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Abstract
The accuracy of the stresses predicted from crystal plasticity-based finite element formulation depends on estimation and 
control of the errors associated with the discretization. In the current work, the errors in the stress distribution are estimated 
in virtual polycrystalline samples of α-phase titanium (hexagonal close-packed phase of Ti–6Al–4V). To estimate the error, 
the stress field, which does not possess inter-element continuity, is smoothed over a grain using an L

2
 projection, thereby 

providing continuous stress distributions with inter-element continuity. The differences between the continuous (smooth) 
and discontinuous (raw) stress fields are calculated at individual Gauss quadrature points and used to estimate errors for 
corresponding elements and grains. Error estimations are performed for a Voronoi-tessellated microstructure, an equiaxed 
microstructure, and two microstructures with varying grain sizes for tensile loading extending into the fully plastic regime 
( ≈ 5% extension). Magnitudes of the errors are found to depend on microstructural characteristics, particularly the shape and 
size of grains. Samples having variations in grain size or having less spherical grains exhibited higher errors than samples 
with uniformly sized, equiaxed grains, with the size variations having a more pronounced effect. Errors correlate with proxim-
ity to grain boundaries at small (elastic) strains and with deformation-induced features (deformation bands) at large strains.
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Introduction

Finite element simulation at the crystal scale is a frequently 
used tool for investigating the mechanical properties of 
structural alloys and minerals. Simulations can be conducted 
in coordination with experiments to reveal and interpret the 
physical behaviors of complex polyphase, polycrystalline 
materials. For crystal-scale simulations, experimental data 
that are particularly germane derive from characterization 
methods, such as electron back-scattered diffraction (EBSD), 
and from mechanical testing, such as high-energy X-ray dif-
fraction (HEXD) or neutron diffraction (ND) with in situ 
loading. Behaviors that have been studied include yielding, 

fatigue and fracture, and the evolution of the state (includ-
ing texture and strength) [1]. Stress is a critical focus of 
these efforts, whether directly or indirectly, via its effect on 
the onset of yielding, the locations of points of failure, or 
the evolution of state. Assessing the accuracy of the stress 
predictions is important to assigning confidence to any con-
clusion drawn from the simulation results.

The finite element method is a general numerical 
approach for solving boundary value problems. It has its 
roots in solid mechanics and has become the dominant 
method for performing stress analyses [2]. While certain 
practices are now well accepted, there is no universal formu-
lation for all applications. Rather, there are choices exercised 
in all aspects of the method, including the type of interpo-
lation, the integration rules, and the origin of the residu-
als, and the linearization technique (for nonlinear systems). 
These choices exhibit different performance characteristics, 
which can be exploited according to the attributes of the 
application to render improved accuracy, speed and robust-
ness. It is not essential that an optimal formulation be identi-
fied and used by all. Instead, what is important is that a level 
of confidence can be assigned to results so that appropriate 
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interpretations are drawn relative to the issues under study. 
For that, an estimate of the possible error of a simulation is 
needed. In assessing the error associated with a simulation, 
it is useful to draw a distinction between error that might 
be introduced by equations that represent the mechani-
cal behavior (the model) and error that arises because the 
method to solve the model equations (the solver) might not 
have delivered the exact answer. This distinction is referred 
to as validation versus verification [3, 4]. Validation and 
verification of the simulation models both are essential for 
building confidence in the simulation results.

In modeling the elastoplastic behavior of polycrystals, 
numerous choices must be made in defining and executing 
simulations. To begin, a specific polycrystalline virtual sam-
ple must be instantiated. This involves laying out the spatial 
arrangement of the individual grains, assigning attributes to 
the grains (such as phase, lattice orientation and strength), 
and creating an appropriate mesh. Given a complete virtual 
sample, the simulation can be executed for prescribed initial 
and boundary conditions using a formulation that embod-
ies constitutive models and attendant numerical methods 
that are appropriately chosen to render an accurate solution. 
Validation involves the critical assessment that the virtual 
sample and the equations that govern its response are capa-
ble of accurately representing a polycrystal’s mechanical 
behavior. Validation has been the focus of prior publications 
for crystal-scale simulations, for example in [5, 6]. Using 
a more formal uncertainty quantification framework, Rizzi 
et al. [7] examined predictions for continuum, isotropic plas-
ticity formulation for an additive manufacturing application.

