is reducible.

Mature techniques for UQ, UP, and UM are being adopted 
with increased frequency within the materials modeling 
community [1–15]. A recent paper by Ricciardi et al. [16] 
proposed using a random effects Bayesian hierarchical 
statistical model for quantifying parameter uncertainty 
in material models. The authors argue that this statistical 
model reflects the inherent structure of an important class 
of problems in materials modeling and simulation since the 
aleatory uncertainty caused by microstructure heterogeneity 
in the material samples tested is naturally accounted for. A 
Bayesian inferential approach was used to recover informa-
tion about unknown model parameters. Posterior function-
als were estimated from a posterior sample generated via 

a Metropolis–Hastings Markov Chain Monte Carlo (MH-
MCMC) simulation. Posterior uncertainty was then propa-
gated to induce a posterior distribution in the model output 
and predict the distribution of possible future outcomes (pre-
diction). This approach was demonstrated for two funda-
mentally different modeling problems: (1) crystal plasticity 
modeling at the mesoscale and (2) thermodynamic calcula-
tions of phase equilibrium.

The work presented here addresses estimation and uncer-
tainty quantification of the random effects model in the pres-
ence of model misfit, also known as model discrepancy. 
Model misfit is a consequence of missing physics, modeling 
simplifications, or numerical methods that may lead to sys-
tematic discrepancy between the model output and obser-
vations. Improperly accounting for model misfit, or simply 
ignoring misfit when performing uncertainty quantification 
can lead to bias in calibration and under-estimation of asso-
ciated uncertainty, which propagate as error to property or 
response predictions.

One crucial application is when model parameters have 
a clear connection to intrinsic material properties (such as 
diffusivities or mobilities, defect energies, elastic constants, 
etc.). In an ideal world, the model is a perfect representation 
of reality and, when properly calibrated, will exactly predict 
the material response under varying initial and boundary 
conditions. However, in practice, models are often based on 
some assumptions or approximations. As a thought experi-
ment, the measured experimental material response can be 
decomposed into three components: (1) the portion that is 
well-represented by the model, (2) the portion of “true” 
material response not captured by the model due to discrep-
ancy, and (3) noise or measurement error. Mathematically 
the discrepancy should be independent of the portion repre-
sented by the model. When the model has enough degrees of 
freedom, i.e., fitting parameters, it is often possible to find a 
set of parameters that allow the model to closely mimic the 
experimental response. When fitting is performed without 
accounting for the discrepancy, the values of the parameters 

Fig. 1  Various sources of uncer-
tainty present in computational 
models that must be accounted 
for to perform reliable inference 
and prediction
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are biased by this misfit (meaning they attain a value that 
is systematically different than that obtained from an ideal 
model). Using such biased parameter estimates for response 
prediction under different conditions than are used for cali-
bration will necessarily lead to a persistent error in predic-
tions and inaccurate error bounds, leading to overly optimis-
tic design tolerances or safety factors.

Quantifying this source of uncertainty is rendered chal-
lenging by the requirement of balancing a flexible discrep-
ancy model with the requirement that the complete model 
be identifiable given the data [17]. Discussion on model 
discrepancy and techniques to model this form of error are 
provided in "Methods" section and applied to a case study 
in "Case Study" section.

Methods

We begin with a brief discussion on the Bayesian para-
digm, statistical model, assumptions and simulation meth-
ods applied in this work. The interested reader is referred 
to [16] for a full discourse on the theory and techniques 
extended in this work. For consistency, the same notation 
will be adopted. Bayesian inference is used in this study to 
recover unknown components of the data generation process, 
while taking into account various sources of uncertainty. The 
analysis yields a posterior probability distribution describing 
our understanding about the unknown model components or 
model parameters, � , given the available data, y. A statisti-
cal model for the data (not to be confused with material or 
constitutive model of material response) is a collection of 
probability distributions M = {f (y ∣ �); � ∈ �} , where � is 
the parameter space of which � is an element. The first ingre-
dient in a Bayesian analysis is a prior probability model with 
density �(�) over the unknown components, which is simply 
an epistemic model of our subjective uncertainty before any 
data is observed. The prior distribution is then updated by 
conditioning on observed data to establish the posterior dis-
tribution through Bayes’ rule,

The posterior distribution is the updated belief about � after 
data has been observed and is proportional to the product 
of the prior density over � and the likelihood, f (y ∣ �) , of 
observing data y given � . This construct can be extended to 
make predictions about future observations, ỹ , by establish-
ing the posterior predictive distribution given observed data 
y. Its density is a continuous mixture of the likelihood of the 
unobserved data ỹ weighted by the posterior of the unknown 
model parameters �,

(1)�(� ∣ y) =
f (y ∣ �)�(�)

∫
�
f (y ∣ �)�(�)d�

∝ f (y ∣ �)�(�).

The posterior and posterior predictive distributions are all 
that is required for inference and prediction, respectively. 
Although posterior densities are often not analytically trac-
table, they can be estimated from a Monte Carlo sample. 
Markov chain Monte Carlo (MCMC) [18–21] is a class of 
simulation techniques for constructing a Markov chain with 
stationary distribution equal to the posterior distribution of 
interest. Monte Carlo estimates of desired posterior func-
tionals, such as the mean, mode, and highest posterior inter-
vals (HPIs), can then be computed from the resulting sam-
ple. Our MCMC sampling approach consists of an adaptive 
Metropolis–Hastings algorithm [22, 23] with conditional 
Gibbs updates [24] where full conditional distributions are 
available.

