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Abstract
Significant advances in theory, simulation tools, advanced computing infrastructure, and experimental frameworks have ena-
bled the field of materials science to become increasingly reliant on computer simulations. Theory-grounded computational 
models provide a better understanding of observed materials phenomena. At the same time, computational tools constitute 
an important ingredient of any framework that seeks to accelerate the materials development cycle. While simulations keep 
increasing in sophistication, formal frameworks for the quantification, propagation, and management of their uncertainties 
are required. Uncertainty analysis is fundamental to any effort to validate and verify simulations, which is often overlooked. 
Likewise, no simulation-driven materials design effort can be done with any level of robustness without properly accounting 
for the uncertainty in the predictions derived from the computational models. Here, we review some of the most recent works 
that have focused on the analysis, quantification, propagation, and management of uncertainty in computational materials 
science and ICME-based simulation-assisted materials design. Modern concepts of efficient uncertainty quantification and 
propagation, multi-scale/multi-level uncertainty analysis, model selection as well as model fusion are also discussed. While 
the topic remains relatively unexplored, there have been significant advances that herald an increased sophistication in the 
approaches followed for model validation and verification and model-based decision support.

Keywords Multi-scale/level modeling · Uncertainty quantification · Uncertainty propagation · Markov chain Monte Carlo · 
Information fusion

Introduction

Motivation

Computer simulations are a ’comprehensive method for 
studying systems that are best modeled with analytically 
unsolvable equations. [the term also] refers to the entire pro-
cess of choosing a model, finding a way of implementing 
that model in a form that can be run on a computer, studying 

the output of the resulting algorithm, and using this entire 
process to make inferences, and in turn trying to sanction 
those inferences, about the target system that one tries to 
model’ [1]. In materials science, we use computer simula-
tions to explore process–structure–property relationships 
that are too difficult/complex to express in closed analyti-
cal forms. These models or simulations usually incorporate 
background theories, numerical methods, and experimental 
data with varying degrees of uncertainty. Uncertainties (as 
discussed below) are mathematical representations of gaps 
in our knowledge about a system. These gaps arise because 
we do not have entire knowledge of the physical phenomena, 
our model parameterization is incomplete, and/or we only 
have partial knowledge of the state of a system when we 
attempt to simulate it.

Without a proper understanding of the origin and effect 
of uncertainties on the predictions associated with these 
models, it is impossible to assess their validity [2]. In 
simulation-assisted materials design, understanding how 
uncertainties in models propagate through model chains 
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is critical in order to arrive at robust decision making [3, 
4]. Unfortunately, in the field of materials science, com-
putational modeling has been mostly deterministic or 
uncertainty-agnostic as it is often (implicitly) assumed 
that systems are not stochastic in nature, models are rela-
tively complete, model parameters can be determined with 
absolute certainty, etc.

In deterministic calibration approaches, a single esti-
mate for model parameters is proposed given available 
data for the system of interest—conventional determin-
istic approaches tend to rely on the minimization of the 
discrepancy between the mean response of the model 
and the available data through least-squares methods, for 
example. In practice, however, uncertainty in the models 
themselves, as well as the experimental data, is confronted 
against results in multiple suitable sets of plausible models 
and model parameterizations that can provide similar pre-
dictions (model outputs) for the system under study. This 
is particularly the case with highly complex models and 
highly uncertain data.

From a probabilistic perspective, each of these model/
parameter combinations has a finite probability of being 
the most adequate representation of the ‘ground truth’ they 
all attempt to emulate [5]. In deterministic approaches for 
model building, however, all but one of the potentially 
infinite instances of model/parameter sets are ignored, 
resulting in predictions with no error bounds. Neglect of 
the uncertainty sources—i.e., model structure and model 
parameter uncertainties which are discussed later in 
"Uncertainty Categorization in Computational Modeling" 
section—is problematic because doing so makes it impos-
sible, even in principle, to evaluate the consistency of the 
model with the data. Moreover, deterministic model pre-
dictions do not provide sufficient information for robust or 
reliability-based design, where properly quantified uncer-
tainties in the predicted outcome of a design choice play a 
fundamental role [6–8].

Because of this reason, probabilistic calibration 
approaches that enable materials design under uncertainty 
have recently attracted considerable attention [9–11]. In 
these approaches, the uncertainties of the model parameters 
or input variables are first detected and then analytically or 
numerically quantified in the form of error bounds or prob-
ability distributions based on the available data for the sys-
tem. The probabilistic calibration of model parameters is 
known as uncertainty quantification (UQ), while the propa-
gation of these uncertainties forward through the model is 
known as uncertainty propagation (UP). Clearly, the assess-
ment of the uncertainties associated with the model predic-
tions is crucial because this results in higher confidence in 
the predictions themselves as well as in better estimation of 
risks associated with specific design choices, providing bet-
ter decision support for robust or reliability-based design [7].

Relevance to Integrated Computational Materials 
Engineering

Integrated Computational Materials Engineering (ICME) 
[12] prescribes the integration of models with experi-
ments as a strategy for the accelerated determination of 
process–structure–property–performance relationships. 
These relationships can then be inverted in order to design 
(optimize) the chemistry and synthesis/processing condi-
tions necessary to achieve specific (multi-scale) micro-
structures with targeted properties or performance metrics 
[13–15]. In this framework, UQ of the multi-scale models/
simulations has been recognized as one of the most critical 
elements to realize robust simulation-assisted materials 
design, although a more sustained research effort on this 
problem is warranted [16].

A major challenge to proper UQ/UP analysis along 
process–structure–property relationships is the realiza-
tion of the linkages between different models. To date, 
the dominant paradigm relies on the use of ‘hand-shaking’ 
protocols between models, explicitly passing outputs of a 
simulation platform as inputs to the next element of the 
model chain. This approach is considerably challenging 
because often times, different simulation tools are devel-
oped by different groups/communities and between-model 
interfacing requires significant synchronicity in software 
development efforts [16].

An emerging solution to this issue relies on the linking 
models and simulations in a probabilistic sense, rather than 
through explicit input–output linkages [17]. By propagating 
uncertainties across models, as a transformation of prob-
ability distribution functions representing the input space 
to probability distribution functions over the output space, 
statistical correlations between inputs and outputs can be 
obtained. Model linkages can in turn be implemented as 
operations over probability distribution functions. Since risk 
analysis essentially operates on the probability space, the 
application of stochastic approaches for UP naturally leads 
to properly grounded robust materials design.

Connections along input–output spaces tend to be 
challenging not only because of the complexities associ-
ated with model ‘handshaking’ but also because of the 
computational costs of the individual models themselves. 
Explicitly sampling the model/parameter space with suf-
ficient statistics to arrive at well-converged probability 
distribution functions is highly impractical in these cases. 
Here, machine learning (ML) models, such as Gaussian 
processes (GPs), can come into the picture to assist UQ/
UP operations by providing cheap surrogate models that 
emulate the response of expensive models at much more 
reduced cost—at the expense of potentially losing infor-
mation upon constructing these surrogate models.
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In materials design under the ICME framework, there 
are often different models/simulations/experiments with dif-
ferent fidelities available that attempt to describe the same 
physical phenomenon. In these cases, information fusion 
techniques can be applied to effectively and smartly combine 
the information obtained from these sources for better proba-
bilistic prediction of the system behavior [18–20]. An effi-
cient information query of sources can also be performed by 
maximizing the information gain based on the consideration 
of a trade-off between their cost and precision. Knowledge 
gradient (KG) is identified as one of the most commonly 
used approaches for this efficient query [21–23].

Bayesian Inference as an Essential Tool 
to Uncertainty Quantification/Propagation

Despite the importance of UQ, UP, and uncertainty man-
agement (UM) in materials design and discovery, just few 
systematic studies have been performed for the analysis of 
uncertainty in computational materials modeling/simulation 
over the past years [10, 24–38]. In most of these works, 
Bayesian inference has been introduced as the main tool for 
UQ of the computational models, mainly due to the relative 
simplicity of implementation and the rigor of the resulting 
Bayesian analysis. In addition, Bayesian approaches enable 
the use of prior information derived from previous experi-
ence or expert knowledge within a framework that naturally 
leads to knowledge update when the models/theories are 
confronted with newly acquired information.

Gelman et al. [39] and a Sandia National Laboratories 
report published in the past decade [40] had already high-
lighted the significance of applying Bayesian inference in 
engineering design problems with no concerns about the 
philosophical and/or conceptual debates associated with 
the basic principles of this inference framework, i.e., the 
long-running debate between frequentist and Bayesian 
frameworks for inference [41]. In Bayesian inference, the 
process of updating prior knowledge upon acquisition of 
new information implies the quantification of uncertainties 
in the model parameter space. Practically, the quantifica-
tion of such uncertainties is carried out by computing multi-
dimensional integrals that are very difficult or often nonvi-
able to evaluate through conventional integration techniques 
[42]. For this reason, Monte Carlo (MC) integration methods 
that take advantage of sampling techniques, such as Markov 
Chain Monte Carlo (MCMC), are usually used as a more 
robust and simpler solution to this problem [39, 43, 44].

Unfortunately, MC-based UQ/UP approaches require 
O
(
1 × 106

)
 model evaluations for properly converged 

uncertainty analysis, and in these cases, sensitivity analysis 
(SA) can be used to reduce the complexity of the problem. 
SA helps reduce the cost of UQ by discarding the model 
parameters/input variables that have the least influence 

over model outputs, thus reducing the dimensionality of the 
problem—MCMC sampling, as any numerical integration 
approach, is subject to the curse of dimensionality [45]. In 
other words, SA helps to find the influential factors that 
are required to be determined more accurately in order to 
reduce the uncertainty of the model outputs [10]. Generally, 
SA can be performed locally or globally. Local SA usually 
includes the first partial derivatives of the model outputs 
with respect to the factors. Higher values of the partial 
derivatives correspond to a higher influence of the factors 
on the outputs. Although local SA is simple and relatively 
easy to implement, it disregards (possible) nonlinearities 
in the models—many common materials simulations tend 
to be nonlinear—the uncertainty of the factors, as well as 
their possible interactions. To solve these issues, global SA 
can be used. Variance-based methods as well as the ele-
mentary effects method are the most well-known global SA 
approaches [10, 46]. It should be noted, however, that the 
cost of each MCMC sample is high enough in some cases 
that even SA cannot make the total cost of the approach rea-
sonable. In these cases, a less costly approach is to emulate 
the computer simulations with inexpensive, fast, ML sur-
rogate models [40].

Overview of Present Work

The main goal of the present work is to highlight the impor-
tance of UQ and UP in computational modeling as they 
greatly improve the process of validation and verification 
of scientific simulation tools, and most importantly, they 
enable robust materials design under ICME frameworks. 
The present contribution starts with the description of dif-
ferent sources of uncertainty as well as the definition of 
fundamental concepts in two different statistical points 
of view for UQ—i.e., frequentist and Bayesian inference. 
Then, significant works on UQ/UP in materials modeling are 
reviewed and this is followed by the discussion of novel and 
advanced approaches to address some major issues associ-
ated with UQ/UP in computational modeling. Advances in 
model selection and model fusion are also discussed. The 
paper closes by providing some ideas on how the field can 
make further progress as methods/frameworks for UQ/UP 
are further developed.

The Importance of Uncertainty 
Quantification in Design

From an epistemological perspective, there will always 
be missing knowledge about a physical system because 
of: sparse and uncertain information about the system at 
the moment of observation, physical limits to the resolu-
tion of the measurements, incomplete underlying theories, 
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fundamental or practical computational limitations. Incom-
plete knowledge necessarily leads to uncertainty, and it is 
thus expected that any simulation used to predict the behav-
ior of a material will carry a number of uncertainties. The 
latter should be quantified and analyzed against any avail-
able experimental evidence in order to facilitate the process 
of validation and verification of the underlying theoretical 
frameworks. Moreover, such uncertainties should be propa-
gated in order to provide decision support to the design/
optimization of materials and materials systems.

From an engineering perspective, risk assessment is an 
essential task for decision making in robust- and reliability-
based design [6, 47], which incorporates the probabilistic 
analysis of materials systems—i.e., UQ and UP. In robust 
design, the goal is to make the response of the system less 
sensitive to variations in the input variables. UQ/UP can pro-
vide information required to obtain a notion of confidence 

about the robustness of the system, as shown in Fig. 1. As 
can be observed in this figure, the variations in the design 
parameters (inputs) due to their uncertainties can reflect dif-
ferent variations in the responses (outputs) of the system. 
In robust design, it is important to determine the values of 
the design parameters such that their fluctuations have the 
least effects on the system outputs. The fundamental require-
ments of this analysis are UQ of the design parameters and 
subsequent UP from these parameters to the responses of 
the system.

UQ is also highly relevant in safety analysis in design. 
Here, it should be noted that the conservative considera-
tion of safety factors in an ad hoc manner to cover all the 
uncertainties in the system is no longer valid for the decision 
making in design. Instead, the probabilistic analyses (UQ) of 
the system’s response and its working conditions can provide 
a good quantitative measure for the probability of failure or 
reliability index which can be used to calculate the design 
safety factor in a systematic way. Therefore, probabilistic 
methods can provide a more precise and less conservative 
safety factor compared to their deterministic counterparts, 
resulting in a reduction in the design cost.

UQ is also important when designing materials and 
materials systems under constraints. In fact, there are a 
large number of materials design problems that include 
constraints in their input or output spaces—such as the 
design of functionally graded materials in additive manu-
facturing through path planning in the phase diagram in 
order to prevent the formation of undesirable phases in the 
final products [48]. (Here, the compositional constraints 
are defined by the boundaries of the undesirable phases 
in the phase diagram that contain some uncertainties.) 
Figure 2 schematically illustrates the need for UQ in such 
designs. In this figure, the red line surrounds the allow-
able (feasible) design region that satisfies the constraints 

Fig. 1  A schematic illustration of robust design based on the sensitiv-
ity of system outputs with respect to the variations (uncertainties) in 
its inputs

Fig. 2  A schematic example to illustrate the importance of UQ in a reliable (safe) design
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in the given design problem. The dark green ellipsoidal 
region also shows the optimal design space that can be 
obtained in any ICME hierarchical scale of interest—i.e., 
process, structure or property space—based on the per-
formance requirements. From a deterministic perspective 
(as shown in Fig. 2a), any point in this green region can 
be used for design; however, the entire green region may 
not be a reliable or safe design due to the absence of the 
UQ. In this regard, the quantification of the constraint 
uncertainties (confidence intervals) across the red bound-
ary which is shown in blue in Fig. 2b can provide a level 
of confidence or reliability in design by excluding the 
intersecting area between the blue and green regions from 
the optimal green region suggested in the deterministic 
design. The reason is that any point in this intersecting 
area has a relatively high probability for design failure 
due to the violation of the design constraints. Therefore, 
UQ in this schematic example plays an important role in 
order to identify the optimal and reliable region in the 
design space, rather than just the optimal region recom-
mended by the deterministic design.