Here the focus is on verification. In particular, is the 
mesh of the instantiated sample adequate? This question 
is addressed by examining estimates of the spatial distri-
bution of error in the stress prediction. The methodology 
applied to estimate error has been used in the past for adap-
tive meshing [8]. An existing finite element code (FEpX) 
for crystal-scale simulations is employed here to examine 
error in the stress distributions [9]. The formulation has been 
used previously to investigate the responses of a variety of 
metals, including titanium alloys [10–12] (for convenience, 
a summary of the crystal-scale elastoplastic model and its 
finite element implementation are provided in the supple-
ment entitled, “Finite Element Methodology Supplement”, 
in addition to the reference cited above). Methods of the 
instantiation of the virtual polycrystal are considered, how-
ever, with attention to how attributes of the instantiation 
influence the distributions of error.

The paper is arranged in the following format. First the 
methodology to estimate error of the stress distribution is 
reviewed. Next, the instantiation of virtual samples with 
different types of microstructures is presented, which is fol-
lowed with a summary of information related to the simula-
tions (namely, critical ‘input’ and ‘output’ data). The results 

are presented in several sections dedicated to particular 
issues: convergence of the solution with mesh resolution; 
sensitivity of the error to the type of microstructure; the 
influence of the grain boundary representation on error; the 
correlation of intragrain lattice misorientation to error. The 
body of the paper finishes with a set of conclusions.

Error Estimation Methodology

One approach to obtaining accurate, converged solutions in 
finite element analyses is to control the magnitude of the 
potential error through refinement or coarsening of the spa-
tial discretization (typically, the mesh resolution) [2]. In this 
case, the error is defined as the difference between the finite 
element solution and the exact solution. To determine an 
adequate level of mesh refinement, one needs to estimate 
the error that can be attributed to the discretization. How-
ever, the exact solution typically is not available in advance, 
and so one must adopt a method to estimate error without 
knowing the exact solution. Fortunately, an estimate of the 
error can be computed using information available from 
the finite element solution itself. Field data available from 
finite element simulations, such as the stress and strain, often 
are processed subsequent to a simulation to improve their 
accuracy—a process referred to as recovery. Error estima-
tion can employ recovered data as a substitute for the exact 
solution and thereby provide a posteriori estimates of the 
error. A posteriori approaches have been explored in depth, 
as reported by Zienkiewicz et al. [2], Ainsworth et al. [13], 
Becker and Rannacher [14], and Grätsch and Bathe [15].

An intuitive and effective example of the recovery-
based a posteriori error estimation was proposed by Zien-
kiewicz and Zhu [8]. This method involves comparing the 
(unprocessed) finite element stresses to a continuous stress 
field generated by a recovery process. The justification for 
why this difference is a measure of error stems from the 
property of a converged solution that the stress field is 
continuous over regions in which the material properties 
are continuous. Continuity is a necessary, but not suffi-
cient, condition for the solution to satisfy equilibrium on 
domains where the properties do not exhibit discontinui-
ties. Thus, within grains of a polycrystal where the proper-
ties are continuous, continuity of the stress is expected in a 
converged solution even though it is not explicitly dictated 
through the properties of an interpolation function. Con-
versely, if the stress distribution is not continuous over the 
domain of a crystal, then the solution is not yet converged. 
The extent to which it deviates from a continuous solu-
tion is a quantification of the error. Note that the objective 
in refining the discretization is to manage the error, not 
to eliminate it. Controlling the error refers to reaching a 
level of refinement that guarantees that the error is below 
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a specified tolerance everywhere. Ideally, the error is uni-
form over the discretization, indicating that the refinement 
is optimally deployed.