Modeling Assumptions

We consider a random effects model, which formally 
accounts for the variability in the response associated with 
the effect of the material sample tested. This statistical 
model is an excellent candidate for cases where the observed 
data do not directly represent the true underlying property or 
state, � , also be called the overall effective property. Instead, 
the state of each material sample varies around the overall 
state. The sample states are called random effects and are 
denoted by �[s], s = 1,… , S , where S is the number of sam-
ples tested. Though they are not of interest in and of them-
selves (they are often referred to as nuisance parameters), 
they must be estimated in order to infer the overall effect �.

The random effects, �[s], s = 1,… , S , and overall effect, � , 
are related through the following probability model,

which also depends on additional parameters � to define the 
distribution. Though the choice of this distribution is appli-
cation-specific, a Multivariate Normal (or Gaussian) distri-
bution is often a flexible choice to model the distribution of 
random effects around the overall effect since it implies that 
(1) The random effects are symmetrically distributed about 
the overall effect and (2) The random effects are more likely 
to lie in a region that is close to the overall effect � . Thus, for 
D-dimensional parameters �, �[s], s = 1,… , S , we assume,

where � is a D × D symmetric positive-definite inverse vari-
ance–covariance (precision) matrix, which controls how 
tightly dispersed the random effects are about the overall 
effect �.

(2)𝜋(ỹ ∣ y) = ∫
𝛩

f (ỹ ∣ 𝜃)𝜋(𝜃 ∣ y)d𝜃.

(3)�[s] ∣ �,� ∼ f
(
�[s] ∣ �,�

)
, s = 1,… , S,

(4)�[s] ∣ �,� ∼ MVND

(
�,�−1

)
, s = 1,… , S,
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A commonly used prior distribution for the precision � 
is the Wishart, a distribution on symmetric positive-definite 
matrices. Since this choice does not allow precise control 
over the prior model through the hyperparameters, we take 
a more flexible modeling approach. The random effects 
precision � is decomposed into two components: a D × D 
positive-definite and symmetric correlation matrix, R, and 
a (1 × D) vector of standard deviations, t = (t1,… , tD)

⊤ , 
which are then modeled separately following [25, 26]. The 
decomposition,

allows extra flexibility in modeling known features of the 
distribution while allowing enough dispersion. We assign a 
Wishart prior to the correlation matrix, R, which preserves 
conjugacy and allows R to be sampled via Gibbs updates,

where Ro is a D × D symmetric positive-definite scale matrix 
and ro represents the distribution’s degrees of freedom. For 
computational convenience, the variances, t2

d
, d = 1,… ,D 

rather than the standard deviations are modeled as,

where at and bt are fixed hyperparameters.
For each of the S samples tested, the likelihood of the 

N-dimensional data y[s] given the corresponding random 
effect �[s] is modeled as a Multivariate Normal distribution,

centered at the physical model output m
(
�[s]

)
 with dispersion 

defined through the N × N error precision matrix � .

Model Misfit

So far, a key assumption has been that the physical model m 
adequately describes the mean of the data-generating pro-
cess. In reality, this is either not known with certainty, or is 
known and the structure of this model discrepancy is under-
stood to some degree. To capture both these scenarios, we 
denote by �(x) the ‘ground truth’, or true state of the system, 
at location x. Furthermore, we make the assumption that this 
signal has been contaminated with additive Gaussian error 
en, n = 1,… ,N at the observation locations x1,… , xN . This 
typically represents observation error or some other type 
of variability. The resulting data-generating model may be 
written as,

(5)𝛬 ∶= diag (t)R diag (t), t = (t1,… , tD)
⊤,

(6)

�(R) = Wishart D
(
R;Ro, ro

)

∝ |Ro|−ro∕2|R|(ro−D−1)∕2 exp
{
−
1

2
tr
(
r−1
o
R
)}

,

ro ≥ D + 1,

(7)t2
d
∼ Gamma

(
at, bt

)
, d = 1,… ,D,

(8)y[s] ∣ �[s],� ∼ MVNN

(
m
(
�[s]

)
,�−1

)
, s = 1,… , S,

One possible assumption is that the physical model of the 
system, m, which accepts a vector (or scalar) of parameters 
� and is evaluated at location x, is representative of the true 
process such that m(x, �) = �(x) . This assumption was made 
in [16]. The present work diverges here and will adopt a dif-
ferent, more realistic, data-generating model which accounts 
for the effect of model discrepancy. If we take into account 
the discrepancy between the model representation of the sys-
tem, m(x, �) , and the true mean process, �(x) , and denote it 
by �(x) , we can relate these terms as:

The model for the observations now becomes,

where m(⋅) and �(⋅) are assumed to have no parameters in 
common and where � is the true but unknown vector of cali-
bration parameters.

Among the first to formally incorporate model discrep-
ancy into an inferential framework is the work of Kennedy 
and O’Hagan [27]. Model discrepancy was adopted in this 
framework to mitigate bias and over-confidence in inference 
based on reduced-order representations of expensive simu-
lators. [17] illustrate similar issues arising from a failure to 
take into account systematic model discrepancy in general 
inference problems. Importantly, the role of the discrepancy 
model and its link to parameter identifiability is explored.

With all components of the statistical model now intro-
duced, a schematic of the statistical model can be found in 
Fig. 2, in which the direction of the arrows represents the 
direction of conditional dependence between model com-
ponents. Shaded nodes indicate that model components are 
observed, with everything else fixed and unknown. Under 
the natural assumption of conditional independence between 
samples y[s] = (y

[s]

1
,… , y

[s]

N
)⊤ given the random effects 

�[s] ∈ ℝ
D , the density of the posterior distribution is,

where f
(
y[s] ∣ �[s],� ,�

)
 is the density of,

A flexible prior model for the discrepancy term � is dis-
cussed in detail in "Gaussian Process Prior for Model Dis-
crepancy" section. Propagating this posterior uncertainty 
through to prediction of the data leads to the posterior pre-
dictive density,

(9)yn = �(xn) + en, n = 1,… ,N.