The importance of UQ can also be discussed in regard 
to efficient global optimization, which has emerged as one 
of the important tools in accelerated materials design and 
discovery [49–51]. Materials design/discovery requires the 
solution of an inverse problem that maps desired property 
outcomes to required materials configurations (as well as 
the processing steps necessary to achieve them). The vast-
ness of the materials design space and the considerable 
cost associated with its exploration/exploitation via exper-
imental or computational means makes it necessary to rely 
on efficient optimization approaches. In these sequential 
optimization frameworks, a probabilistic prediction of the 
system response is performed throughout the entire design 
space by ML regression techniques (e.g., GP regression) 
and then followed by the maximization of an acquisition 
function to identify the next point to query given the data 
already acquired. After the design space has been queried, 
the probabilistic predictions (i.e., models) over the design 
space are updated and the cycle is repeated until the dis-
covery/design goal is achieved or resources are exhausted 
[52].

In all (Bayesian) optimization approaches for materi-
als design, the efficient exploration and exploitation of 
the materials design space are carried out by maximiz-
ing acquisition functions that explicitly account for the 
uncertainties in the response of the system. While in most 
applications of such frameworks, the predicted uncertain-
ties arise from the posterior distributions of the ML mod-
els used to emulate the system response, explicitly propa-
gated uncertainty in model parameters and model inputs 
can certainly be used to arrive at more robust sequential 
experimental designs.

Classifications of Uncertainty Sources

Aleatoric Versus Epistemic Uncertainties

In order to ensure the rigorous analysis, quantification, and 
management of uncertainties in computer simulations, it is 
essential to understand their origin. The most well-known 
classifications of uncertainty are aleatoric vs epistemic 
uncertainty [9]. Both types of uncertainties exist in most 
scientific, engineering, and design problems, and it is thus 
necessary to understand their characteristics, origin as well 
as the extent to which they can be managed. Aleatoric 
uncertainty—also known as irreducible uncertainty—
results from the inherent random variability in either the 
material structure or its behavior, which in principle can 
only be properly quantified in the form of a frequency 
(probability) distribution. For example, results obtained 
from two identical experiments/measurements are not nec-
essarily the same due to the natural randomness or sto-
chastic nature of the system—e.g., no two microstructures 
are identical and can only be compared in the aggregate. 
Proper quantification of this type of uncertainty requires 
extensive sampling of nominally identical instances of the 
system under study. However, random or mixed-effects 
models with factors representing random effects or the 
mix of fixed and random effects—such as the models used 
in sensitivity analysis (SA) through analysis of variance 
(ANOVA)—can be applied to reduce the cost of aleato-
ric UQ with a trade-off in precision. In these approaches, 
variance components that include the residual variance 
(aleatoric uncertainty) are estimated through expected 
mean squares (EMS) or restricted maximum likelihood 
(REML) techniques. Surrogate modeling approaches—
e.g., Kennedy and O’Hagan’s GP-based approach which is 
explained further in "Uncertainty Categorization in Com-
putational Modeling" section—can also be considered as 
cheap solutions for the determination of aleatoric uncer-
tainty. As it is clear from its name, this type of uncertainty 
cannot be reduced but only managed. As the technology 
for UQ is advancing, it is likely to re-categorize some of 
these uncertainties as epistemic in the future.

Contrary to aleatoric uncertainty, epistemic or reducible 
uncertainty arises from the inadequate and/or inaccurate/
incomplete knowledge of the system under investigation 
[24]. Epistemic uncertainty can potentially be reduced by 
improving/increasing our knowledge—accessed through 
simulations and/or experiments—about the system [53]. 
In experiments, better control of experimental conditions, 
better calibration of measuring tools, and fewer human 
errors through better design of experimental protocols 
contribute to reducing epistemic uncertainty. In compu-
tational modeling, the reduction in epistemic uncertainty 
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can be achieved by acquiring more knowledge about the 
physics and parameters of the system as well as through 
modeling frameworks with higher fidelity, resolution, etc.

A better understanding of the characteristics of the uncer-
tainty classes discussed above can be arrived through anal-
ogy by looking at precision and accuracy in target shooting. 
Figure 3 shows the aleatoric (precision) and epistemic (accu-
racy) uncertainty through the scattered and deviated shots 
on the target, respectively. As can be observed in this figure, 
there are different degrees of scatter and deviation which 
represent different contributions of these two uncertainties to 
the total uncertainty in this case. Here, the accuracy can be 
improved by changing the aim point from the target center to 
the point obtained by the point symmetry of the shot center 
on the target. This implies a reduction in epistemic uncer-
tainty. On the other hand, aleatoric uncertainty is irreducible 
but describable in the form of a frequency distribution [10]. 
However, it should be noted that this analogy disregards the 
possibility of the random scatter appearance due to the epis-
temic uncertainty. In other words, the bias, in this case, is 
always clear based on the shooting condition, but in reality, 
some cases may show random biases.

Uncertainty Categorization in Computational 
Modeling

From the perspective of computer simulation, uncertainty 
can be further classified into natural (NU), model parame-
ter (MPU), model structure (MSU), and propagated uncer-
tainty (PU). The first three classes were proposed earlier 
by Isukapalli et al. [53], while PU has been later added as 

a unique category of uncertainty [6], particularly due to 
its high relevance in the verification and validation of the 
theoretical underpinnings of simulation tools as well as in 
robust design of materials.

In the above classification, NU is the same as aleatoric 
uncertainty, as explained in "Aleatoric Versus Epistemic 
Uncertainties" section. This uncertainty is irreducible but 
manageable through robust design as the latter can be 
used to identify regions in the input space where the sys-
tem’s performance exhibits the least possible sensitivity 
to uncertainty. MPU arises from insufficient or inaccurate 
information about the parameters with considerable influ-
ence on the response of the model. This type of uncer-
tainty can be reduced by obtaining more data or more pre-
cise experiments/measurements. MSU, on the other hand, 
results from incomplete knowledge about the physics of 
the problem, incorrect assumptions or simplifications, and/
or numerical inaccuracies. This type of uncertainty can 
also be reduced by improving the model structure, includ-
ing better understanding of the physics of the given sys-
tem, fewer simplifications, more accurate assumptions, and 
the application or development of more precise numerical 
methods [6]. In the case in which data on the ground truth 
are available, the Kennedy and O’Hagan’s approach can 
be applied to partition NU, MPU, and MSU [54]. In this 
approach, a linear correlation is considered between data 
and model prediction at any given point x in the design 
space, as follows:

where D, � , M, � , �, and � are data, a constant linear coef-
ficient, the physical or GP fitted model, the model param-
eters (to account for MPU), a model discrepancy function 
(to account for MSU), and the data error (to account for 
NU), respectively. � is assumed to be a normally distrib-
uted function with a fixed variance—i.e., N(0, �2) . Based 
on Kennedy and O’Hagan’s approach, two GP models are 
constructed using the collected data and a sufficient number 
of results obtained from the physical model to estimate M 
and �. (M can be considered as the physical model itself if 
it is not expensive.) Then, the vector of parameters in this 
framework, Φ = {�, �, �,� , �2} , is estimated by a probabil-
istic calibration technique such as MCMC, where � and � 
are the vectors of regressors and hyper-parameters in the 
constructed GP(s), respectively. This is how the above-men-
tioned classes of uncertainty can be quantified and differenti-
ated from each other [54, 55].

Generally, this uncertainty partitioning is essential in 
computational modeling since it can provide an insight 
into potentially effective approaches to reduce uncertainty. 
For example, the ratio of MSU to MPU can help one 
determine which area in the modeling structure (physics 

(1)D(x) = �M(x, �) + �(x) + �(x)

Fig. 3  An illustration of aleatoric and epistemic uncertainty through 
their analogy with precision and accuracy. Reprinted with permission 
from [10]
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or parameters) requires more information for uncertainty 
reduction. In the end, PU is the uncertainty that can be 
propagated along a chain of models to the final outputs. 
Analysis and quantification of this type of uncertainty are 
very important in materials design since the decision-
making process must be performed according to the final 
uncertainty obtained from a chain of models, not from the 
individual models themselves [6].

Uncertainty Propagation Versus Uncertainty 
Quantification

Uncertainty Propagation

UP in computational models/simulations is a forward anal-
ysis that involves mapping the uncertainty in the inputs/
parameters to uncertainty on the outputs of the model. This 
process is, in essence, one of the transformations as the 
uncertainties (of different kinds) in the inputs/parameters of 
a model are transformed into uncertainties in the model out-
puts. This process often involves sampling the input/param-
eter space and then propagating its uncertainties through the 
evaluation of the model or a surrogate.

The most basic approach to the propagation of uncer-
tainty through computational models/simulations is 
based on numerical Monte Carlo (MC) sampling—e.g., 
Fig. 4. For a general computational model, f (�) , where 
� = (X1,X2,… ,Xd)

T  and the � is a random vector, MC 
sampling works by sampling a point � from the distribution 
of � and then running the computational model to evaluate 
f (�) . If this process is repeated (tens, hundreds of) thou-
sands of times, then the strong law of large numbers and an 
application of Skorokhod’s representation theorem guaran-
tee that the empirical distribution of the output evaluations 
converges in distribution to that of f (�) [56, 57]:

where �(�i ≤ �) is the maximum convention Heaviside step 
function defined as

Fn,f  is the empirical distribution of f (�) generated by sam-
pling, and Ff  is the cumulative distribution function of f (�) . 
Given this convergence behavior, MC sampling is often con-
sidered the gold standard to compare against when develop-
ing new algorithms/frameworks for UP [58–63], although its 
slow convergence rate of O(1∕

√
n) makes it impractical for 

most expensive models [57].
In cases in which direct sampling of the model space 

through MC-based approaches is impractical, analytical 
methods are often used to accelerate the process of UP. 
These methods usually utilize surrogate models to approxi-
mate the uncertainty of the model outputs. Therefore, 
choosing between these two alternatives of UP methods—
i.e., numerical and analytical methods—results in a trade-
off between cost and accuracy. Generally, it can be stated 
that analytical UP methods are faster but not as accurate as 
numerical counterparts. Among analytical methods, first-
order second moment (FOSM) and second-order second 
moment (SOSM) techniques have commonly been used for 
nonlinear propagation of uncertainty in different scientific 
and engineering problems [31, 47, 64]. In these techniques, 
uncertainty is propagated along a first- or seconder-order 
series approximation of the (expensive) model at the input/
parameter mean value rather than the model itself.

Polynomial chaos expansion (PCE) and Kriging (GP 
regression) are two other analytical approaches that have 
become increasingly popular in recent years. In PCE, the 
computational model/simulation is considered as a black 
box where the inputs and outputs are the only known model 
features. This method creates a surrogate model by choos-
ing a finite set of orthonormal polynomials (functions of 
the uncertain inputs) whose coefficients can be optimized 
against the available data for the system. The least-angle 
regression and the least-square algorithm are examples of 
approaches that can be used to select the polynomials in the 
basis and to optimize their coefficients, respectively [65]. 
GP is a supervised nonparametric regression approach that 
provides a probabilistic stochastic surrogate model based 
on weighted distance-based correlations between the errors 
of the input sample points. In essence, the closer the sam-
ple points are, the closer their errors will be. Here, the data 
obtained from the (expensive) model/simulation are utilized 
to optimize the hyper-parameters in the correlation function, 
mostly using the maximum likelihood method [65–67].

(2)Fn,f (�) =
1

n

n∑

i=1

�(�i ≤ �)
D
�������→ Ff (�) as n → ∞,

(3)�(� ≤ �) =

{
1, if xi ≤ ti, ∀ i ∈ {1, 2,… , d}

0, otherwise,

Fig. 4  MC-based UP in CALPHAD-based thermodynamic modeling 
of the Hf–Si binary system. Reprinted with permission from [29]
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Uncertainty Quantification

UQ is an inverse analysis that determines the overall uncer-
tainty over the model parameters/inputs based on the avail-
able data for the system and its error [43]. UQ approaches 
are usually capable of providing the full statistical property 
of the model parameters in the form of a multivariate prob-
ability distribution whose covariance matrix indicates the 
parameter correlations. As is the case in UP, MC-based 
numerical methods that will be discussed later in "Bayes-
ian Inference" section tend to be the standard approaches to 
UQ—as an example, the marginal frequency distribution of 

two parameters resulting from an MCMC probabilistic cali-
bration of a CALPHAD model for the Hf–Si binary system 
is shown in Fig. 5. Despite their straightforward nature, MC-
based methods tend to be very expensive, especially in cases 
in which the models are very expensive and/or in which the 
input parameter space is highly dimensional.

As mentioned earlier in  "Uncertainty Propagation" sec-
tion, surrogate-based approaches can be employed to address 
this computational cost. Figure 6, for example, shows a case 
study for a surrogate-based uncertainty analysis of a finite 
element-based thermal model in additive manufacturing. In 
that work, Mahmoudi et al. [68] have used a multi-output 

Fig. 5  Marginal frequency distribution of two CALPHAD parameters in the Hf–Si system after an MCMC probabilistic calibration against the 
available data. Reprinted with permission from [29]

Fig. 6  Surrogate-based uncertainty analysis of finite element-based 
thermal models in additive manufacturing. left: experimental charac-
terization of melt pool dimensions; right: comparison between surro-

gate model predictions and finite element simulations. Reprinted with 
permission from [68]
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Gaussian process (MOGP) regression model to represent 
physically correlated outputs from a thermal model. The 
MOGP was used in turn to carry out MCMC-based model 
calibration against experimental data.

Practically, surrogate-based approximations of model 
outputs are not always able to provide sound uncertainty 
analysis with high degree of confidence. In these cases, 
the model itself should be used directly in order to achieve 
higher precision in UQ. In cases in which the cost of MC-
based methods arises from high dimensionality in the input 
space, it is possible to discard the model parameters less 
likely to impact the model output through SA. It should be 
noted that variance-based sensitivity analyses (VBSAs)—
e.g., ANOVA—are the most commonly used approaches in 
engineering [30, 69–72]. ANOVA is a powerful global SA 
with a good performance in high-dimensional cases, where 
the influential parameters are identified through hypothesis 
testing built upon partitioning the total uncertainty of the 
model prediction into the uncertainties arisen from the indi-
vidual parameters and their interactions [73].