Recall that for finite element simulations the unprocessed 
(raw) stress field is an output of a simulation and is known 
within elements of the mesh, typically at the quadrature 
points. With commonly used C0 elements, the motion is 
continuous over the entire body (both within and across 
elements). Derivative kinematic quantities are continuous 
within elements, but discontinuous between elements. For 
linear elastic behavior, the same continuity conditions exist 
for stress that exist for the strain. For nonlinear elastoplas-
tic behaviors, on the other hand, the stress representation is 
a point-wise evaluation from the constitutive equations to 
which no functional form is prescribed a priori. The finite 
element formulation determines the solution that best satis-
fies equilibrium in a weak sense, but without the precise 
functional form of the stress distribution ever being explic-
itly defined. Thus, a stress field that is continuous over 
appropriate domains, in this case the individual grains of 
the polycrystal, is not immediately available from the raw 
finite element stresses. Rather, a continuous stress distribu-
tion with inter-element continuity must be created from the 
point-wise values of stress.

A continuous stress field may be generated in a number 
of ways: local averaging at nodes, patches, meshless inter-
polation, and global projection. Here, we employ a hybrid of 
these, using a projection (known as an L2 projection) sepa-
rately over individual grains. The grains of the polycrystal 
are treated independently as there is no intent to require 
stress continuity across grain boundaries. For equilibrium, 
the traction vectors acting on the grain surfaces must be 
continuous across the surface, but this does not extend to 
the full stress tensor. With distinct lattice orientations on 
opposing sides of a grain boundary, there will in general 
be differences in some stress components in the opposing 
grains. Thus, we seek a solution with stress continuity only 
within grains and assume that the lattice orientations within 
grains are themselves uniform or at least smoothly varying.

With this strategy, a continuous stress distribution over a 
grain is defined using piecewise-continuous distributions—
namely, C0 finite element interpolation functions. The stress 
has six independent components, which dictates that there 
are six stress degrees of freedom at each nodal point of the 
mesh over a grain. Each degree of freedom of the stress, 
indicated by the superscript, i, is represented with the finite 
element interpolation �i

(x) = [N(x)]{S
i
} , where [N(x)] are 

the interpolation functions and {Si} are nodal values for com-
ponent, i. With this representation, the stress is guaranteed 
to be a continuous function over a grain.

Nodal point values of the stress are determined from 
quadrature point values within elements via a weighted 

residual. For each degree of freedom, a weighted residual, 
R
i , is formed over the volume of a grain, Vg , to determine 

the nodal point values of the stress as prescribed in Eq. 5:

where � (x) is the weighting function. Standard finite ele-
ment procedures are followed to develop a matrix equation 
for the nodal point stresses from Eq. 1:

where the elemental contributions for [A] and {B} , respec-
tively, are:

and

The quadrature point values enter the residual through the 
field, �i

(x) , when the right-hand side integral is evaluated 
by numerical quadrature (thereby utilizing the quadrature 
point values of the raw stress distribution). The solution of 
this equation gives the nodal values that provide an optimal 
fit to the spatial distribution embodied in the raw (quadrature 
point) stress values.

With the nodal point values of the stress determined, 
the continuous stress field is known and the error can be 
evaluated. To do this, all components are concatenated 
into a single expression, written in Voigt notation as a six 
vector, {�(x)}:

where the tilde symbol indicates concatenations of the 
respective quantities. The differences between the continu-
ous and discontinuous stress fields, calculated at individual 
Gauss points, are utilized to estimate the norm of errors ele-
ment by element:

Here, � , the nominal stress applied to the polycrystal, is 
employed to normalize the local stress difference. The nor-
malized errors for individual elements are averaged over the 
grain to define the grain-averaged error distribution:

(1)R
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where ne is the total number of finite elements that belong 
to a particular grain. The error values can be estimated at 
each load step of a deformation history to assess the evolving 
level of error in a simulation.

Virtual Samples: Instantiation and Loading

The investigation reported here examined several aspects 
of polycrystalline samples: grain size and shape distribu-
tions, initial texture, and grain boundary representation. The 
objective is to explore how the error distributions might be 
affected by attributes of the microstructure. The variations 
of attributes are not exhaustive, but rather are intended to 
demonstrate the potential for sensitivity of the simulation 
errors to features that are commonly incorporated in sam-
ple instantiations. No attempt has been made to include, for 
example, dislocation structure or second phase particles. In 
the current work, the errors in the stress distribution are 
estimated in virtual polycrystalline samples of α-titanium 
[the hexagonal close-packed (hcp) phase of Ti–6Al–4V]. 
Ti–6Al–4V  is an alloy that displays a rich variety of micro-
structural features in differing forms depending on how the 
alloy has been processed [16]. In this section, specifics of 
the simulations are presented. Simulation inputs are pro-
vided specifically for the instantiation of the sample grain 
structure, the single-crystal mechanical properties, and the 
simulation boundary conditions.