(10)�(x) = m(x, �) + �(x).

(11)yn = m
(
xn, �

)
+ �

(
xn
)
+ en, n = 1,… ,N,

(12)

�
(
�, {�[s]}S

s=1
,R, t2,� ,� ∣ {y[s]}S

s=1

)

∝ �(�,R, t2,� ,�)

S∏
s=1

f
(
y[s] ∣ �[s],� ,�

)
f
(
�[s] ∣ �,�

)
,

(13)y[s] ∣ �[s],� ,� ∼ MVNN

(
m
(
�[s]

)
+ �,�−1

)
.
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Gaussian Process Prior for Model Discrepancy

As an unknown model component, the discrepancy func-
tion � must be assigned a prior model within the Bayesian 

(14)

�
(
y[new] ∣ {y[s]}S

s=1

)

= ∫ f
(
y[new] ∣ �[new],� ,�

)
f
(
�[new] ∣ �,�

)

�
(
�,�,� ,� ∣ {y[s]}S

s=1

)

d�d�[1] ⋯ d�[S]d�d�d�d�[new].

hierarchy. The importance of carefully incorporating all 
prior knowledge about � into this probability model was 
demonstrated by Brynjarsdóttir and O’Hagan [17], where 
bias and over-confidence in the estimates resulted from using 
priors that were too flexible. The problem, called lack of 
identifiability in the statistical literature, results from the 
ability of different model components (in this case the dis-
crepancy function and model parameters) to trade off in 
ways that can describe the data equally well. When one of 
the model components is empirical (in this case the dis-
crepancy), this lack of identifiability hinders our ability to 
obtain useful estimates of the physically meaningful model 
components. One way to overcome lack of identifiability is 

Fig. 2  Visualization of the 
Bayesian random effects model 
with discrepancy. Arrows rep-
resent the direction of condi-
tional dependence. Clear nodes 
represent unobserved/unknown 
quantities while shaded nodes 
indicate observations
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by defining sufficiently informative prior models, subject of 
course to the availability of such information. Informally, an 
informative prior choice serves to penalize different configu-
rations or trade-offs and guide the posterior towards regions 
that we know a-priori to be more probable or physically 
reasonable.

A Gaussian process (GP) is a stochastic process, which 
is a collection of random variables such that any finite sub-
collection of those variables have a jointly Gaussian dis-
tribution. For an accessible introduction to these models, 
the reader is referred to [28]. GPs can be used to define 
prior distributions over functions, such as our discrepancy 
function � ∶ D → ℝ . They can be thought of as a functional 
generalization of the multivariate Gaussian distribution, 
which is characterized by a mean vector and positive definite 
covariance matrix. Likewise, a GP is fully characterized by a 
mean function, � ∶ D → ℝ and a positive definite covariance 
function, c ∶ D ×D → ℝ . Therefore, we can specify a GP 
prior model for the discrepancy function � as,

It is often realistic to model the discrepancy as having prior 
mean function �(x) = 0 , as this incorporates the neutral 
and often reasonable assumption that the magnitude of the 
systematic deviation from the physical model across the 
domain is either close to zero or not known a-priori. The 
choice of the covariance function is an important modeling 
consideration, as it controls the degree to which correlation 
decays with distance between inputs over the input domain. 
As such, the covariance controls the smoothness of realiza-
tions (called sample paths) of a GP. More information on 
this choice is described in "Choice of Covariance Structure" 
section.

A convenient feature of GPs is the joint Gaussianity of 
any finite sub-collection of points. While the function � is 
in theory continuous, it can be probed at a finite set of vari-
able inputs since

where � is the N-dimensional zero vector and,

and the covariance between the process at any two points 
xi and xj is related to the covariance function through 
c(xi, xj) = Cov(�(xi),�(xj)) , for xi, xj ∈ {x1,… , xN}.

Choice of Covariance Structure

Since the covariance structure controls the correlation scale 
and smoothness of the stochastic process, careful choice of 
this function is required to specify a sufficiently informative 

(15)� ∼ GP(�, c).

(16)�
(
x1
)
,… ,�

(
xN

)
∼ MVNN(�,C),

(17)C = Cov
(
(𝛥(x1),… ,𝛥(xN))

⊤, (𝛥(x1),… ,𝛥(xN))
⊤
)
,

prior process for the model discrepancy � . The smoothness 
of GP sample paths depends on the way in which the covari-
ance between �

(
xi
)
 and �

(
xj
)
 changes across the input space. 

One example of a smooth covariance is the squared expo-
nential function,

where �2 is a variance parameter and w is the length-scale 
hyperparameter. A GP with this covariance structure has 
infinitely differentiable sample paths. Other popular covari-
ance functions include the Matérn [29], whose smoothness 
can be controlled by the choice of covariance hyperparam-
eter, and the exponential [30], which yields rougher sample 
paths.

When the GP is used as a prior model, the variance hyper-
parameter describes prior uncertainty about the unknown 
function by controlling the pointwise variability of resulting 
sample paths. A large variance hyperparameter corresponds 
to a diffuse GP prior distribution, while a smaller variance 
produces a tighter distribution appropriate when more prior 
information is available. The length-scale parameter controls 
how dependence scales with the distance between nearby 
points. As with all prior hyperparameters, these must either 
be set by the user or be treated as unknown and estimated 
from the data within a hierarchical model. Figure 4 illus-
trates the GP sample paths under a selection of different 
covariance hyperparameter choices.

A stationary covariance function is one that depends only 
on the distance between the inputs and is independent of 
their relative location. Non-stationary covariance models, on 
the other hand, allow for changes to the dependence struc-
ture across the input domain. Figure 3 illustrates the differ-
ence between the behaviour of sample paths from a GP with 
a stationary (left) and a non-stationary (right) covariance. 
The samples in Fig. 3b initially have stronger dependence, 
which decreases moving away from 0.