Statistical Inference for Uncertainty 
Quantification

UQ can generally be understood through two different sta-
tistical paradigms—i.e., frequentist and Bayesian. The con-
trast between these two competing frameworks originates 
on fundamental differences in the definition of probability, 
the assumptions about data and parameters, as well as their 
reliance on fundamentally different foundations of statisti-
cal inference. We wish to point out that both views have 
benefits and drawbacks and are equally relevant in the wider 
field of statistical inference. However, UQ Bayesian infer-
ence has recently received considerable attention. As will be 
discussed below, engineering and scientific problems tend to 
be data sparse (physical realizations or simulations of design 
choices are costly), which makes frequentist approaches 
much less useful as compared with Bayesian frameworks.

Frequentist Inference

Probability, from a frequentist point of view, is described 
in terms of the occurrence frequency of a specific outcome 
over numerous iterations of a measurement/observation at a 
unique condition (or set of values of inputs). In this context, 
data are always assumed to be a realization (random sample) 
of a random variable, whereas parameters are considered to 
be fixed but usually unknown [74]. In other words, frequen-
tist inference assumes that a single true vector of parameter 
values exists whose uncertainties can in principle, at least 
be mapped from an infinite number of samples of the under-
lying distribution. For this reason, more measurements/

observations result in a better inference for the true parame-
ter values and their uncertainties (UQ). When the frequentist 
paradigm is applied to model calibration and UQ, the true 
values and uncertainties of the parameters can be approxi-
mated through the average ( ⟨�F⟩ ) and variance–covariance 
matrix ( ĈF ) of the parameter estimates or best parameter 
values mapped from an ensemble of measurements/observa-
tions, as follows:

where ND and 𝜃i are the number of the measurements/
observations and the parameter estimate mapped from the 
ith measurement/observation in the ensemble, respectively 
[44]. In frequentist inference, the most popular approach to 
the identification of parameter estimates is the maximum 
likelihood estimation (MLE). As it is clear from the name of 
this approach, the parameter values that maximize the likeli-
hood function are considered as the parameter estimates:

where � , Di , and L(�|Di) denote the parameter variable, the 
ith measurement/observation, and the corresponding likeli-
hood function, respectively.

Another aspect of frequentist statistics is hypothesis test-
ing based on the calculation of a p value after the definition 
of the null and alternative hypotheses. Here, the p value 
aims to quantify how likely a specific event is to occur if 
the null hypothesis is assumed to be correct. The purpose of 
frequentist hypothesis testing is to examine whether the null 
hypothesis is rejected in favor of the alternative hypothesis 
or not. For the rejection of the null hypothesis, the p value 
must be smaller than a significance level ( � ) that is typically 
considered as 0.01, 0.05, or 0.1. For example, the Pearson 
linear correlations between model variables/parameters can 
be evaluated through the p test. Generally, these linear coef-
ficients can alter between − 1 and 1, where the lower/upper 
bound indicates a perfect negative/positive linear correla-
tion, and 0 indicates no correlation. In the above hypothesis 
testings, variables/parameters with no correlations are con-
sidered as null hypotheses. Here, the correlation coefficient 
obtained from any variable/parameter sample data can be 
used to calculate the corresponding p value and test whether 
there are significant linear correlations or not. In this regard, 
a p value less than the assumed significance level results in 
the rejection of the corresponding null hypothesis, which 
implies some correlations between variables/parameters. 
Another important application of the frequentist hypothesis 

(4)⟨𝜃F⟩ =
1

ND

ND�

i=1

𝜃i

(5)ĈF =
1

ND

ND�

i=1

(𝜃i − ⟨𝜃F⟩)(𝜃i − ⟨𝜃F⟩)T

(6)�̂�MLE
i

= arg𝜃 max
[
L(𝜃|Di)

]
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testing with p value is in SA based on ANOVA decompo-
sition to recognize the most influential parameters in the 
physical models. These influential parameters are deter-
mined by the rejection of the null hypotheses that are the 
zero contributions of the parameters and their interactions 
to the overall variation (uncertainty) of the model response.

Bayesian Inference

Within a Bayesian statistical paradigm, the degree of belief 
for a specific event to occur can be expressed in terms of a 
probability that can in turn be calculated by considering a 
combination of the current (prior) state of knowledge and 
newly given/acquired data/evidence [74]. In other words, the 
probability density of a specific value of an occurring quan-
tity is obtained based on the prior knowledge and new data. 
Bayesian statistics are generally described as conditional 
probabilities due to the subjectivity of the prior belief. In 
the Bayesian view, unlike its frequentist counterpart, param-
eters and data are considered as random variables with (un)
known prior probability distributions and a fixed constant 
with noise, respectively.

In this statistical framework, the prior probability distri-
bution for the parameters is updated to a posterior probabil-
ity distribution by the given data. It should also be noted that 
the posterior distribution is treated as a prior and updated 
to a new posterior distribution for the parameters as soon 
as other new data are provided. This sequential inference 
process is performed based on the Bayes’ theorem that is 

expressed as the following relationship derived from the 
fundamental definition of conditional probability:

where P(�|M) , P(D|�,M) , P(D|M), and P(�|M,D) are the 
prior probability or prior knowledge for the parameters 
shown as the probability of the parameter vector � given 
the model M, the likelihood function as the probability of 
acquiring the data D given the model M at the fixed param-
eters � , the evidence as the probability of getting the data 
D given the model M, and the posterior probability of the 
parameters shown as the probability of the parameter vector 
� given the model M and the data D, respectively.

Figure 7 shows an illustration of Bayesian inference for 
model parameter calibration and UQ based on the given 
data, where the parameter prior distribution is updated to a 
posterior distribution using the likelihood function. Such a 
posterior distribution (or a representative sample of param-
eter vectors) is considered as the solution for the inverse UQ 
problem. In the case that a representative parameter sample 
is obtained for the posterior probability distribution, the 
mean and variance–covariance matrix of the sample can 
be used to assign probabilistically calibrated values to the 
model parameters. As can be observed in this figure and 
also in Eq. 7, the posterior probability is proportional to 
the likelihood multiplied by the prior probability. There-
fore, the Bayesian inference is found upon the combined 
contributions of the likelihood and the prior, instead of just 

(7)P(�|M,D) =
P(D|�,M)P(�|M)

P(D|M)

Fig. 7  An illustration of the 
Bayesian inference framework. 
Reprinted with permission from 
[24]
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the likelihood, which is the main inference element in the 
frequentist approaches.

In the Bayesian framework, prior probability distributions 
can be defined either as informative or non-informative. 
Non-informative priors are usually used in cases in which 
there is very little prior information about the system param-
eters. The most commonly used non-informative and inform-
ative priors in engineering problems are uniform and normal 
distributions, respectively. Here, normal distributions must 
include proper selections of the hyper-parameters—specifi-
cally finite proper standard deviations—in order to be recog-
nized as informative priors since infinite standard deviations 
in these cases are equivalent to non-informative uniform 
priors. Beside normal distributions, the hyper-parameter 
choices are very important in the informativity of some other 
distributions. For example, informative inverse gamma prior 
distributions also need to have hyper-parameters greater than 
1 [75]. Generally, the definition of the prior distribution in 
Bayesian inference is a very important task since an incor-
rect prior distribution may misdirect the inference process. 
The strong influence of priors on the outcome of the infer-
ence process is perhaps the major source of criticism of 
Bayesian frameworks [76].

The definition of the likelihood function is another 
important aspect of the Bayesian inference framework. 
This function can generally be described in terms of the 
residuals (errors) between the given data and their corre-
sponding model outcomes as well as their variance. There 
are two general approaches—known as formal and infor-
mal—to the estimation of the likelihood function [77]. For-
mal approaches consider a statistical functional form for 
the residuals to derive the corresponding likelihood func-
tion [78]. Here, the parameters of this functional form can 
be calibrated against the measurements/observations. The 
explicit definition of the residual/likelihood function in the 
formal approaches enables the validation of the assump-
tions associated with the form of this function by new given 
measurements/observations. However, the assumptions of 
these approaches that consider the residuals to be formally 
distributed, uncorrelated, and/or stationary (homoscedastic) 
are not always true.

So-called informal likelihood functions have been 
developed to address these issues. One of the well-known 
approaches is the generalized likelihood uncertainty esti-
mation (GLUE) [79] that implicitly defines a general and 
flexible likelihood function based on a fuzzy measure. In 
this approach, the likelihood monotonically changes from 
0 to 1 as the similarity between the model prediction at 
the given parameter � and the corresponding measurement/
observation increases. This similarity can be defined in 
different measures of goodness in terms of the residuals 
and their variance. Although the informal approaches 
can handle complex structures for the residuals with no 

need for the definition of an explicit functional form, the 
assumptions for the residual function cannot be validated 
by new measurements/observations due to the implicit 
reference to the underlying residual structure in these 
approaches.

It is worth noting that the issues presented for both 
approaches have been addressed through a generalized for-
mal likelihood function proposed by Schoups et al. [77]. 
Here, the residual function is defined as a general explicit 
formal function with parameters that can be calibrated and 
that can account for the residuals’ correlation, heterosce-
dasticity, and generality in the functional form.

The evidence or the marginal likelihood is a normaliza-
tion constant in the Bayes’ theorem that can be calculated 
as:

The evidence is the key element in the calculation of 
the Bayes factor, which can be used as a metric for model 
comparison—in Bayesian model selection, BMS—as well 
as model fusion—in Bayesian model averaging, BMA. 
The Bayes factor and its application are discussed fur-
ther in "Model Selection and Information Fusion" sec-
tion. However, the above integration is not easy to solve 
when there are a large number of parameters in the model 
M. In these cases, asymptotic approximations—such as 
Laplace’s method, the variants of Laplace’s method, and 
the Schwarz criterion—or numerical methods— such as 
MC sampling methods, importance sampling methods, 
quadrature methods, and posterior sampling methods (e.g., 
MCMC sampling techniques)—can be applied to address 
this issue [80].

As mentioned earlier in this section, the posterior 
probability distribution determines the probability of the 
parameter vector � given the data, which is proportional 
to likelihood times prior. In problems related to parameter 
calibration and UQ, the main goal is to find the mean value 
( ⟨�B⟩ ) and variance–covariance matrix ( ̂cB ) of this distribu-
tion which can be determined as:

The absence of closed-form solutions and the curse of 
high dimensionality in most cases make these integrations 
very hard to solve through conventional analytical and 
numerical approaches. The most well-known solution is MC 
integration where the samples from the posterior distribution 
( P(�|D) ) are used to estimate the above integrations:

(8)P(D|M) = ∫ P(D|�,M)P(�|M)d�

(9)⟨�B⟩ = ∫ �P(��D)d�

(10)ĈB = ∫ (𝜃 − ⟨𝜃⟩)(𝜃 − ⟨𝜃⟩)TP(𝜃�D)d𝜃
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Therefore, a sampling tool is required for these approxi-
mations. Direct or rejection sampling can be applied for 
simple cases, but the complexity in most engineering mod-
els resulting from their high-dimensional parameter spaces 
brings a need for more practical and robust sampling meth-
ods. For this reason, MCMC approaches have been devel-
oped from the mid-twentieth century onwards [81]. How-
ever, the high cost of these sampling techniques limited their 
applications until recent decades due to lack of computing 
power. Now, MCMC methods are the most commonly used 
sampling techniques in Bayesian inference. Gibbs sampling 
and Metropolis–Hastings are two popular approaches to 
sample parameter vectors from the posterior distribution.

In the Gibbs sampling technique, the initial guess for the 
values of n given model parameters—i.e., �0 = {�1

0
,… , �n

0
}

—is updated by sampling a new value for each param-
eter from its corresponding conditional distribution—i.e., 
P(�i

1
|�1

1
,… , �

(i−1)

1
, �

(i+1)

0
,… , �n

0
,D) . This sampling continues 

n times to generate the new parameter vector �1 . It should be 
noted that these conditional distributions are defined based 
on the prior distributions for the parameters. The above pro-
cess can sequentially be performed by sampling parameters 
one by one from their conditional distributions defined in 
general form as P(�i

z
|�1

z
,… , �(i−1)

z
, �

(i+1)

z−1
,… , �n

z−1
,D) until 

the multivariate distribution obtained from the sampled 
parameter vectors tends to be stationary.

The Metropolis–Hastings algorithm also starts with an 
initial guess for the parameters, and then, parameter vector 
candidates are sequentially sampled from a posterior pro-
posal distribution (q) that can be adaptive toward the target 
distribution during the sampling process. At each iteration 
of this sequential approach, the sampled candidate can be 
accepted or rejected based on the Metropolis–Hastings ratio 
(MH), unlike the Gibbs sampling, where all the samples are 
accepted. This ratio is defined as follows:

In this equation, the first ratio, known as the Metropolis 
ratio, compares the likelihood times the prior probability 
for the sampled candidate with its counterpart for the last 
parameter vector in the chain at each MCMC iteration, 
which is technically equivalent to the comparison of their 
posterior probabilities. The second ratio, known as the Hast-
ings ratio, considers the asymmetry effect of the proposal 

(11)⟨�⟩ ≈ 1

N

N�

i=1

�i

(12)C� ≈
1

N

N�

i=1

(�i − ⟨�⟩)(�i − ⟨�⟩)T

(13)MH =
P(�cand)P(D|�cand)
P(�z−1)P(D|�z−1)

q(�z−1|�cand)
q(�cand|�z−1)

distribution. In essence, the probability for a forward move 
from �(z−1) to �Cand is compared with the probability of the 
reverse move at each MCMC iteration. In the case that 
the proposal distribution is symmetric, the Hastings ratio 
becomes 1. The calculated MH helps to decide about the 
acceptance or rejection of the sampled candidate at each 
MCMC iteration. Here, min(MH, 1) indicates the acceptance 
probability of the candidate. �z = �Cand when the candidate 
is accepted, while �z = �(z−1) in the case of rejection. This 
sequential sampling process continues until the proposal 
distribution becomes stationary.

Gibbs sampling is a particular case of the Metropo-
lis–Hastings approach, where the proposal distribution is 
assumed to be the conditional distribution for each param-
eter. Sampling from the conditional distributions rather than 
directly from the high-dimensional posterior distribution of 
the parameters makes the Gibbs sampling technique very 
attractive in Bayesian inference. However, it is not always 
easy to obtain the conditional distributions or to inversely 
sample these distributions due to their uncommon distribu-
tion forms. Moreover, Gibbs sampling may become very 
slow in convergence by getting stuck in the low-density 
regions of the posterior distribution. In these cases, the 
Metropolis–Hastings approach can provide better perfor-
mance. We note that advanced MC- and MCMC-based sam-
pling approaches with better efficiency have been proposed 
over recent years. The MultiNest algorithm [82] and ensem-
ble samplers with affine invariant [83] are two of the most 
important sampling approaches that have been developed to 
tackle the issues associated with sampling the multi-model 
and the badly scaled posterior distributions, respectively.