Grain Structures

Four different types of virtual microstructures were created 
using Neper [17] and are displayed in Fig. 1. Each type of 
microstructure has 1000 grains but different characteristics 
of grain size and shape. The instantiated samples have a 3:1 

ratio in length to width, with the length being 1.2 mm and 
cross section being 0.4 mm × 0.4 mm.

The absolute dimensions do not affect the results as the 
equations for slip to not have an embedded length scale. 
The dimensions were arbitrarily chosen with the intent of 
having realistic grain sizes. Factors that do affect the results, 
however, are the distribution of grain sizes (discussed in 
"Influence of Grain Geometry" section) and the numbers of 
grains on a load-bearing cross section.

The baseline type is a regular Voronoi tessellation that 
exhibits a random grain size and shape distribution (Fig. 1a). 
In addition to the sample shown, three equivalent Voronoi 
samples are generated by changing the location of seed 
points used for the tessellation. Simulations performed with 
these samples established that the error distributions do not 
differ significantly across a set of equivalent samples.

The three other microstructures offer variations from 
the baseline commonly observed in real microstructures. 
The first of these is a microstructure (Fig. 1b) with nearly 
spherical grains of almost equal size. It was created using a 
Laguerre tessellation and is called an equiaxed microstruc-
ture. The two remaining microstructures highlight possible 
variations in grain size. One of these exhibits a combination 
of two grain sizes and is referred to here as the bimodal 
microstructure (Fig. 1c). The other was generated using the 
grain growth tessellation feature in Neper (Fig. 1d). This 
microstructure exhibits a large variation of grain size with 
the grains being nearly spherical in shape.

Frequency distributions for the relative grain size (diam-
eter) and for the grain shape (sphericity) are given in Fig. 2 
for the four types of microstructures. Grain size is estimated 
as the equivalent grain diameter normalized against the aver-
age diameter of all the grains, and sphericity is the ratio of 
the grain volume to the volume of sphere of equal diameter. 
All of the microstructures possess the same average grain 
diameter owing to all having the same number of grains and 

Fig. 1  Sample instantiations 
with: a Voronoi tessellation 
having random grain sizes and 
shapes; b equiaxed tessellation 
having uniform grain size; c 
bimodal tessellation having two 
distinct grain sizes; and d grain 
growth tessellation having a 
distribution of larger grains sur-
rounded by smaller grains
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the same total volume. The variations in grain size differ 
markedly, ranging from the very tight distribution of the 
equiaxed microstructure to the comparatively large spread 
in sizes within the grain growth microstructure. The two 
peaks of the bimodal microstructure distribution have simi-
lar spreads to the Voronoi microstructure. The sphericity dis-
tributions of all the microstructures are qualitatively similar. 
The Voronoi microstructure shows greater spread in values 
than the equiaxed, consistent with the attributes of Voronoi 
and Laguerre tessellations.

Initial Textures

Two initial textures were considered in conjunction with 
each of the four types of microstructures. Texture here refers 
to the orientation distribution of the crystallographic lattice. 
The two textures are displayed in Fig. 3 as inverse poles 
showing the loading axis with respect to the crystal frame. 
The first texture (Fig. 3a) is drawn from a uniform distribu-
tion. The second texture has two primary components in 
which 500 grains are oriented with their hcp c-axes closely 
aligned with the loading direction and 500 grains are ori-
ented with their c-axes at 40°–50° from the loading direc-
tion. This is referred to here as the dual texture. In the dual 
texture sample, the two texture components are distributed 
randomly over the geometry. For the set of slip parameters 
used in the current work (see "Results" section), the direc-
tional strength-to-stiffness ratio is highest for c-axis being 
aligned with the loading direction [11]. The directional 
strength-to-stiffness ratio is computed from the stress need to 
initiate yielding (strength) and the directional Young’s mod-
ulus (stiffness). Grains having their c-axis aligned with the 
loading direction tend to yield and exhibit plastic deforma-
tion after grains with other lattice orientations. In contrast, 
the directional strength-to-stiffness ratio is the lowest for 
grains oriented at 40°–50°, and slip tends to initiate earlier 

in these grains than in grains with other lattice orientations. 
As a consequence, samples with a combination of these two 
types of orientations develop strong orientation gradients 
after plastic deformation and therefore are anticipated to 
develop higher errors. These two textures were chosen pri-
marily to give contrasting responses—the uniform texture 
promoting more uniform deformation response and the dual 
texture promoting strain localization. The baseline texture 
for the simulations is the dual texture.