Toy Example

As a simple example, suppose we have measured the mass 
of an ice block (100 kg), apply an unknown force to it, and 
then collect observations of the position of the block at dif-
ferent time increments. The ice block accelerates from an 
initial velocity and position of zero, and we wish to infer 
from the observations the force which was applied using the 
fundamental equation,

(18)

Cov
(
�(xi),�(xj)

)
= c(xi, xj)

= �2 exp

{
−
1

2

(
xi − xj

w

)2
}

,

(19)m(t, 𝜃) =
1

2

(
𝜃

mass

)
t2, t, 𝜃 > 0
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where the unknown force applied is denoted by � . However, 
suppose that in reality the ice block is melting and the mass 
is changing with time, and the position of the block under a 
constant applied force follows the relationship,

where mass indicates the initial mass of the block and � is 
a factor controlling the rate of the melt. In this example, 
there is knowledge missing from the model of the physi-
cal system (19), the changing mass of the ice block, which 
introduces discrepancy between the true force being applied 
and the model. A comparison of the true behavior, our sim-
plified model of the behavior, and the observations is pro-
vided in Fig. 5.1 The magnitude of the discrepancy between 
the imperfect model of the system and its true behavior 
begins at zero and grows over time. Analyses conducted 
with and without considering model discrepancy reveal the 

(20)𝜁(t) =
1

2

(
𝜃true

mass ⋅ exp(−𝜆t)

)
t2, t, 𝜃 > 0

importance of including this component in the statistical 
model.

Fig. 3  Multiple sample func-
tions drawn from a GP prior 
with a smooth covariance 
structure. The cases shown are a 
a stationary covariance function 
and b a non-stationary covari-
ance function 0 0.2 0.4 0.6 0.8 1

x

-5

0

5

(a) Stationary

0 0.2 0.4 0.6 0.8 1
x

-2

0

2

(b) Non-stationary

Fig. 4  Multiple sample 
functions drawn at random 
from the prior specified by 
a GP which favors smooth 
functions and a stationary 
covariance function with param-
eters. a w = .025, �2 = 10 , 
b w = .25, �2 = 10 , c 
w = .025, �2 = 100 and d 
w = .25, �2 = 100

Fig. 5  Schematic of the toy problem showing the true behavior � 
(blue line), the model of the behavior m(t, �) (magenta line) and the 
observations yn (open circles)

1 The observant reader might notice some observations indicate a 
negative position due to the noise; while this example is not perfect, 
it serves the purpose of emphasizing the importance of considering 
model misfit in the analysis.
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Figure 6 shows marginal histograms from two different 
analyses performed to estimate the unknown model param-
eter ( � , which is the applied force) given the observed data 
without and with taking into account model discrepancy. A 
comparison of the two illustrates the need to consider dis-
crepancy in the statistical model. Figure 6a illustrates that 
how posterior inference under an imperfect model suffers 
from both bias (a systematic difference between the estima-
tor and the true value) and under-coverage (over-confidence 
in the results as measured by the amount of spread in the 
posterior distribution over � ). In comparison, Fig. 6b shows 
results from an analysis in which discrepancy was incorpo-
rated through an additive function (as in Eq. 11).

In this case, inference about � , as conveyed by the loca-
tion and spread of the posterior density, is much closer to 
the ground truth, which is now covered by the central 95% 
credible interval. It is interesting to note that this bias-var-
iance trade-off [31] is a commonly observed phenomenon, 
whereby a predictive model with lower bias has a higher 
variance and vice versa. This dilemma is brought on by the 
conflict of trying to simultaneously reduce both sources of 
error (bias and variance) and finding a balance between over-
fitting and under-fitting the training data.

With a clear understanding on the importance of consid-
ering model misfit in the inference problem, we now pro-
ceed to discuss the materials application to which we will 
be applying these techniques.

Case Study

Reduced-order, phenomenological and homogenized mod-
els are well-suited for Bayesian inferential analyses using 
MCMC simulations due to their low computational cost. 
In exchange for their simplified formulations and reduced 

computational cost (when compared to 3D, physics-based 
and full-field models), these models may leave out certain 
physics affecting the material behavior or process of inter-
est or may make other simplifying assumptions. It may 
also be the case that a model of higher fidelity may not be 
available for a particular application. The bottom line is 
that while these models may be very reliable over a sub-
set of the domain in their representation of the process or 
behavior, they may not be reliable over the entire domain 
(e.g., a model which captures plastic deformation well but 
does not consider elastic deformation). Consequently, this 
may introduce a systematic discrepancy over a redistricted 
domain, or a systematic discrepancy from the true process 
over the entire domain. However, this discrepancy need not 
prevent the use of reduced-order models as reliable tools in 
the prediction of material behavior. With the incorporation 
of model-form error into the statistical inference problem, 
their parameters can be reliably recovered without the need 
the restrict the domain of the model.

Take, for example, the phenomenological visco-plastic 
self-consistent (VPSC) crystal plasticity model developed 
by Tomé and Lebensohn at Los Alamos National Laboratory 
[32]. This model is commonly used to understand deforma-
tion and texture evolution at large plastic strains, however 
it does not include physics to consider the elastic regime of 
deformation. Because of this, a systematic discrepancy is 
present between the model and experimental observations of 
stress-strain response as they are collected. Reliable calibra-
tion of this model without restricting the domain requires the 
consideration of model-form error.