It is worth discussing how these methods work in princi-
ple to better comprehend their benefits. Nested sampling 
(NS) has mainly been developed for the calculation of the 
evidence (Eq. 8), but it can also be used to determine the 
posterior probability. In this approach, the multi-dimensional 
integral in Eq. 8 is transformed into a one-dimensional inte-
gral as  where L is the transformed likeli-
hood function as a function of prior volume X (see [82] for 
further details). Here, a prior volume is a region in the prior 
parameter space that satisfies an iso-contour constraint for 
the likelihood of the data given the model parameters. Prac-
tically, this transformed integral can be estimated by a stand-
ard quadrature method that sums up the transformed likeli-
hood values ( Li ) calculated for a sequential set of discrete 
prior volumes ( Xi ) times their corresponding weights ( wi)— 
i.e., . It should be noted that Xi alters 
from 1 to close to 0 in descending order as 
1 = X0 > X1 > ⋯ > Xi > ⋯ > XN > 0 . The weights are also 
determined by the trapezium rule as wi =

1

2
(Xi−1 − Xi+1).

Since the transformed likelihood function in terms of the 
prior volume is typically unknown, the mentioned summa-
tion is performed through an MC-based technique. In this 
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regard, a set of points called ’live points’ are sampled from 
the prior distribution, and then, in a sequential process, the 
point with the lowest likelihood considered as Li is discarded 
from these live points and substituted by a new point from 
the prior distribution with a likelihood value higher than Li . 
This strategy is used to find the prior volume Xi at each itera-
tion. This sampling process is repeated until the contribution 
of the current live points to the evidence value is less than 
a tolerance.

Efficient and robust sampling from the complex likeli-
hood-constrained prior distributions remains a big challenge. 
In this regard, the MultiNest approach has mainly been 
developed for sampling from the multimodal distributions. 
This technique partitions the live points into a set of (over-
lapping) ellipsoids with different volumes at each iteration. 
These ellipsoids are constructed using an expectation-min-
imization method where the sum of the ellipsoid volumes is 
minimized by considering a lower bound for their total 
enclosed volumes. This lower bound is defined as a user-
defined fraction of the expected prior volume calculated at 
each iteration. The new substitute point is uniformly sam-
pled from the union of these ellipsoids such that the proba-
bility of selecting this point from a specific ellipsoid equals 
its volume over the sum of the ellipsoid volumes. If the new 
point has a likelihood larger than Li , it is accepted with the 
probability of 1

q
 where q is the number of ellipsoids contain-

ing the point; otherwise, it is rejected, and this sampling 
process continues till the acceptance of a new point. In addi-
tion to the evidence calculation, the importance weights 
associated to the individual discarded points during the 
above sequential process can be used to infer the posterior 
distribution and its important statistical features, which are 
obtained as follows:

Despite the ability of the MultiNest approach in sam-
pling complex posterior distributions, there is a need for 
the proper choice of the user-defined parameter in order to 
provide an appropriate trade-off between the speed and bias 
in sampling [82].

In  ensemble  MCMC sampl ing ,  a  se t  o f  
walkers—i.e. ,  �⃗X = (X1,… ,Xk,… ,XL) ∈ ℝ

nL  where 
Xk = (Xk

1
,… ,Xk

n
) ∈ ℝ

n—move in the parameter space, 
rather than just one walker in the standard MCMC 
approaches. This approach produces a chain of ensembles, 
starting from �⃗X(1) to �⃗X(t) in a sequential sampling manner. 
Here, each ensemble is consecutively sampled from a pro-
posal probability density of independent walkers—i.e., 

(14)

Π( �⃗X) = Π(X1,… ,Xk,… ,XL) = 𝜋(X1) ×⋯ × 𝜋(Xk) ×⋯ × 𝜋(XL),  
where �(Xk) is the proposal density for the walker Xk—by 
considering the current positions of other ensembles. Gener-
ally, the ensemble sampling can improve the efficiency of 
the MCMC technique in optimization/calibration problems. 
Goodman and Weare [83] have improved the ensemble sam-
pling by an affine transformation that converts a bad-scaled 
distribution into a well-defined one in order to facilitate the 
sampling process. This transformation is defined in the form 
of Y = AX + b , which keeps the sampling process 
unchanged due to the proportionality of the transformed 
proposal distr ibution to the or iginal one—i.e., 
�A,b(Y) = �A,b(AX + b) ∝ �(X) . Let consider a 2D skewed 
proposal normal density as �(X) ∝ exp(−

(X1−X2)
2

2�
−

(X1+X2)
2

2
) . 

In this instance, a proper MCMC method should move the 
walker(s) in order of 

√
� and 1 in the (1,− 1) and (1,1) direc-

tions, respectively. However, the affine transformation makes 
the sampling process easier and faster by providing a normal 
distribution in the form of �(Y) ∝ exp(−

(Y2
1
+Y2

2
)

2
) where 

Y1 =
(X1−X2)√

�
 and Y2 = X1 + X2 [83].

The introduction of the posterior predictive distribution 
as another natural output of the Bayesian inference is also 
beneficial here. Unlike posterior distribution—i.e., P(�|xD) 
where xD shows the position of the available data—this dis-
tribution is independent of the parameters ( � ) and defined 
as a conditional probability of unobserved data points ( x∗ ) 
given the observed data ( xD)—i.e., P(x∗|xD) . Technically, 
the predictive distribution density is determined through the 
likelihood of unobserved data weighted by the posterior of 
the parameters given the observed data. One of the most 
important applications of the posterior predictive distribu-
tion is in GP surrogate modeling, where a normal distribu-
tion is predicted for any arbitrary x∗ given xD.

In contrast to the hypothesis testing using the p values in the 
frequentist view, a Bayesian hypothesis testing using the Bayes 
factor has been proposed by Jeffreys [84]. Here, the hypothesis 
testing is not carried out based on the rejection of the null 
hypothesis. Instead, probabilities are assigned to the hypoth-
eses using the calculation of Bayes factors that are the ratios 
of the posterior probabilities of all individual given hypotheses 
and a fixed arbitrary reference hypothesis. These probabilities 
indicate to what extent the given hypotheses are favored by the 
evidence. Therefore, they can act as a comparison measure in 
hypothesis testing. It is worth noting that hypotheses can be 
replaced by models in BMS and BMA, where the assigned 
probability to each model can be considered as the selection 
criterion and the model weight, respectively [80].
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Frequentist Versus Bayesian Inference: Benefits 
and Drawbacks

There are a number controversial discussions about frequentist 
and Bayesian inference. However, without paying attention to 
the controversies, it is important to know what the advantages 
and disadvantages of each view are in order to make an appro-
priate decision about which approach to use in order to have 
the best inference for a given problem.

The main criticism of the Bayesian inference paradigms, 
as mentioned above, is the high degree of subjectivity in the 
choice of the prior distributions. In this case, the form of prior 
distribution should be selected by the user, even if some data 
are available for the parameters. Generally, improper selection 
of the prior distribution can mislead or slow down the Bayes-
ian statistical inference. On the other hand, the selection of a 
reasonable prior distribution for the parameters provides better 
inference in the Bayesian approaches, especially when data are 
lacking. In this regard, it should be noted that increasing the 
data results in less effects of the prior on the posterior conver-
gence, which makes the Bayesian inference less subjective to 
the prior selection.

In frequentist approaches, on the other hand, a large 
quantity of data is required to have a reasonable inference, 
which demands a careful experimental design beforehand in 
order to acquire the required data. However, engineering and 
design problems usually suffer a lack of data due to the high 
cost of experiments. Here, Bayesian approaches can be more 
useful since the inference can be made by whatever data are 
available and also updated by any newly acquired data.

The differences between these two approaches to statisti-
cal inference can also be discussed in relation to hypothesis 
testing. The frequentist hypothesis testing offers the benefit 
of being objective due to the global agreement on the infer-
ence from p value. This view also criticizes the probability 
assignments to the hypotheses in the Bayesian hypothesis 
testing since a hypothesis is, according to the frequentist 
view, philosophically either wrong or true and nothing in 
between. However, the probabilities obtained from the Bayes 
factor help to decide which hypothesis or model is more 
favored by the evidence in the case of model selection and 
averaging. This can be considered as one of the major draw-
backs of the frequentist hypothesis testing when the null 
hypothesis is not rejected. In this case, it is unclear to what 
extent the null hypothesis is favored by the evidence. Moreo-
ver, Bayesian hypothesis testing can easily consider multiple 
alternative hypotheses, which is very difficult to manage in 
the frequentist case through multiple pair hypothesis testing. 
Unlike the frequentist testing approach, the hypotheses can 
be un-nested models in the Bayesian case—i.e., they can 
involve different sets of parameters [85].

Uncertainty Quantification/Propagation 
in Materials Modeling

In the past decade, as theories, codes, and computing 
infrastructure have reached increasingly advanced levels 
of sophistication and performance, UQ and UP in materi-
als simulations have slowly gained steam. The increased 
interest in the topic is due to the need to improve valida-
tion and verification protocols as well as to better inform 
decision-making processes in materials design. Although 
much work remains to be done and some future directions 
will be pointed out in later sections of the review, the field 
already has several examples of UQ/UP in virtually all 
scales/frameworks available in the computational materials 
science repertoire. Most of the efforts that will be discussed 
here correspond to single-scale/single-level modeling along 
the process–structure–property forward materials science 
paradigm. Virtually, all examples discussed deal with prob-
lems related to inorganic materials (mostly alloys) and this 
is mostly because of our lack of familiarity with simulations 
in other materials classes, although it could be argued that 
computational materials science work on inorganic materials 
is slightly ahead of work in other materials classes.

Electronic and Alloy Theoretic Calculations

At the electronic/atomic scale, Mortensen et al. [27] and 
Hanke [28] have performed pioneering work on the proba-
bilistic analysis of density functional theory (DFT) calcula-
tions. In the first work, the parameter uncertainties of an 
exchange–correlation functional used to account for elec-
tron–electron interactions have been quantified through a 
Bayesian approach. In this approach, an ensemble of the 
model parameter sets has been constructed given an experi-
mental database for different quantities of interest (QoIs) 
that includes bond lengths, binding energy, and vibrational 
frequencies. The parameter uncertainties have been propa-
gated to the mentioned QoIs through a forward analysis of 
the parameter ensemble [27]. In the latter work, the already 
known or calculated uncertainties for the parameters in a 
dispersion-corrected DFT model have been propagated to 
graphite inter-layer binding energies and distances using a 
standard analytical approach for the calculation of the sec-
ond central moment associated with variance (uncertainty) 
[28].

In this field, another important UQ/UP work has recently 
been published by Aldegunde et al. [86]. In this work, ML 
surrogate models based on cluster expansions have been 
proposed as alternatives to expensive first-principles quan-
tum mechanical simulations to accelerate the prediction of 
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several thermodynamic QoIs for alloys, including the convex 
hull (or ground state set), phase transitions as well as phase 
diagrams. Here, the appropriate cluster expansion model 
has automatically been selected through the application of 
a relevant vector machine that identifies the most influential 
and relevant basis functions given the data. After finding 
these basis functions, a Bayesian framework has been used 
to quantify the uncertainties in the expansion coefficients. 
Then, the coefficient uncertainties have been propagated to 
the mentioned QoIs through an analytical calculation of their 
predictive distributions.

Figure 8, for example, compares the deterministic (least-
squares approach in ATAT [87]) and probabilistic (Bayesian 
linear regression) predictions of the bond stiffness in terms 
of the bond length in the Si–Ge system for bending (blue 
dots) and stretching (red dots) elements of the force tensor 
resulting from eight different atomic configurations. These 
results have been obtained after the deterministic and proba-
bilistic calibrations of the coefficients in each independent 
linear model considered for each of the tensor elements. It 
should be noted that both MPU and MSU show significant 
contributions in the QoI uncertainties in this work due to a 
lack of data for the training of the coefficients (parameters) 
and inaccuracy in the predictions resulting from the trunca-
tion of the cluster expansion model, respectively. Therefore, 
probabilistic predictions are required in order to be able to 
replace the first-principles calculations by the cluster expan-
sion surrogate models [86].

We note that there were some similar works [88, 89] 
before this work, where a Bayesian approach was applied 
for the UQ of the cluster expansion coefficients, but those 
works did not consider using UP to determine uncertain-
ties in the QoIs resulting from uncertainties in the model 
coefficients. Another important example of the use of UQ 
at the atomic scale is the work by Rizzi et al. [90] in which 
uncertainties in the diffusion coefficient in Ni/Al bilayers 

simulated through MD which was determined through an 
MCMC inference approach [90].

CALPHAD Modeling of Phase Stability

The CALculation of PHAse Diagram (CALPHAD) formal-
ism [91] has emerged as one of the pillars in any ICME 
framework applied to the accelerated development of alloys 
[92]. Briefly, the CALPHAD framework enables the rigor-
ous encoding of thermodynamic information about phases in 
a system in terms of easy to evaluate Gibbs energy functions 
which are then used to predict phase diagrams through Gibbs 
energy minimization. Since thermodynamic properties and 
phase diagrams are fundamental to understanding phase 
stability as well as phase constitution, their uncertainty 
greatly affects the outcome of forward models for micro-
structure evolution that in turn impact decision making in 
ICME-based alloy design. In order to confidently predict 
phase stability, phase constitution as well as microstructures 
and properties, UQ/UP of CALPHAD models is crucial. 
While notions of uncertainty analysis in CALPHAD models 
remained dormant for almost a decade, we note that there 
are some early pioneering studies by Konigsberger [93], 
Olbricht et al. [94], Chatterjee et al. [95], and Malakhov 
et al. [96] that performed probabilistic analyses of different 
thermodynamic QoIs through either simple Bayesian-based 
approaches or simplified analytical frameworks.

Stan and Reardon [37] proposed a rigorous Bayesian 
framework for the UQ of phase diagrams. Here, the ther-
modynamic parameters that include melting temperature and 
enthalpy of the individual phases are sampled from their 
posterior probability distributions by considering a multi-
objective genetic algorithm (GA) scheme implemented in 
the context of Bayesian inference. In this scheme, a single 
fitness value is obtained for all the given objectives based 
on a fuzzy logic-weighting technique. When the proposed 
posterior distributions become almost stationary during 

Fig. 8  Comparison of the deterministic and probabilistic predictions 
of the bond stiffness in terms of the bond length in the Si–Ge system 
for both bending (blue dots) and stretching (red dots) elements of the 

force tensor, where left, middle, and right plots correspond to Si–Si, 
Ge–Si, and Ge–Ge bonds, respectively. Reprinted with permission 
from [86]
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GA—i.e., parameter convergence—the last population 
obtained from this process has been considered as the final 
posterior distribution of the parameters that has been utilized 
to find the parameter uncertainty bounds. The phase dia-
grams obtained from this population through model forward 
analyses have been used to find the uncertainty of the phase 
diagrams, as shown in Fig. 9 [37].

In much more recent work, Otis and Liu [36] have pro-
posed an automated high-throughput CALPHAD modeling 
framework that incorporates UQ of the model parameters. 
It should be noted that the parameter selection for the 
construction of these sublattice-based models is not fully 
objective and still requires the expert opinion because of 
the big challenge arisen from the very large degrees of free-
dom in CALPHAD modeling—i.e., high diversity in the 
model form. Here, the Akaike information criterion (AIC) 
and a univariate scoring approach—e.g., an F test—have 
been applied to find an appropriate set of parameters for the 
modeling of pure elements, end-members, or stoichiometric 
compounds, and the proper number of the sublattice interac-
tion parameters of mixing in the presence of multi-phases, 
respectively. In that work, the identification of the appropri-
ate set of parameters is followed by an MCMC probabilis-
tic parameter calibration given the relevant data. This UQ 
approach has been bench-marked using a simple example 
for the excess Gibbs energy formulation in a binary system 
expressed as follows:

where xA and xB are the molar fractions of the constituents in 
the given system. Hex , Sex , and Lex also denote the enthalpy 
of mixing, the entropy of mixing, and an interaction param-
eter, respectively. After the definition of the prior probability 
distribution for these parameters, the MCMC framework has 
been used to find the posterior parameter distribution given 
ten synthetic data. The marginal and joint posterior probabil-
ity distributions of these parameters are shown in Fig. 10, 
where the solid blue and black dashed lines indicate the 
initial values of the parameters and their calibrated values 
with 95% credible intervals, respectively. The application 
of this framework for the quick construction of CALPHAD 
databases has also been shown through a case study on the 
Ni-Al binary system [36].

Duong et al. [32, 97], Honarmandi et al. [29], and Attari 
et al. [34, 38] have also performed a systematic Bayesian UQ 
for the thermodynamic parameters of the phases modeled 
through either the sub-regular solution or line-compound 
model, the Gibbs free energies of the phases at any arbi-
trary temperature, and the phase diagram in the U–Nb, 
Ti2AlC−Cr2AlC , Hf–Si, and Mg2SixSn1−x systems. In these 
works, an adaptive MCMC Metropolis–Hasting technique 
has been utilized to update the prior distribution defined for 
the model parameters to their posterior distribution given the 
calculated and/or experimental data. It is worth noting that 
the initial parameter values have been considered as the opti-
mized values obtained from the deterministic optimization 

(15)GE
mf

= xAxB(Hex − TSex + LexT
2)

Fig. 9  The calculated phase diagrams and their uncertainty bounds for a UO2–PuO2 and b UO2–BeO binary systems. Reprinted with permission 
from [37]
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process in the PARROT module of the Thermo-Calc to 
arrive at a faster parameter convergence in the high-dimen-
sional CALPHAD parameter space—i.e., a lower cost for 
the MCMC sampling process.

A uniform prior distribution has also been assumed for 
each parameter over a reasonable range around its initial 
value. In the applied MCMC approach, the posterior pro-
posal distribution is adapted during the sampling process 
based on the variance-covariance matrix of the previous 
samples in the MCMC chain. Moreover, the likelihood func-
tion has been defined as a Gaussian distribution centered 
at the given data with unknown error. Here, the likelihood 
error is considered as a hyper-parameter and updated with 
the rest of the model parameters during the MCMC process. 
The parameter uncertainties obtained after the MCMC sam-
pling process have been propagated to the phase diagram in 
the mentioned works through either the analytical FOSM 
approach or the numerical forward analysis of the converged 
MCMC samples.

Honarmandi et al. [29] have shown how these uncer-
tainties are propagated to the phase diagram at any specific 

temperature through the Gibbs free energy of phases as 
an intermediate step. This chain of UP can be observed in 
Fig. 11 for the results obtained from two different CAL-
PHAD models for the Hf–Si binary system at two arbitrary 
temperatures. The applications of Bayesian model selection 
and information fusion approaches in materials design have 
also been illustrated in this work [29], which are discussed 
in "Model Selection and Information Fusion" section.

In the most recent UQ work in CALPHAD, Paulson 
et al. [98] have applied an MCMC sampling technique in 
ESPEI [36, 99] to perform the calibration and UQ of the 
CALPHAD model parameters. This has been followed by 
a model forward analysis scheme for a specified number 
of parameter samples in order to propagate the parameter 
uncertainties to different thermodynamic QoIs, such as the 
compositions, phase fractions, sublattice site fractions, activ-
ities, Gibbs free energy of phases, all the thermodynamic 
properties resulting from the first and second derivatives of 
Gibbs free energy, and more importantly stable and metasta-
ble phase diagrams. This framework has been demonstrated 
through a case study on the Cu–Mg binary system.

Fig. 10  Marginal and joint 
posterior probability distribu-
tions for the parameters of the 
excess Gibbs free energy after 
MCMC sampling process. The 
solid blue and black dashed 
lines correspond to the initial 
values of the parameters and 
their calibrated values with 95% 
credible intervals, respectively. 
Reprinted with permission from 
[36]
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Fig. 11  UP from the thermodynamic parameters to the Gibbs free energy of phases to the phase diagram of the Hf–Si system resulting from two 
different models at two different arbitrary temperatures. Reproduced with permission from [29]
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As shown in Fig. 12, the stable phase diagrams obtained 
at discrete temperature points from 150 parameter sets have 
been superimposed to demonstrate the uncertainty bounds 
in the phase diagram. The application of metastable phase 
diagrams in materials processing under non-equilibrium 
conditions has been the main motivation for the probabilis-
tic analysis of the Cu–Mg metastable phase diagram in this 
work. In this regard, the probabilistic metastable phase dia-
gram for the liquid and FCC phase in the mentioned binary 
system can be obtained through different UP pathways. Fig-
ure 13 shows two of these pathways, where the parameter 
uncertainties have been propagated to the Gibbs free energy 
of the liquid and FCC phases to a superimposed metastable 
phase diagram (Fig. 13a, b), or the liquid and FCC phase 
fractions to a phase diagram representing the probability 
of nonzero phase fraction of the coexisting liquid and FCC 
phases (Fig. 13c, d). From the design perspective, one of the 
most significant contributions of this work [98] is the capa-
bility of determining the phase (meta)stability in a proba-
bilistic way at any given point in composition, temperature, 
and pressure (X–T–P) space.

Fig. 12  Cu–Mg superimposed equilibrium (stable) phase diagram 
obtained from 150 parameter sample sets at discrete temperature 
points. Reprinted with permission from [98]

Fig. 13  Cu–Mg metastable phase diagram for the liquid and FCC 
phase in the system obtained through UP from a, b the Gibbs free 
energy of the liquid and FCC phases to a superimposed phase dia-
gram, and c, d the liquid and FCC phase fractions to a phase diagram 
demonstrating the probability of nonzero phase fraction of the coex-

isting liquid and FCC phases. As a manner of illustration, just the 
Gibbs free energy of the phases at 650 K and the phase fractions at 
xMg = 0.2 are shown in a and c, respectively. Reprinted with permis-
sion from [98]
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In other relevant work, Paulson et al. [100] have pro-
posed a modified Bayesian framework for the calibration, 
UQ, and model selection in CALPHAD. Here, a MultiNest 
sampling technique has been used to find the posterior 
distribution of the thermodynamic model parameters given 
data. This framework attempts to address the issues associ-
ated with the presence of outliers, systematic errors, and 
inconsistencies between the thermodynamic models for 
different QoIs. The issue with outliers has been addressed 
through the consideration of an appropriate likelihood 
function—e.g., Student’s t distribution—rather than a nor-
mal distribution, which better accounts for the scattered 
data. The systematic errors have also been considered by 
weighting each data in the likelihood function by a hyper-
parameter that is updated with the thermodynamic param-
eters from a proper choice of prior—e.g., an exponential 
function—to a posterior distribution during the sampling 
process. To address consistencies between the thermody-
namic models, the data for all the thermodynamic QoIs 
have been taken into account in the likelihood, rather than 
just the data for one QoI in the ignorance of the others, 
with the consideration of the same prior distribution for 
the common parameters in these models. The proposed 
framework has been applied to the thermodynamic prop-
erties of Hf. In this case study, the issue of the model 
selection has also been addressed in the modeling of the 
specific heat for different existing phases in this system. 
Here, the potential models are compared by the calculation 
of their marginal likelihoods in the context of the Bayes 
factor [100], which is discussed further in "Model Selec-
tion and Information Fusion" section.

In a very recent work by Ricciardi et al. [101], the proba-
bilistic estimation of the Redlich–Kister interaction parame-
ters in the Gibbs free energy of the Ag–Cu binary system has 
been performed against the corresponding phase diagram 
data through a Bayesian random-effects Hierarchical model. 
In this model, where D(s) = M(�(s)) + � (s = 1,… , S) , the 
random effects ( �(s))—resulting from the inherent parameter 
variability—and the observation error ( � ) are assumed to be 
samples from multivariate normal distributions in the form 
of MVNd(�,Λ

−1) and MVNn(0,Ψ
−1) , respectively. Here, � is 

the distribution mean value known as the overall effect, Λ is 
a d × d matrix that denotes the dispersion of the parameters 
around � , Ψ = �2I is a diagonal n × n matrix that denotes 
the dispersion of the independent observation errors around 
0, d is the parameter space dimension, and n is the number 
of data points. The variations in data can also be defined as 
MVNn(M(�(s)),Ψ−1) based on the variations in the observa-
tion errors. In the next step, Bayesian inference has been 
applied for the UQ of the random and overall effects as well 
as the hyper-parameters in the multivariate normal distribu-
tions. After the proper definition of the prior distribution 
for the mentioned unknowns, P(�,Λ,Ψ) , their posterior 

distribution, P(�, �(1),… , �(s),Λ,Ψ|D(1),… ,D(s)) , and mar-
ginal posterior predictive distribution for unobserved data 
( y∗ ), P(y∗|D(1),… ,D(s)) , can be inferred using an MCMC 
sampling scheme. Among these unknowns, the posterior 
inference for the overall effect ( � ) is what determines the 
uncertainty of the interaction parameters in the above ther-
modynamic model. In this work, the posterior distribution 
of the total Gibbs free energy at 1000 K and the correspond-
ing region in the phase diagram as a function of Cu atomic 
fraction has also been obtained through the forward model 
analysis of a set of MCMC samples after convergence [101].

Mesoscale Materials Simulations

At the micro/mesoscale, phase-field modeling is generally 
one of the most important approaches to model the micro-
structural features of material that result from specific pro-
cessing conditions. To date, however, there are not very 
many examples of UQ applied to these types of simulations, 
primarily due to the complexities arisen from the high cost 
of microstructural modeling and high-dimensional param-
eter and objective (QoI) spaces. However, the issues for UQ/
UP in this area can possibly be addressed using surrogate-
based numerical approaches (e.g., Kennedy and O’Hagan’s 
approach), low-order models (e.g., FOSM or PCE), and effi-
cient numerical techniques (e.g., importance weighting algo-
rithm), which is worth the researchers’ attention in this area.

While there are not many examples of UQ/UP applied 
to this important simulation framework, two recent works 
are worth discussing. The work by Zhang et al. [102] has 
attempted to address the parameter calibration and UQ in 
phase-field modeling through a statistical framework. In 
this framework, the geometry of experimentally evolved 
3D microstructures and their corresponding simulated 3D 
microstructures have been compared through two cost func-
tions to find different optimum parameter values associated 
with different combinations of representative sub-domain 
sizes (k: the cube edge length in terms of the number of 
simulation grid points), initial times ( t0 ), and time step num-
bers ( tn ). Then, the mean value and standard deviation of 
these deterministic optimum values have been introduced as 
the calibrated parameter values and their uncertainties. This 
framework has been utilized for the calibration of the liq-
uid diffusion coefficient ( DL ) in a phase-field model imple-
mented for the isothermal dendrite coarsening in a hypo-
eutectic Al–Cu system.

The effects of k and tn on the optimum value of DL at a 
constant t0 are shown in Fig. 14. According to this figure, the 
k values between 160 and 250 can provide almost a uniform 
optimum value for DL at all four time steps. At the k values 
greater than 160, there are statistically sufficient interface 
areas to well represent the microstructural features in the 
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simulation domain, while the sub-domain becomes too close 
to the simulation domain at the k values greater than 250 that 
can misdirect the calibration process. Therefore, the calibration 
of DL has been performed by considering different sub-domain 
sizes in the mentioned range—i.e., 160 < k < 250—as well 
as different values of tn and t0 . Two-parameter calibration has 
also been carried out in this work for DL and capillary length 
lL using the same framework [102].

Despite the high value of this work, the thorough model 
parameterization with the proposed framework can be 
very costly, which may limit its applications. However, it 
seems that the surrogate-based calibration approaches—
e.g., Kennedy and O’Hagan’s approach [54] discussed in 
"Uncertainty Categorization in Computational Modeling" 
section—can be good candidates to estimate the phase-field 
parameter values and their uncertainties given time-series 
experimental data at a reasonable cost.

In the second work, Attari et al. [34, 38] have addressed 
the UP challenge associated with the high-dimensional input 
and output space in phase-field modeling of microstructural 
evolution under chemical and elastic driving forces. In this 
work, an efficient sampling scheme based on Gaussian 
copulas [103] has been considered to propagate uncertain-
ties from the high-dimensional model parameter space (20 
parameters and model inputs) to a set of microstructural 
QoIs. It is worth noting that very high heterogeneity of 
microstructural output space brings a need for the defini-
tion of multiple QoIs to fully evaluate the influence of model 
inputs/parameters on the final microstructure features.

This high-throughput UP approach has been applied 
to an elasto-chemical phase-field model for Mg2SixSn1−x 
thermoelectric materials [104]. In this case, a reasonable 
number of the parameter vectors—i.e., 10,000—have been 

sampled from the thermodynamic parameter posterior dis-
tributions obtained from the MCMC calibration of a rel-
evant CALPHAD model as well as the micro-elastic and 
kinetic parameter prior distributions defined based on the 
literature or expert’s intuition. Then, the microstructures and 
their corresponding QoIs obtained from the forward model 
analyses of the parameter samples are used to construct the 
open phase-field microstructure database (OPMD) [105] and 
the QoI distributions, respectively. 800 out of 10,000 gen-
erated microstructures are shown in Fig. 15. As observed 
in this figure, the variations in the model parameters can 
result in a broad variety of microstructure morphologies. 
Although the possibility of experimentally realizing the 
predicted microstructures remains to be investigated, the 
resulting microstructural variety demonstrates the capabil-
ity of the proposed phase-field model to capture the similar 
morphologies that have already been observed in other mate-
rials system. It should be noted that the constructed database 
is very valuable and relevant to the scope of ICME since it 
can provide a better understanding of process–microstruc-
ture relationship in the given system.