The VPSC crystal plasticity model uses the Voce hard-
ening law [33, 34] to describe the evolution of the critical 
resolved shear stress at the level of the grain. This phenom-
enological relationship evolves the critical resolved shear 

Fig. 6  A comparison of infer-
ence on the toy example. a 
without and b with the contribu-
tion of model misfit
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stress (CRSS) as a function of the accumulated shear across 
all slip systems, � , in the grain,

Here, the incremental shear is denoted by d�  , and unknown 
parameters in the model are the initial critical resolved shear 
stress (CRSS), �0 , the asymptotic CRSS increase �1 , the ini-
tial hardening rate �0 and the asymptotic hardening rate �1.2 
Accurate description of hardening in the model is depend-
ent on reliable parameter estimation within the law, which 
are not based on physics but do have physical meaning and 
whose values can be extrapolated outside the bounds of 
calibration to consider various cases of deformation. The 
VPSC model produces the final texture evolution and the 
stress–strain response of a material undergoing deformation 
by homogenizing the local response to obtain the macro-
scopic response of the material.

One of the two case studies presented in Ricciardi et al. 
[16] considers inference on the unknown Voce hardening 
parameters, and propagates this uncertainty to induce a pre-
dictive distribution in the stress–strain response enabling 
prediction for experimental data not yet observed. Obser-
vational error as well as sample-to-sample variability were 
considered in performing inference on the parameters while 
conditioning on observations from only the plastic regime of 
deformation. Conditioning on this restricted domain allowed 
the reasonable assumption that the VSPC model was correct 
despite its drawbacks in the elastic regime of deformation.

However, in general, we wish to employ the full experi-
mental data collected without restricting the observation 
domain (i.e., with elastic and plastic data). As we have 
seen, this risks introducing bias and under-coverage in any 
parameter estimates when model misfit is not explicitly con-
sidered. The missing physics in the VPSC model produces a 
systematic discrepancy between the model and observations. 
Therefore, it can no longer be calibrated under the assump-
tion that it forms the mean of the observation process across 
both elastic and plastic regions. Including model misfit in 
the analysis will account for this discrepancy, reducing bias 
in the estimated parameters and propagated model output.

To demonstrate the necessity of including the model 
discrepancy in the inference problem, an analysis was per-
formed by conditioning the VPSC model on both the elastic 
and plastic regimes of deformation without consideration 
of model misfit. As pointed out by Brynjardóttir [17], the 
posterior distribution of � centers around a ‘posterior best 
fit’ value which minimizes the mean residual error between 

(21)𝜏𝛼 = 𝜏𝛼
0
+ (𝜏𝛼

1
+ 𝜉𝛼

1
𝛤 )

(
1 − exp

{
−𝛤

|||||
𝜉𝛼
0

𝜏𝛼
1

|||||

})
.

the model output and the observations. Thus, ignoring model 
misfit introduces bias in the parameter estimates and con-
sequently the model trajectory, as illustrated in Fig. 7. The 
observations of the state are in red and in black are 200 
samples drawn from the posterior distribution and propa-
gated through the model to induce a distribution on the true 
stress–strain behavior given the data. The evident bias is 
particularly problematic in cases such as this where model 
parameters are not simply tuning parameters but whose val-
ues are of intrinsic interest and necessary for reliable predic-
tion, in both cases of interpolation and extrapolation.

Statistical Model

We assume the true underlying behavior of the system is 
represented by overall effect 𝜃 = (𝜃1,… , 𝜃D)

⊤ , which is 
comprised of a D-dimensional vector of unknown model 
parameters. Yet, due to the random nature of microstructural 
heterogeneity, observations from each sample are generated 
under slightly different states which are therefore modeled as 
random effects. Model parameters corresponding to sample 
s ∈ {1,… , S} (where S is the total number of samples) are 
denoted by 𝜃[s] =

(
𝜃
[s]

1
,… , 𝜃

[s]

D

)⊤
 . A D-dimensional Multi-

variate Normal distribution describes the variation of the 
random effects around the overall effect,

(22)

f (𝜃[s] ∣ 𝜃,𝛬) ∝ MVND

(
𝜃[s]; 𝜃,𝛬−1

)
�{C(𝜃) > 0}

∝ det{𝛬}1∕2 exp
{
−
1

2
‖‖𝜃[s] − 𝜃‖‖22(𝛬)

}

⋅ �{C(𝜃) > 0}, s = 1,… , S.

Fig. 7  Analysis for VPSC from data in both elastic and plastic 
regimes of deformation without accounting for model discrepancy. 
The red points are observations and the black lines show approxi-
mately 200 samples from the posterior distribution

2 The hardening rates are traditionally represented by �0 and �1 in the 
Voce hardening law. However, to avoid confusion with parameters in 
the statistical model, this notation is adopted as in [16].



190 Integrating Materials and Manufacturing Innovation (2020) 9:181–198

1 3

The decomposi t ion  of  the  prec is ion  matr ix 
� = diag (t)R diag (t) , allows us to define a flexible prior 
model separately on the correlation matrix, R, and the stand-
ard deviations, t = (t1,… , tD)

⊤ . Physical constraints on the 
model parameters are introduced through the indicator func-
tion �{C(𝜃) > 0} , where positive C(𝜃) = (𝜏0, 𝜏1, 𝜃0 − 𝜃1)

⊤ 
ensures that there is no softening in the material, and the 
asymptotic hardening rate reaches a limiting value.

The model for the observations follows Eq. (11) and we 
assume i.i.d. Gaussian error at each variable input repre-
sented by �2 such that, � = �2�N . In other words, we assume 
the observational error contribution is the same across all 
variable inputs. The model for the observations becomes,

where � is an unknown discrepancy function. A Multivari-
ate Normal distribution is assumed for the likelihood of the 
observations centered at the sum of the model plus the dis-
crepancy with covariance matrix �−1.