Another important microstructural modeling in the ICME 
framework is the second-phase precipitation modeling that 
has recently received some attention in the UQ/UP area of 
research. In this respect, Honarmandi et al. [106] have shown 
a thorough analysis of the parameter calibration and UQ 
in an Ni-Ti precipitation model implemented in MatCalc© 
using a multi-objective adaptive MCMC technique. Here, 
the precipitation model includes three inputs as the nominal 
Ni content, aging temperature, and aging time, five param-
eters as the matrix/precipitate interfacial energy, nucleation 
site density, precipitate aspect ratio, diffusion correction, 
and nucleation constant, and three outputs as the average Ni 
content in matrix, mean precipitate size, and precipitate vol-
ume fraction. All of these three outputs have been compared 
with the relevant experimental datasets at the same time in a 
multi-objective calibration framework.

In the work by Honarmandi et al. [106], the influential 
model parameters have been calibrated against each given 
dataset in a probabilistic way to find a relationship for the 
calibrated interfacial energy in terms of aging temperature 
and nominal Ni content. Then, the interfacial energy in the 
model has been replaced by the developed relationship for 
the probabilistic calibration of the other four parameters 
against all the datasets together. The model results calculated 
by the calibrated parameters showed noticeable discrepan-
cies with the corresponding data due to very high uncer-
tainties resulting from the model structure as well as from 
experiments. For this reason, an information fusion approach 
has been introduced to combine the model results and data 
points for better probabilistic prediction of the precipitation 
behavior [106], which is discussed further in "Model Selec-
tion and Information Fusion" section.

Fig. 14  The effects of k and tn on the optimum value of DL at t0 = 10. 
Reprinted with permission from [102]
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Tapia et al. [55] have probabilistically calibrated the same 
Ni-Ti precipitation model through a multi-objective Bayes-
ian framework based on Kennedy and O’Hagan’s approach 
[54] that was discussed in "Uncertainty Categorization in 
Computational Modeling" section. However, just three 
model parameters—including the interfacial energy and 
two parameters for an exponential equation defined for the 
diffusion coefficient—have been taken into account in this 
work. Two probabilistic calibrations have been performed 
by considering the computational model and GP surrogate 
model as M in Eq. 1, while � is estimated through another 
GP surrogate model in both cases. In these calibrations, an 
MCMC sampling method has been employed to determine 
the plausible optimum values of the model parameters and 
hyper-parameters as well as their uncertainties given the 
experimental data [55].

Materials Processing

Generally, the proper modeling of the materials process-
ing is typically very complicated and expensive due to 
many involving physical mechanisms. Therefore, there 
are not many works in this area since UQ of these mod-
els is a challenging task and needs advanced analytical or 

surrogate-based numerical techniques. For example, approx-
imating M in Eq. 1 with GP surrogate model is very useful in 
these cases. In this regard, Mahmoudi et al. [68] have used 
the same Bayesian framework where M is a GP model to cal-
ibrate the parameters of an expensive finite element method 
(FEM)-based thermal model in the additive manufacturing 
of the Ti–6Al–4V alloys. The marginal posterior distribu-
tions of the model parameters are shown in Fig. 16. In this 
case study, it has been shown that the constructed GP esti-
mates the original model with a good degree of precision. In 
addition, the predictions obtained from the calibrated model 
are in good agreement with the relevant experimental data 
[68].

In a recent study, Acer [107] has applied an analytical 
approach (AUQLin) to quantify the uncertainties associ-
ated with the microstructural texture in the Ti–7Al alloy. 
AUQLin is an inverse approach based on the principle for 
the transformation of random variables. In that work, the 
experimental uncertainty of Young’s modulus has inversely 
been propagated to the volume-averaged compliance param-
eters through the mentioned analytical framework that has 
been followed by solving another inverse problem to propa-
gate the uncertainties of the compliance parameters to the 
microstructural texture. Here, the uncertainties of the micro-
structural texture have been represented by the variations in 

Fig. 15  800 Examples from the generated microstructural database besides the morphological varieties obtained for the Mg2SixSn1−x system. 
Reproduced with permission from [34, 38]
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a microstructural descriptor known as the Orientation Dis-
tribution Function (ODF). This descriptor determines the 
volume factions of various crystallographic orientations in 
the microstructure, which is linearly related to the compli-
ance parameters. However, it should be noted that the lat-
ter inverse problem leads to multiple solutions for the ODF 
mean values and uncertainties. Therefore, an optimization 
approach has been applied to find the final analytical solu-
tion for the microstructural texture mean value and uncer-
tainty based on the minimization of the differences between 
the mean values and uncertainties of the analytically com-
puted ODFs and their corresponding experimental data. 
The experimental ODF mean values and uncertainties have 
been calculated from 150 EBSD samples taken from differ-
ent specimens or different locations on the same specimen. 
The optimized ODF mean values and uncertainties show 

very good agreement with their experimental counterparts, 
as shown in Fig. 17 [107].

Macroscopic Materials Properties

At the macro-scale, there are different UQ works on the mac-
roscopic properties of different materials systems, some of 
which are discussed in this section. Generally, one of the 
most important materials properties—for structural applica-
tions—is the materials’ plastic response to external forces 
that directly contributes to the materials fabrication. In this 
respect, Honarmandi and Arroyave [31] have applied an 
adaptive MCMC sampling approach to calibrate and quan-
tify the parameter uncertainties of a physical model that 
describes the plastic flow behavior of multi-phase transfor-
mation-induced plasticity (TRIP) steels. In this work, the 

Fig. 16  Marginal parameter posterior distributions after the MCMC calibration of the multivariate GP-based model fitted to the responses 
obtained from the FEM-based thermal model at some random spatial input points. Reprinted with permission from [68]
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calibration results obtained from sequential and simultane-
ous data training—i.e., calibrations with one data at a time 
and all data at the same time—have been compared to each 
other. Here, it should be noted that three stress–strain experi-
mental data sets have been considered for the calibrations 
and the rest for the model validation. None of these data 
training strategies has shown any noticeable superiority over 
the other, except for slightly more defined posterior distri-
bution in the case of simultaneous data training. In each 
case, the parameter uncertainties have been propagated to 
the stress–strain curves of different TRIP steels through 
the FOSM approach explained in  "Uncertainty Propaga-
tion" section. In both of the training cases, there were some 
discrepancies between the model predictions and their cor-
responding experimental data (see Fig. 18a, b) that have 
mostly been attributed to large experimental uncertainties 
in the measurement of the phase volume fractions (one of the 
model inputs). For this reason, these volume fractions have 
also been calibrated for each TRIP steel, while the model 
parameters are fixed and equal to the parameter posterior 
mean values after the sequential data training. The correc-
tion of the phase volume fractions leads to a very good con-
sistency between the model results and experimental data 
for each alloy, or at least the 95% credible intervals of the 
predictions cover the experimental data (see Fig. 18c, d). 
The reproducibility of the applied MCMC approach has also 
been checked by the parameter recalibration against some 
generated synthetic data. The results have confirmed that no 
significant uncertainties have been added by the approach 
[31].

In another work, Rizzi et al. [108] have used an MCMC 
approach to probabilistically calibrate the physical param-
eters in a surrogate model constructed upon the results 
obtained from a finite element-based plasticity simulation. 
In this work, the surrogate model is developed as a poly-
nomial chaos expansion (PCE) of the parameter vector � . 
Then, a formulation called additive error formulation has 

been built by adding a measurement error (noise) to the 
surrogate model. Besides this measurement noise, a model 
discrepancy error has also been added to the parameter vec-
tor, which is called embedded error formulation. It should 
also be noted that multiple batches of tensile test specimens 
have been prepared to obtain the stress–strain experimental 
data for calibrations, where each batch has nominally iden-
tical specimens. Each of the above formulations has been 
utilized to calibrate five model parameters given one of the 
experimental batches as an example. Figure 19 shows 100 
stress–strain curves obtained after the forward analysis of 
100 parameter posterior samples (obtained from both of the 
MCMC calibrations) through the surrogate model with and 
without the consideration of the measurement noise term. 
A very small uncertainty of the stress–strain response in 
Fig. 19a implies that the calibration of the additive error 
formulation results in very small uncertainties for the param-
eters, and the variations in the response are mostly reflected 
in the measurement noise as observed in Fig. 19c. On the 
other hand, the calibration of the embedded error formula-
tion provides an uncertainty partitioning between the model 
parameters and observation noise that leads to a much better 
consistency of the stress–strain results and observation error 
with their corresponding experimental data [108].

Recently, Ricciardi et al. [101] have probabilistically 
calibrated the hardening parameters in a reduced-order 
viscoplastic self-consistent (VPSC) model by considering 
the inherent variability of the stress–strain response in the 
Bayesian random-effects Hierarchical framework discussed 
at the end of  "CALPHAD Modeling of Phase Stability" sec-
tion. In this framework, the posterior probability density of 
the parameters and hyper-parameters, in addition to, the pos-
terior predictive density for untested data has been inferred 
using an MCMC sampling technique. The uncertainty of 
the hardening parameters has also been propagated to the 
stress–strain curves through the forward model analysis of 
a set of MCMC posterior samples [101].

Fig. 17  Comparison of a the mean value and b the uncertainty of the microstructural texture obtained from the applied analytical approach and 
the experiments. Reprinted with permission from [107]
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The UQ/UP study of shape memory alloy (SMA) prop-
erties is another topic of interest in robust design that has 
recently attracted some attention by the community. The 
main reason for the popularity of SMAs is their broad appli-
cations in engineering, such as micro-electro-mechanical 
systems, biomedical implants and devices, seismic protec-
tion tools, actuators and sensors, and aerospace structures 
and products [109, 110].

Oehler et al. [111] have used design of experiment (DOE) 
approaches based on MC simulation techniques to perform 
the SA and UP through a hierarchy of analysis tools and 
a numerical constitutive model for an SMA-actuated mor-
phing structure. Here, the sensitivity of the outputs to the 
variations in normal-distributed input variables, as well as 
the propagated uncertainties for the outputs, has been deter-
mined through this framework.

Martowicz et al. [112] have also performed SAs and 
UP for a numerical model that describes the phase trans-
formation in the super-elasticity phenomenon of an SMA 
bumper, as well as two regression-based surrogate mod-
els constructed based on some results obtained from the 

numerical model. In this work, the sensitivity of the output 
of the numerical and surrogate models to the variations in 
the uncertain input variables has been evaluated through a 
central finite difference (FD) that considers just one input at 
a time in its analysis. Moreover, an MC simulation technique 
has been adopted to propagate the uncertainties from the 
input variables to the output of the surrogate models.

Recently, Islam and Karadogan [113] have used an MC-
based forward analysis scheme to propagate the uncertainties 
from the normally distributed input variables of two most 
commonly used models for super-elasticity—i.e., Tanaka 
[114] and Liang–Rogers [115] models—to their stress–strain 
outputs under different isothermal conditions. They have 
also evaluated the sensitivity of the stress–strain outputs to 
the inputs through global VBSAs—i.e., Extended Fourier 
Amplitude Sensitivity Test (eFAST) and Sobol—for both of 
the applied models. Here, the influential model inputs have 
been determined based on a criterion for the average of the 
sensitivity indices obtained at different maximum loading 
stresses and isothermal temperatures for each input. Both of 

Fig. 18  Probabilistic stress–strain curves obtained for two different 
TRIP steels (left and right columns) after a, b the sequential data 
training and c, d the correction of the phase volume fractions (con-

sidering fixed sequentially calibrated parameters). Reproduced with 
permission from [31]
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the applied sensitivity approaches have been consistent in 
selecting the influential parameters.

In other works, Crews et al. [116, 117] have applied an 
MCMC approach known as the delayed rejection adaptive 
Metropolis (DRAM) method to find the posterior parameter 
distribution of a homogenized energy model for SMA bend-
ing actuators, given the relevant experimental data. It should 
be noted that the applied external voltage (for the purpose 
of Ohmic heating) and the bending angle of an SMA tendon 
are the input and output of this work, respectively. Figure 20 
shows the comparisons between the 95% credible intervals 
obtained after the forward UP from the MCMC-calibrated 
model parameters to the temporal changes in the bending 
angle under two different input conditions—i.e., sinusoidal 
and step input voltages—and their corresponding experi-
mental data. As shown in this figure, the majority of the 
experimental data fall into the uncertainty bounds in both of 

the cases, which highly validates the model for SMA robust 
design applications.

Enemark et  al. [118] have also utilized an adaptive 
MCMC approach to quantify the parameter uncertainties 
and linear correlations in a thermo-mechanical model that 
predicts the super-elastic behavior of SMA helical springs. 
In this work, some experimental isothermal cyclic responses 
have been considered for parameter calibration and UQ. The 
marginal parameter posterior frequency distributions and 
pairwise scatter plots obtained after the MCMC sampling 
process have been shown in the diagonal and off-diagonal 
plots of Fig. 21, respectively. According to this figure, it is 
clear that the marginal distributions for all the parameters 
are almost Gaussian, and parameter pairs exhibit significant 
variance in their degree of statistical correlation. It should 
be noted that a highly linear scatter plot with a positive or 
negative slope corresponds to a highly positive or negative 
linear correlation with a coefficient close to 1 or − 1; on the 

Fig. 19  Comparison of 100 posterior realizations of the stress–strain 
curve obtained after the MCMC calibration of five model parameters 
using additive (left column) and embedded (right column) error for-

mulations with (bottom row) and without (top row) the considera-
tion of the measurement noise term. Reprinted with permission from 
[108]
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other hand, a close to circular scatter plot indicates a linear 
uncorrelation with a coefficient close to 0. However, in this 
work, there is no UP analysis from the model parameters to 
the isothermal cyclic response resulting from the loading 
and unloading process. In addition, there is no systematic 
SA to find the most influential parameters for the sake of the 
UQ cost reduction [118].

In other relevant work, Honarmandi et al. [30] have adopted 
the same Bayesian framework and thermo-mechanical model 
as well as a systematic sensitivity analysis and a forward UP to 
predict the probabilistic thermal actuation response (isobaric 
cyclic response) of SMAs. In this work, applying a DOE that 
includes a complete factorial design (CFD) and a global VBSA 
known as ANOVA has resulted in the identification of the 
influential parameters for this model. These parameters have 
been used in the model calibration against three experimental 
isobaric cyclic responses. In this probabilistic calibration pro-
cess, the cyclic curves obtained from the model and experi-
ment have been compared in the likelihood function through 
the calculation of their squared euclidean distance, as proposed 
by Tschopp et al. [119].

The MCMC technique has also been modified in the work 
by Honarmandi et al. [30] in order to consider some con-
straints between the model parameters during the sampling 
process. This modification has been performed by penalizing 

the likelihood such that the MCMC sampled candidates are 
rejected as the defined constraints are not satisfied. Moreover, 
the UPs from the model parameters to the isobaric cyclic pre-
dictions have been performed for the three isobaric conditions 
using both of the FOSM and forward analysis approaches. 
Unlike the FOSM approach, the forward analysis approach 
is more precise but also more costly. Therefore, a trade-off 
exists between the precision and cost in the application of these 
methods. For example, the model prediction and its 95% cred-
ible interval are obtained by the forward UP analysis, and the 
corresponding experimental data have been shown for three 
different isobaric conditions in Fig. 22. As observed in this 
figure, there are good agreements between the isobaric cyclic 
loops obtained from the model and experiment, or at least the 
data are covered by the uncertainty bounds [30].

Advanced Frameworks for Uncertainty 
Quantification/Propagation in Materials 
Simulations

Efficient Uncertainty Propagation

As mentioned in "Uncertainty Propagation vs. Uncer-
tainty Quantification" section, the most basic and common 

Fig. 20  The probabilistic temporal changes in the bending angle in an SMA tendon obtained under a sinusoidal and b step input voltages, 
besides their corresponding experimental data. Reprinted with permission from [117]
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approach to propagate uncertainty through computational 
models is via MC sampling. For expensive computational 
models, the use of sampling approaches is computationally 
prohibitive. A typical alternative is to create a surrogate or 
meta-model of the full model using a small set of samples 
from the full model. The result of developing a surrogate 
model is usually a much cheaper version of the computa-
tional model that can be used for various purposes—such 
as uncertainty propagation [120, 121]. The reduction in 
runtime, however, comes at the expense of loss in accuracy 
as well as of information on the full model output.

As mentioned in "Uncertainty Propagation vs. Uncer-
tainty Quantification" section, other state-of-the-art and 
common approaches to uncertainty propagation are tech-
niques such as generalized PCEs [122]. These methods 
require smooth functions that do not contain discontinui-
ties and also face challenges in high dimensions when 
functions lack an additive structure [123]. For the case 
of discontinuities, a common issue that deteriorates accu-
racy is the presence of Gibbs-type phenomena. To over-
come this challenge, multi-element stochastic collocation 
methods were developed [123, 124]. Unfortunately, such 
methods often require a large number of samples to detect 

Fig. 21  The marginal parameter posterior frequency distributions and pairwise scatter plots for the model parameters in the diagonal and off-
diagonal plots, respectively. Reprinted with permission from [118]
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discontinuities, rendering the approach computationally 
prohibitive. On the other hand, if there are no discontinui-
ties—which for black-box simulation models are generally 

unknown a priori—significant computational effort is 
wasted.

Materials science simulations often result in highly 
discontinuous output spaces that result from the high 

Fig. 22  Probabilistic predictions of the isobaric hysteresis response of a Ni-Ti alloy obtained through forward UP analyses and the corresponding 
experimental data at three different isobaric conditions: a 100, b 150, and c 200 MPa. Reprinted with permission from [30]

Fig. 23  Importance sampling 
approach whereby proposal 
samples from a proposal 
distribution are re-weighted 
in order to generate the target 
distribution. Reproduced with 
permission from [127]
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nonlinearity of the applied theories/models. Moreo-
ver, as one of the main purposes of materials simula-
tions is to uncover process–structure–property relation-
ships, it is imperative to preserve as much information 
about the model output as possible. These challenges and 
requirements clearly preclude non-sampling-based UP 
approaches. MC sampling, however, is impractical when 
simulations are computationally expensive. The question 
then is whether it is possible to carry out UP by sampling 
directly from the actual simulation and obtain properly 
converged output distributions without having to sample 
the input space 1 × 105−1 × 106 times.

Recall that each sample taken from the MC sampling 
chain has a weight of 1/n, where n corresponds to the total 
number of MC steps carried out so far. When n → ∞ , we are 
guaranteed to have a well-converged probability distribution 
in the output space. Since, on average, all samples are useful 
to construct the well-converged output distributions, logic 

dictates that some samples are more useful than others. A 
sampling-based approach for efficient UP can take advantage 
of this to arrive at well-converged predictive uncertainties, 
using much fewer direct evaluations of the (expensive) mod-
els than traditional MC methods—see Fig. 23. The central 
hypothesis here is that in small sample size regimes, this 
convergence can be achieved more quickly by carefully 
selecting points in the input space via assignment of non-
uniform weights to individual UP samples. The challenge of 
evaluating statistics from a target distribution given random 
samples generated from a proposal distribution is known 
as the ‘change of measure’ and arises in a host of domains 
such as importance sampling, information divergence, and 
particle filtering [125, 126].

Sampling-based approaches for accelerated UP rest on 
the hypothesis stating, a more efficient convergence of the 
probability law L on the input space—i.e., probability and 
cumulative distribution functions (CDFs, PDFs)—will lead 

Fig. 24  Correcting the proposal distribution shown in the blue using importance weights and estimate the target distribution shown in the red as 
a weighted proposal distribution (dotted plot on the right). Reproduced with permission from [127]

Fig. 25  Uncertainty propagation via change in measure for a five-
dimensional Johnson–Cook model in which (incorrect) uniform dis-
tributions for the inputs have been transformed to (correct) normal 
distributions. (Left) proposal and target PDF; (center): proposal and 

target CDF; (right): convergence of the mean response of Johnson–
Cook model as a function of sample size. Reproduced with permis-
sion from [33]
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to improved convergence for certain statistical quantities of 
interest in the output space. These approaches can be used to 
identify the next sample to propagate through an expensive 
model. Generally, this next sample will be chosen such that 
the difference between the true input law and the current 
empirical law is minimized, by re-weighting the incorrect 
input (proposal) distribution in order to obtain the correct 
(target) distribution, as shown in Fig. 24 [33, 127].

Recently, Sanghvi et al. [33] have proposed an importance 
weighting algorithm that corrects UP results obtained from 
inaccurate proposal distributions of model inputs/parameters 
by re-weighting the previously available model evaluations. 
This approach is capable of achieving probability measure 
changes over many dimensions, which is ideal in materials 
science problems given the usually large-dimensional input 
space. To demonstrate their framework, Sanghvi et al. [33] 
considered a Johnson–Cook (J–C) model [128] for the high-
strain deformation behavior of Ti–6Al–4V [129]. The J–C 
model has been considered to include five uncertain param-
eters, and the challenge was to re-weight already acquired 
samples in the input space (assuming uniform distributions) 
in order to estimate the target (normal) distributions as per 
prior parameterizations [129], as shown in Fig. 25. In that 
figure, it is shown how the probability law of the output 
of the model is well converged once the inputs have been 
reweighed to match the correct distributions.

Uncertainty Quantification/Propagation 
in Multi‑scale Modeling

As mentioned in  "Uncertainty Quantification/Propagation 
in Materials Modeling" section, the quantification of the 
parameter uncertainties and their propagation to the out-
come of the individual models are important tasks in order 
to validate their outcome against data in a probabilistic way 
and find their sensitivity to the parameter variations (uncer-
tainties) for the sake of their applications in materials design. 
However, the uncertainty of the outcome of a chain of multi-
scale models—i.e., from the atomic/electronic level to the 
microstructural features to the macroscopic behavior—is 
required for the decision-making process in ICME design. 
In these types of problems, uncertainty must be propagated 
along multi-scale models, not just a single model. Despite 
the importance of UQ in multi-scale modeling, few relevant 
works exist in the recent literature that suggests much more 
effort in this area in order to fulfill the ICME promises. 
These few works are discussed in this section as follows.

Liu et al. [130] focused on the UQ of a developed multi-
scale constitutive model that connects the microstructural 
features and defects in random heterogeneous composite 
materials to their failure in the context of structure–prop-
erty–performance relationships of the ICME framework. 
In that work, probabilistic Bayesian calibration—where 

the statistical information obtained from direct numerical 
simulation as well as limited experimental data serves as 
the parameter prior—has been performed to quantify the 
parameter uncertainties of the constitutive model. Then, a 
stochastic projection method based on PCE has been applied 
to propagate the parameter uncertainties across the multi-
scale model to the properties and performance of the com-
posite materials.

There are also some important UQ/UP works in multi-
scale modeling for plastic flow response in polycrystalline 
materials that have already been discussed by Chernatynskiy 
et al. [10]. In regard to predictive process–structure–property 
relationships, Kouchmeshky and Zabaras [131, 132] have 
investigated the variations in the macroscopic properties—
such as Young’s, shear, and bulk modulus—resulting from 
the inherent uncertainties in the deformation processing con-
ditions and initial microstructural texture of the given mate-
rials. In these works, a reduced-order model based on the 
Karhunen–Loeve expansion has been constructed to reduce 
the stochastic domain dimension for the initial texture from 
a random field to a few spatial modes (a set of random varia-
bles) that can highly represent the texture randomness in the 
microstructure. The information acquired from X-ray scat-
tering techniques or a maximum entropy method (MaxEnt) 
in the lack of experimental data has been used to construct 
the distributions of these random variables. In the end, the 
propagated uncertainties from the initial texture and process-
ing conditions to the properties have been presented in the 
form of distribution or convex hull plots. Here, convex hull 
is the smallest convex polygon surrounding all the samples 
in the property space obtained after the UP analysis. An 
example of these plots for Young’s–shear–bulk modulus is 
shown in Fig. 26. Generally, the convex hull provides a good 

Fig. 26  An illustration of the convex hull for Young’s, shear, and bulk 
modulus after the UP from the random initial texture and processing 
conditions. Reprinted with permission from [10]
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graphical representation of the variations in QoIs, which can 
be a very useful tool for product designers [131, 132].

Koslowski and Strachan [133] have also propagated 
uncertainties across different length scales in the plastic-
ity modeling of a nano-crystalline Ni membrane. Figure 27 
shows how the uncertainties have been propagated along the 
multi-scale models in this work. First, the microstructural 
texture and the distribution for the macroscopic residual 
stresses along the membranes’ axial direction have been 
derived experimentally. Then, an ensemble of 1000 residual 
stresses has been produced from the experimental distribu-
tion (see Fig. 27a) as the representation of 1000 membranes. 
For each residual stress, 5000 representative grains have 
been generated in agreement with the experimental texture. 
In the next step, the strain tensors calculated for each of the 
twelve slip systems in all the individual grains have been 
used to construct the distribution of the in-plane and out-of-
plane strains for the considered slip system (see Fig. 27b). 
The strain distributions for all the slip planes have been con-
verted into the distribution of unstable stacking fault ener-
gies using a molecular dynamics (MD) response surface (see 
Fig. 27c). The last step in this multi-scale UP is to predict 
the distribution of critical resolved shear stresses (CRSS) 
from the previous distribution through a phase-field method 
to dislocation dynamics (PFDD) (see Fig. 27d) [133].

Uncertainty Quantification/Propagation Through 
Model Chains

As mentioned in  "Introduction" section, the central para-
digm behind ICME is the integration of multiple modeling 
tools and their coupling with experiments in order to accel-
erate the materials development cycle. While model integra-
tion has long been recognized as one of the most important 
enablers of fully realized ICME frameworks, the linkage 
between models is highly challenging in practice [16].

To date, there are relatively few examples of realizations 
of ICME frameworks with explicit linkage between different 
models through a physics-based model chain. The recent 
work by Attari et al. [34, 38] is a good example of a system-
atic analysis of uncertainty across a chain of models—i.e., 
a CALPHAD and phase-field model. As mentioned ear-
lier in "Uncertainty Quantification/Propagation in Materi-
als Modeling" section, the plausible optimum values and 
uncertainties of the thermodynamic parameters incorporated 
into a CALPHAD model for the Mg2SixSn1−x thermoelectric 
system have been quantified through an adaptive MCMC 
approach given the corresponding composition–tempera-
ture data in the phase diagram. Then, a Gaussian copula 
has been applied to efficiently sample from the posterior 
distribution of the thermodynamic parameters obtained after 
the MCMC calibration—which is technically a joint prior 

Fig. 27  A schematic illustration of UP along a chain of the multi-scale plasticity models for nano-crystalline Ni membranes. Reprinted with per-
mission from [10]
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parameter distribution for the phase-field simulation—as 
well as the prior distributions of the micro-elastic and kinetic 
parameters defined based on the literature or expert’s intui-
tion. These samples have been analyzed through a forward 
scheme to propagate the uncertainties of the mentioned 
parameters to a set of microstructural QoIs [34, 38].

In another recent work, Reddy et al. [134] have put for-
ward an ontological framework for integrated computational 
materials engineering. In their framework, Reddy and col-
laborators have proposed a meta-model-based framework 
that consists of abstracting elements of the ICME model 
chain—i.e., materials, processes, structure, properties—
and their relationships. The framework enables the linkage 
between models through pre-specified input/output proto-
cols. Brough et al. [135] have proposed the Materials Knowl-
edge Systems (MKSs) framework to capture process–struc-
ture–property linkages. In this framework, homogenization 
and localization methods have been used to express struc-
ture–property connections that are then abstracted in terms 
of surrogate/regression models. These works constitute valu-
able examples for model integration. Until recently, however, 
model integration efforts have seldom included protocols 
to quantify, propagate, and manage uncertainty through the 
model chains.

Consider, for example, a model chain consisting of two 
distinct models, M1 and M2—as mentioned above, one 
effective approach to decrease the computational expense 
associated with model evaluations is to replace the expensive 
simulations with surrogate models—e.g., GPs [17]. Each of 
these models has inputs x, parameters � , as well as outputs 
y, which can be computed in principle through a GP that 
emulates the original expensive model. This model chain is 
hierarchical and unidirectional as models M1 and M2 are 
connected through an (intermediate) output vector of model 

M1 , which serves as input to model M2 . In order to prop-
erly establish such a model chain as a plausible framework 
for uncertainty-aware model integration, several challenges 
must be overcome: First, the framework must be capable of 
providing the ability to probabilistically calibrate the indi-
vidual models by comparing the QoIs they produce with 
available data from experiments; second, the framework 
should enable the propagation of information (uncertainty) 
across the model chain; third, the evaluation of the models 
should be sufficiently cheap to carry out a properly con-
verged exploration of the input–output space; lastly, the 
framework should accommodate the challenges associated 
with the existence of unobservable QoIs produced from a 
model as inputs to models down the model chain.