Diffuse priors are assigned to the overall effective param-
eters in � , reflecting our prior uncertainty about the spread of 
the sample parameters from their center. The priors on �0 and 
�1 were chosen to be Gamma distributed with hyperparam-
eters specifying a mean of 70 for both and a large variance,

Priors on �0 and �1 were modeled via diffuse Normal 
distributions,

Prior means were chosen based on previous studies. The 
error precision, �2 is modeled with a Gamma distribution in 
order to ensure that only positive real values are possible. A 
Wishart prior is chosen for the correlation matrix, R, since 
it is a symmetric positive-definite matrix and the variances, 
t2
d
, d = 1,… ,D are assigned Gamma distributions. The 

prior on the unknown discrepancy function, � , is a zero-
mean Gaussian process with a custom covariance structure, 
which will be discussed below and shown in Fig. 8. Since 

(23)
y[s]

(
xn
)
= m

(
xn, �

[s]
)
+ en + �

(
xn
)
,

en ∼ MVNN

(
0,�−1

)
,

n = 1,… ,N, s = 1,… , S,

(24)

f (y[s] ∣ m
(
�[s]

)
,� ,�) ∝ MVND

(
y[s]; m

(
�[s]

)
+ �,�−1

)

∝ det{�}1∕2 exp

{
−
1

2

‖‖‖y
[s] − m

(
�[s]

)
− �

‖‖‖
2

2
(� )

}
,

s = 1,… , S.

(25)
�
(
�0
)
= Gamma

(
a�0 , b�0

)
,

�
(
�1
)
= Gamma

(
a�1 , b�1

)
.

(26)
�
(
�0
)
= Normal

(
��0

, �2
�0

)
,

�
(
�1
)
= Normal

(
��1

, �2
�1

)
.

the likelihood model (24) only requires � to be evaluated at 
N discrete points, this prior becomes a Multivariate Nor-
mal distribution centered at zero with covariance matrix �  , 
obtained by evaluating the GP covariance function at the 
vector of observation locations (x1,… , xN)

⊤ . Summaries of 
the prior distributions are provided in Table 1.

Since the VPSC model uses a constitutive equation that 
only accounts for plastic deformation and does not consider 
the elastic regime of deformation, a large discrepancy is 
expected in the elastic region, decreasing as we get closer 
to the elastic–plastic transition. Furthermore the model is 
expected to have little to no systematic misfit in the plastic 
region. Because of the contrast in the expected structure of 
the discrepancy for these two regimes, we select a piece-
wise formulation for the prior covariance. The strain at the 
elastic–plastic transition also marks the transition in the 
piece-wise covariance function,

We denote the index of the strain at the elastic–plastic transi-
tion by t. The strain at the transition is traditionally taken to 
correspond to the yield stress at .2% offset. While this value 
will differ between samples, we take this value to be fixed 
at .0025. In Eq. (27), �el = {1,… , t} is the set of indices 
within the elastic regime, and �pl = {t + 1,… ,N} is the set 
of indices of plastic strain.

For Cov el we choose a non-stationary smooth covariance 
function since the greatest discrepancy is expected to occur 
at x = 0 and to taper to zero at xt . While the length-scale and 
variance hyperparameters of the covariance function can be 
inferred within the hierarchical model, here we assign values 
wel = 1.4 × 10−4 and �2

el
= 1.0 × 1014.

A stationary covariance structure is chosen for the plastic 
region with a length scale of wpl = .02 and a variance of 
�2
pl
= 1.0 × 10−4 . A small prior variance is chosen since we 

expect very little misfit in the plastic regime. Essentially, the 

(27)�i,j =

{
Cov el

(
xi, xj

)
, i, j ∈ �el,

Cov pl

(
xi, xj

)
, i, j ∈ �pl.

Table 1  Prior hyperparameters for the case study with corresponding 
prior means and variances

Parameter Model �� �� ashape brate

�0 Gamma 70 5000 .98 .014
�1 Gamma 70 5000 .98 .014
�0 Normal 1800 1 × 106 – –
�1 Normal 600 1 × 106 – –
�2 Gamma 10 100 1 .1
� MVN

N
0 � – –

R Wishart
D

(D + 2) ⋅ �
D

(D + 2) ⋅ 1
D
+

(D + 2) ⋅ �
D

– –

t
2

d
Gamma 10 100 1 .1
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prior penalizes deviations of the model from the observa-
tions in this region. Figure 8 shows multiple draws from the 
prior over � for both the elastic and plastic regions as well 
as over the full domain.

Results

The MCMC algorithm detailed in [16] was used for this 
work with appropriate adjustments (i.e., the decomposition 
of the random effects precision � as well as the inclusion 
of the model discrepancy � ) and can be found in “Appen-
dix 1”.3 A total of 1.25 × 105 Markov chain Monte Carlo 
samples were simulated targeting the posterior (12) and 

posterior predictive (14) distributions with the first 2.5 × 103 
samples being discarded as burn-in. Trace plots as well as 
correlation plots were used to monitor convergence.

Marginal posterior histograms as well as bivariate kernel 
density estimates of marginal posterior contours are shown 
in Fig. 9 for a representative random effect and the overall 
effect. In Fig. 9b the red lines show the marginal as well as 
bivariate marginal priors placed on the overall effect param-
eters for comparison. Notably, there is an almost perfect 
positive posterior correlation between random effect param-
eters �1 and �1 , also provided in Table 3 in “Appendix 3”. 
Likewise, there is moderate posterior correlation between 
the overall parameters. A bivariate kernel density estimate 
of the marginal posterior over (�1, �1) is shown in Fig. 10a, 

Fig. 8  Random draws over the full domain in a with an inset show-
ing the elastic–plastic transition. Note, the relative prior variances 
between the elastic and plastic regions are so different that some parts 

appear to be flat when plotted together. Random draws from the prior 
of the discrepancy in the elastic region is shown in b and the plastic 
region in c. Note the difference in the scale of the vertical axes

3 The code and required data to reproduce these results is made avail-
able on GitHub at https ://githu b.com/mesoO SU/UQ.

https://github.com/mesoOSU/UQ
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with the overall effect shown as a dashed line. Figure 10b 
shows a bivariate kernel density estimate of the marginal 
posterior over (�0, �0) , with moderate correlation in both 
the random effects as well as the overall effect. Here, the 
reader is reminded that correlations between parameters are 
features of the posterior distribution and not directly of the 
physical system. Parameter combinations on a given contour 
of the posterior distribution simply have the same posterior 
probability given the observed data; a more thorough discus-
sion can be found in [16].