To illustrate the problem, consider (see Fig. 28) an ICME 
model chain applied to additive manufacturing. Specifically, 
consider a finite element thermal model [137] capable of 
establishing the connection between processing condi-
tions in a laser powder-bed fusion system (power, scanning 
velocity) and thermal history (thermal gradients and cool-
ing rates) in different regions of a melt pool. The thermal 
histories can then be used as inputs to a phase-field simula-
tion [138] of the solidification behavior of the alloy being 
processed. The practical integration of these two models is 
manifold: First, the output of the thermal model used by the 
phase-field model (thermal histories) is not easily accessible; 
second, each model has numerous parameters that are uncer-
tain before confronting them with experimentally derived 
observables; third, each of the models is computationally 
expensive; fourth, explicit linkages between the outputs of 
the thermal models and the inputs to the phase-field models 
are infeasible.

Recently, Mahmoudi [136] and Mahmoudi et al. [139] 
have put forward a framework that addresses this type of 

Fig. 28  ICME-based integration of a thermal model to a phase-field model in additive manufacturing. Reproduced with permission from [136]
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problem. Their framework relies on the use of Bayesian 
networks (BNs) [140, 141]. As shown in Fig. 29, BN is 
a tool that captures causal relationships between the vari-
ables and parameters within a network of models using a 
directed acyclic probabilistic graph [142]. In the practical 
implementation of a BN-based approach to UQ/UP, the rela-
tionships between inputs and outputs through model chains 
are expressed in terms of coupled stochastic models. The 

calibration of the parameters has been done through Bayes-
ian update schemes.

Mahmoudi has demonstrated his proposed frame-
work [136] by linking a finite element model connect-
ing processing conditions to thermal histories developed 
by Karayagiz et  al. [137] with a phase-field model of 
microstructure evolution under rapid solidification con-
ditions developed by Karayagiz et al. [138]. The models 

Fig. 29  Bayesian network representation of AM-ICME (finite ele-
ment–phase-field) model chain shown in Fig. 28. Models M1 (ther-
mal history) and M2 (microstructure evolution) are represented as 
GPs with parameters �1 , �2 . The models are linked through unobserv-
able intermediate outputs (cooling rate, thermal gradient), ŷ1U . Model 

M1 has observable outputs ŷ1Q (melt pool width, depth, and peak 
temperature) that can be compared against data D1Q . Similarly, model 
M2 has observable outputs (primary dendrite arm spacing, PDAS, 
and micro-segregation). Reproduced with permission from [136]

Fig. 30  Errors associated with the model predictions of melt pool width (finite element model) and primary dendrite arm spacing (PDAs) during 
the additive manufacturing of Ni–Nb binary alloy. Reproduced with permission from [136]
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employed the materials properties of a binary Ni–Nb alloy 
that has then been printed using a laser powder-bed fusion 
machine. Macro-structural features of the melt pool (melt 
pool width and depth) as well as microscopic features of 
the solidified microstructure (primary dendrite arm spac-
ing, PDAS) have been used to simultaneously calibrate the 
parameters of both models. Preliminary results in Fig. 30 
have suggested that the proposed BN-based model chain 
is capable of predicting experimental observables at two 
scales (melt pool dimensions and solidification micro-
structure) with acceptable error bounds—better results 
have achieved in recent work by Mahmoudi et al. [139].

Model Selection and Information Fusion

In numerical simulations and physical modeling as an 
essential element in materials design under the ICME 
framework, engineers and scientists typically have at their 
disposal multiple models at different levels of fidelity and/
or physical sophistication describing the same physical 
system. Deciding on the most appropriate model to prop-
erly represent the given system is not necessarily an easy 
task when the model outcomes are comparable. Therefore, 
a systematic framework is required to address the issue of 
model selection in these cases. To address this problem, 
Bayesian model selection (BMS) based on the Bayes factor 
can be a good candidate to identify the model that is more 
favored by the given data—based on the Bayesian hypoth-
esis testing discussed in "Bayesian Inference" section .

Honarmandi et al. [29] have applied this approach to 
compare four CALPHAD models with different numbers 
of parameters for the HF-Si system. As mentioned ear-
lier in  "CALPHAD Modeling of Phase Stability" section, 
Paulson et al. [100] have also applied the same approach 
to select the best specific heat model as a function of tem-
perature for each Hf phase. In this case, the Bayes factor 
has been obtained for each potential model by calculating 
its marginal likelihood over the marginal likelihood of a 
reference model for each phase. The results have implied 
that the combination of the Debye and a quadratic poly-
nomial model, a quadratic polynomial model, and a linear 
model are the best models for the specific heats of the 
alpha, beta, and liquid Hf phases, respectively.

Generally speaking, it should be noted that the identi-
fication of the closest model to the data is not often the 
best strategy in the prediction of the system response 
since there is potentially some useful information in all 
the feasible models proposed to describe the response 
of the given system. For this reason, information fusion 
approaches have been developed to properly combine the 
information obtained from different sources (models and 
experiments) for better predictions of the system response 

[18–20]. In information fusion approaches, the informa-
tion can be acquired from the given sources by optimally 
partitioning the total budget based on a reasonable balance 
between the cost and accuracy of the data queries from 
these sources. Co-Kriging and BMA are the most com-
monly used information fusion approaches in the engineer-
ing problems, which are briefly discussed in this section 
with some case studies.

In the co-Kriging approach proposed by Kennedy and 
O’Hagan [143], a linear relationship similar to Eq. 1 is 
assumed between each two closest ranked models in the 
hierarchy of multi-fidelity models. Here, GP surrogate 
models are constructed over some random results obtained 
from the lowest-ranked model and each error term in the 
mentioned hierarchy of linear relationships and then sta-
tistically correlated together to predict the response of the 
highest fidelity model. For example, consider the simple 
case of two fidelity models where the low- and high-
fidelity models are a physical model/simulation and the 
corresponding experiment, respectively. In this case, two 
GP surrogate models are constructed over some random 
results obtained from the low-fidelity model/simulation—
i.e., f (xi, �)—and some other random results obtained from 
the error term—i.e., �(xj) + �(xj) in Eq. 1 that is equivalent 
to D(xj) − �M(xj, �) , M can be the low-fidelity physical or 
GP surrogate model. Ultimately, these two GP surrogate 
models are correlated through the construction of a vari-
ance–covariance matrix based on distance correlations 
between the input values of the applied random results, to 
find a fused model for the experimental response.

The mentioned correlation brings the expectation that co-
Kriging surrogate models provide more precise predictions 
with lower uncertainties for the response of the high-fidelity 
model compared to the GP surrogate models. To confirm 
this, a 1D simple example of the martensite start temperature 

Fig. 31  Comparison of the ordinary Kriging (GP) and co-Kriging 
surrogate model in a 1D example
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variation in terms of Ni content in Ni-Ti SMAs has been 
considered to compare the ordinary Kriging (GP) and co-
Kriging predictions for the high-fidelity model. As shown in 
Fig. 31, 27 and four data points (red cross and green squares) 
with no noises have been sampled from the responses of a 
low-fidelity generated linear model and a high-fidelity rele-
vant experiment, respectively. As can be observed in this fig-
ure, the co-Kriging surrogate model provides a much closer 
mean response (blue vs. red line) to the real response of the 
high-fidelity model (green line fitted on the experimental 
data from Frenzel et al. [144]) as well as a lower uncertainty 
(blue vs. red shaded region). It is worth noting that the plot 
has been designed for a sequential efficient Bayesian opti-
mization problem, where an absolute value of Ms − 30 has 
been considered to be able to find the Ni content resulting 
in an Ms equal to 30C through the minimization process. In 
this case, the application of the co-Kriging surrogate model 
should lead to a more efficient optimization process com-
pared to the commonly used GP surrogate model due to its 
higher accuracy.

Higher efficiency of the optimization process using co-
Kriging modeling has also been shown in the case of high-
dimensional design problems by Chung and Alonso [145]. 
In very recent works, Honarmandi et al. [106] and Patra 
et al. [146] have applied this information fusion approach for 
the probabilistic predictions of the precipitation behavior of 
Ni-Ti SMAs and polymer band-gaps, respectively.

BMA is also another well-known approach that com-
bines the probabilistic responses of multi-fidelity sources 
to find a fused model with a more robust prediction of the 
system response. Here, a weighted average is taken over 
the response of all the models at any given set of input, 
where the weights are the probability of each model given 
data—i.e., P(Mi|D)—and calculated using the Bayes’ fac-
tors. The probabilistic information for BMA can be obtained 
through GP surrogate modeling or the Bayesian calibration 
of the original model against the given data. For example, 

Talapatra et al. [147] have applied BMA over the GP models 
obtained for the shear and/or bulk modulus of MAX phases 
as a function of several combinations of their selected fea-
tures in order to autonomously perform single- and multi-
objective Bayesian optimizations for materials discovery. 
Technically, at any specified input (feature set) values, a 
weighted average of all the GP acquisition values has been 
calculated in these optimization frameworks, rather than just 
the acquisition value of the best GP model that requires a 
priori knowledge of the best feature set.

Another example is the work by Honarmandi et al. [29], 
where a BMA-fused phase diagram has been produced by 
taking a weighted average (at any specified composition) 
over four MCMC-calibrated phase diagrams obtained from 
four CALPHAD models with different numbers of param-
eters. Here, a wider uncertainty bound has been obtained 
for the fused phase diagram compared to the phase dia-
grams constructed from the individual models. This wider 
uncertainty bound can provide some benefits for robust 
design in the safety–critical applications. However, it can 
be too conservative due to the BMA assumption about the 
statistical independence of the individual models.

When the assumption of statistical independence 
between models is not warranted, one can use, for exam-
ple, the error correlation-based model fusion (CMF) 
framework developed by Allaire and Willcox [18]. CMF 
was used by Honarmandi et al. [29] to construct a more 
accurate fused phase diagram. CMF considers the correla-
tions between the model errors (standard deviations) at any 
specified composition that result in a fused phase diagram 
with uncertainties lower than those of the applied indi-
vidual models. The CMF-fused phase diagrams obtained 
from the fusions of three and four CALPHAD models are 
shown in Fig. 32. It should be noted that the best proposed 
model has been disregarded in the case of three-model 
fusion. The fused diagrams have provided closer mean 
values to the data (ground truth) and lower uncertainties 

Fig. 32  CMF-fused phase diagrams obtained from the fusions of a three and b four CALPHAD models. Reprinted with permission from [29]
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compared to the phase diagrams obtained from the applied 
individual models in each case. Although the three-model 
fused phase diagram has not perfectly captured all the fea-
tures and details in the phase diagram—e.g., sharp eutectic 
points, it has covered all the data points in its 95% credible 
intervals, unlike those three individual models. Finding 
such a reasonable phase diagram via the fusion of random 
CALPHAD models—that may have very low degrees of 
accuracy—can be the first step toward making the CAL-
PHAD modeling more objective for the sake of autonomy 
in design rather than being subjective to model selection.

Conclusions

Our inability to have complete models due to incomplete 
knowledge of the physical systems in question, as well 
as their inevitable inherent uncertainties, brings the need 
for a proper uncertainty analysis of the models. Identi-
fying different sources of uncertainty, quantifying these 
uncertainties, and propagating them across different scales 
(levels) of process–structure–property–performance hier-
archy in the ICME framework are very important tasks 
that enable not only the proper management of the uncer-
tainties but also make robust/reliability-based materials 
design possible.

In computational materials modeling, most of the UQ 
works in the literature have focused on the quantification 
of the overall uncertainties—i.e., NU, MPU, and MSU—
reflected on the model input variables/parameters given 
the relevant probabilistic data about the system outputs, 
or the propagation of the prior input variable/parameter 
uncertainties—i.e., NU and MPU—to the model outputs 
with no consideration of MSU. However, partitioning 
the uncertainties resulting from different sources seems 
to be essential in order to apply proper strategies for the 
reduction in the epistemic uncertainties. Kennedy and 
O’Hagan’s framework [54] for the calibration of computer 
models is one of the important approaches to tackle this 
problem.

Another issue that should be addressed in the UQ of 
computational models is a lack of systematic works for 
the uncertainty analysis across a chain of models in the 
ICME hierarchy. The reason is that the decision-making 
process in materials design depends on the probabilistic 
response obtained from the entire ICME chain and not 
just the response of a single model in this chain. Since the 
individual models in this chain can be very expensive, the 
challenge here is the cost of the UP across the chains of 
models through the conventional numerical approaches—
e.g., MC-based sampling approaches. Although constructing 
surrogate models using a small number of samples from 
the outputs of these expensive models—e.g., GP surrogate 

models—are a typical solution for this problem, it usually 
comes at the cost of information and accuracy loss that is 
not always desirable. Therefore, efficient UP approaches—
such as the importance weighting algorithm proposed by 
Sanghvi et al. [33]—should be developed to keep the bal-
ance between cost and accuracy. It should also be noted that 
BN is a powerful tool to provide the connections between 
the variables and parameters of the individual models in 
the chain—some of which can be unobservable—in order 
to perform a systematic UQ/UP in these types of problems.

In the case that multiple models with different fidelity 
and cost exist to describe the physical system of interest, 
the individual model predictions and their uncertainties 
can be combined statistically to find a fused model with 
either a more robustness or higher level of certainty in its 
prediction. In other words, UQ can be performed through 
the fusion of all the feasible models rather than just the 
best model in order to reduce either the risk or uncertainty 
in design depending on the required objectives in the given 
problems. Information fusion approaches are also capable 
of providing autonomous processes for the acceleration of 
materials design and discovery.

In recent years, the growing idea of data-to-knowledge 
due to the development of ML techniques has become an 
increasingly popular topic in materials science and engineer-
ing research. ML regression techniques can be useful tools in 
the accelerated materials design and discovery by substitut-
ing expensive models with much cheaper alternatives. Some 
of these regression techniques—e.g., GPs—already include 
predictive uncertainties in their estimations, but some others 
do not. For example, deep learning models—such as deep 
neural network models—with the ability of microstructural 
feature recognition have recently emerged in materials sci-
ence as alternatives for expensive phase-field models. How-
ever, the proper UQ/UP in these surrogate models is neces-
sary for their applications in materials design and discovery 
frameworks. It is our view that this can be one of the most 
promising research areas in UQ/UP.

In this review, it has been attempted to present a thorough 
overview of UQ/UP in materials design under the ICME 
framework and address different relevant issues that are 
required to be studied more in the future. While we recog-
nize that the field of UQ/UP in materials modeling is in its 
infancy, there is much to learn from other fields of study 
that have already reached a much higher level of sophis-
tication when it comes to the analysis, understanding, and 
management of uncertainties in computer simulations. The 
most advanced UQ/UP approaches discussed in this review 
have resulted from highly interdisciplinary collaborations 
between experts in statistics, UQ/UP, and materials science. 
We hope that such examples motivate further interdiscipli-
nary work aimed at resolving the many outstanding issues 
that computational materials modeling faces. Although 
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solutions to these problems are quite challenging, they will 
greatly and positively impact model validation and verifica-
tion efforts as well as decision making in materials design.
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