Posterior expectations for the model parameters are pro-
vided in Table 2, along with posterior uncertainty summa-
ries, including posterior variances and 95% highest posterior 
density intervals (HPIs).

Parameter uncertainty was propagated by sampling from 
the posterior distribution over the model parameters to gen-
erate posterior and posterior predictive distributions over 
the underlying stress–strain response and any unobserved 
data, respectively. 200 representative samples are shown 
in Fig. 11b, c, respectively. In both plots, 95% HPIs of the 
stress–strain response are represented with red dashed lines 
and the mean stress–strain response is shown with a red 
line. Here, we take a moment to remind the reader of the 
subtle difference in the interpretation of these two distribu-
tions. While the posterior distribution conveys our subjec-
tive belief about the true underlying property, the posterior 
predictive distribution is our belief about how future experi-
ments will behave, thus resulting in a property distribution 
which is more diffuse. Figure 11a shows the pointwise poste-
rior mean as well as its decomposition into the VPSC model 

Fig. 9  Marginal posterior 
histograms and parameter cor-
relations for a a representative 
random effect and b the overall 
effect, with prior draws included 
in red for the overall effect

Fig. 10  Marginal posterior con-
tours for a (�1, �1) and b (�0, �0) . 
Random effect marginal con-
tours are indicated by solid lines 
and the overall effect contours 
are indicated by a dashed line

Table 2  Posterior summaries for the overall effect parameters and 
error precision

Parameter ��∣y ��∣y 95% HPI

�0 55.74 0.90 (53.80, 57.60)
�1 65.35 16.27 (59.05, 75.18)
�0 711.97 498.76 (670.30, 759.63)
�1 139.33 297.76 (102.51, 171.54)
�2 12.71 0.30 (11.60, 13.79)
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evaluated at the expected value of the parameters and the 
mean discrepancy. Also included is an inset of the elastic 
region.

An informative comparison can be made between the 
analyses operated under the assumption that discrepancy is 
present (Fig. 11b), and the assumption that it is not (Fig. 7). 
The strong bias evident in the ‘no discrepancy’ analysis is 
not present when model misfit is accounted for.

Discussion

When to Include Discrepancy While the incorporation of 
model discrepancy was appropriate and necessary for the 
study presented here, its inclusion is highly application 
dependent. In cases such as this where (1) The model is 
missing physics, resulting in systematic discrepancy between 
the model output and the observations and (2) There is 
strong prior knowledge about the misfit between the model 
and true process (details on this in the following paragraph), 
then it is appropriate to incorporate discrepancy for inference 
and prediction. On the other hand, with acknowledgement 

that no model is perfect, it may be reasonable to exclude 
discrepancy from the analysis if the model is flexible enough 
to fit the data and the model is empirical in nature, where 
parameters do not have physical significance. The condition 
on the empirical nature is important since even if a model 
is flexible enough to fit the data (as in the toy example), the 
parameter estimates will be strongly biased while HPIs may 
not cover the true parameter values.

Identifiability and Sensitivity of Modeling Discrepancy 
The sensitivity of modeling discrepancy stems from the 
property of indentifiability. This describes a desirable prop-
erty of parameters in statistical models by which their true 
values can be inferred from the data. The ability to identify 
model components depends on both the model structure and 
the type and quantity of data that is available. Parameters 
which are structurally non-identifiable are not independ-
ent of each other, and cannot be uniquely decoupled even 
with an infinite amount of calibration data In the paper by 
Brynjarsdóttir [17], this concept is succinctly expressed by 
rewriting the model for the observations with discrepancy 
in (10) as,

Fig. 11  The pointwise posterior 
mean (blue), the VPSC model 
evaluated at the posterior mean 
parameter values (red) and the 
mean discrepancy (green) are 
shown in a with an inset show-
ing the elastic region. 200 draws 
from the a posterior and b pos-
terior predictive distributions 
are shown with the mean and 
95% highest posterior density 
intervals shown
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Note that, even if the true process � is known perfectly, for 
every value of � , there is a corresponding � that satisfies the 
condition in (28). Therefore, � and � are not identifiable from 
the observations.

As discussed in [17], the key to reliable learning about the 
parameters is to incorporate as much prior information about 
the discrepancy (and � ) as possible. The more realistic the 
prior information is (i.e., assigning higher prior probability 
the true � and � ), the more reliable the inference will be [17]. 
Making stronger (but still realistic) prior assumptions typi-
cally translates to a reduction in posterior uncertainty over 
� and � . Conversely, lack of understanding of the missing 
physics may not result in reliable estimates even a discrep-
ancy model is incorporated into the statistical model.

Discrepancy in Applications for ICME A question which 
arises from the importance of prior modeling is perhaps this: 
If reliable learning of the parameters requires such careful 
modeling of the discrepancy prior, why not just improve the 
constitutive model to include the physics and thus eliminate 
the need to account for the discrepancy? Often accounting 
for model misfit is both computationally and philosophically 
easier than improving a model. As an example, take the case 
study presented in this paper. Inference was performed on 
the VPSC model while accounting for discrepancy since the 
model does not include physics for the elastic regime of 
deformation. As demonstrated, the misfit due to a visco-plas-
tic model can be handled from a statistical perspective with 
some basic prior knowledge related to the applicable domain 
and effective magnitude of the elastic effect. Incorporation of 
an elastic component to the model, on the other hand, would 
require a single-crystal elastic constitutive law, numerical 
values of the components of the 4th order elasticity ten-
sor, a schema for partitioning the total deformation into the 
elastic and plastic contributions (typically � = �e

⋅ �p ), and 
significant updates to the numerical framework.

Even supposing a more complete model is available, it 
may still be beneficial to work with a simpler but discrep-
ant model. As an alternative to VPSC, inference could be 
performed on its more complete counterpart, the elaso-vis-
coplastic self-consistent model [35] or alternatively full-field 
elasto-viscoplastic fast Fourier transform [36–38] or finite 
element simulations [39, 40], which do account for elas-
tic deformation. However, the computational cost of these 
models is such that a technique such as MCMC for direct 
inference would be too expensive. Still, in many cases, a 
more complete model is not available for the application 
due to truly unknown effects, in which case the discrep-
ant model offers the best representation of the quantity of 
interest. As a result, if a model is very good at representing 
a material process or behavior on a restricted domain, but 
not the entire domain (resulting in systematic discrepancy), 

(28)�(x) = �(x) − m(x, �). the consideration of model-form error may still allow reli-
able inference and prediction on the unknown modeling 
components.

In a broad sense, while 3D, physics-based and full-field 
models may have a higher fidelity as a result of their com-
plex formulations, their high parameter dimensionality 
makes them very expensive and difficult to calibrate. In 
effect, MCMC simulations are not a feasible option for this 
class of models where a great number of evaluations are 
necessary in order to achieve convergence of the Markov 
chain to the target posterior. Of course, these high-fidelity 
models can make use of MCMC simulations in tandem with 
the adoption of a surrogate model or other techniques such 
as multi-fidelity optimization [41] to recover information on 
unknown modeling components. However, the framework 
we present in this work is intended for the analysis of models 
for which MCMC is not prohibitively expensive (although, it 
can be extended to include surrogate models). While a com-
parison of the techniques of emulation versus discrepancy 
modeling is outside the scope of this paper, it is worthwhile 
to note that emulation and surrogate inference come with 
its own set of challenges which may yet lead to difficulty in 
learning the true model parameters.

‘Lower’-Fidelity Models for Design The inclusion of 
model misfit into the inferential and predictive problem has 
important implications for reduced-order, homogenized, and 
phenomenological models. Accounting for model discrep-
ancy allows uncertainty propagation for reliable posterior 
predictions even when the model is incomplete or our physi-
cal understanding is not perfect. This has great value for 
design and engineering problems since it opens the door for 
the reliable use of these predictions in design and optimiza-
tion applications and is a main focus of ongoing work by the 
authors. Furthermore, the repercussion of biased parameter 
estimates compounds with long-term behavior and prop-
erty predictions. For example, although the VPSC model 
is primarily utilized to understand plastic behavior at large 
strain, unaccounted-for bias in the elastic region would have 
a strong affect on these long-term predictions, further under-
lying the importance of accounting for model discrepancy.

Conclusion

There is a great significance to the goals of ICME in 
accounting for model misfit in uncertainty analyses. Two 
primary goals of ICME are (1) The linking of models across 
vast scales in order to account for mechanisms and phe-
nomena affecting the material behavior and performance on 
many different levels, and (2) A reduction in the volume of 
experiments needed for design. This relies on being able to 
first quantify and then propagate uncertainty in and between 
models in the modeling chain in order to obtain a reliable 



195Integrating Materials and Manufacturing Innovation (2020) 9:181–198 

1 3

processing ↔ performance predictions and to establish a 
design confidence. However, many models which are used 
for design purposes are computationally intensive, with run 
times exceeding resources typically available to perform 
advanced UQ techniques without emulation. Being able to 
incorporate model misfit in to the UQ analysis opens the 
door to the use of reduced-order, phenomenological, or 
homogenized models in reliable design work.

In this work, a UQ analysis was performed on the phe-
nomenological VPSC model under the framework presented 
in [16], with appropriate adjustments to incorporate model 
misfit. The VPSC model, which accounts only for the plastic 
regime of deformation, was calibrated with data from both 
the elastic and plastic region. Uncertainties about unknown 

model parameters were established and propagated through 
the model for inference and prediction on the stress–strain 
response. Posterior summaries such as the MAP and HPI 
parameters and model evaluations were used to summarize 
the analysis.
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Appendix 1: MCMC Sampler Implementation
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Appendix 2: Derivation of Full‑Conditionals

Derivation of full conditional distributions over �2,� ,R and 
�.
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Appendix 3: Parameter Correlation

See Tables 3 and 4.
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(
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which is just a Normal–Normal hierarchy with full-conditional,

� ∣ {y[s]}S
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, {�[s]}S
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,� ∼ MVNN(�; m,V)

f
(
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where,
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(
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)

V = (� −1 + N� )−1.
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Appendix 4: Additional Figures

Marginal posterior distributions: Fig. 12 compares the dis-
tributions between the overall (dashed lines) and random 
effects (solid lines).

Table 3  Element-wise posterior 
correlation for a representative 
random effect from case study I

�
[1]

0
�
[1]

1
�
[1]

0
�
[1]

1

�
[1]

0
1

�
[1]

1
.03 1

�
[1]

0
−.91 −.31 1

�
[1]

1
.01 −1 .25 1

Table 4  Element-wise posterior 
correlation for the overall effect 
from case study I

�0 �1 �0 �1

�0 1
�1 −.63 1
�0 .82 −.56 1
�1 .75 −.94 .67 1

Fig. 12  Scaled marginal posterior densities from case study I for ran-
dom effects (solid lines) and the overall effect (dashed lines) for each 
Voce hardening parameter
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