Grain Boundary Representation

The four types of microstructure presented in "Grain Struc-
tures" section have smooth grain boundaries and are collec-
tively referred to as the ‘Smooth GB’ samples. A different 
approach to sample instantiation is to build samples directly 
from voxel data sets. The final virtual sample may mimic 
the experimental data and exhibit serrated grain bounda-
ries. To consider simulation errors in this type of sample, 
samples with serrated grain boundary features were created 
for the equiaxed and bimodal types of microstructure using 
a rasterized tessellation. These two types of microstructure 
were chosen because the error distributions obtained with 
these two types for the Smooth GB instantiations were the 
most dissimilar among all the microstructures. The samples 

(a) (b)

Fig. 2  Sample metrics: a relative grain size and b sphericity (shape) distributions for the four types of instantiations shown in Fig. 1

[0001]

[1120]

[0110]
(a)

[0001]

[1120]

[0110]
(b)

Fig. 3  Two types of initial texture used in the simulations: a uniform 
texture and b dual texture
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with serrated boundaries are designated as the ‘Serrated GB’ 
samples and are shown in Fig. 4. The final virtual samples 
thus mimic the experimental data in that they exhibit ser-
rated boundaries that accompany voxel data. Note that these 
samples have the same number of grains and use the same 
grain centroid locations as their Smooth GB counterparts 
in Fig. 1. The Serrated GB samples use only the baseline 
(dual) texture.

Single‑crystal properties

The single-crystal mechanical properties used in simulations 
control the stress distributions computed. In this investi-
gation, the single-crystal properties of a titanium alloy 
(Ti–6Al–4V) were selected because of the extensive effort 
previously invested to quantify the values and the continuing 
interest in the error estimates associated with simulations 
conducted for this material. As a simplifying assumption, 
only the hcp (α) phase is considered. The α-phase volume 
fraction is approximately 93% of the total for Ti–6Al–4V, 
but for the virtual samples it constitutes the entire volume. 
Single-crystal elastic constants are listed in Table 1; val-
ues used for the initial slip system strengths are listed in 
Table 2. The values given in Tables 1 and 2 are determined 
using HEXD data, with documentation provided in [18, 

19], respectively. Although Ti–6Al–4V  exhibits little strain 
hardening, it was included in the simulations. Values for the 
Voce-type slip system strength evolution equation, listed in 
Table 3, were defined to match macroscopic stress–strain 
test data [19]. Simulations performed previously based on 
characterization of the α-phase have shown good agreement 
for stress distributions and yield initiation with high-energy 
X-ray diffraction (HEXD) and digital image correlation 
(DIC) data [11].

Sample loading

The virtual samples were loaded in uniaxial tension parallel 
to their long dimension (z-direction in the simulations). The 
samples were extended to ≈ 5% strain, which is sufficient 
to cause significant plastic deformation (the initial yield is 
below 1% strain). The loading was performed in displace-
ment control. In particular, one end of the sample (the bot-
tom surface in the plots) was held fixed, while the other 
end (the top surface in the plots) was displaced to extend 
the length of the sample. A velocity was specified to pro-
vide a nominal strain rate over the sample of approximately 
10−3 s−1.

Results

Simulation data were saved throughout the loading sequence. 
The stored records included the stresses at individual quad-
rature points, as well as plastic strains, slip system strengths 
and lattice orientations. Using the methodology presented in 
“Error Estimation Methodology” section, smooth stress dis-
tributions were computed grain-by-grain over entire samples 
and errors were estimated from the differences between the 
smoothed and raw stresses. Using this approach, the stress 
field for each grain is treated independently of the fields 
in all other grains. This allows for stress discontinuities at 

Fig. 4  Virtual microstructures of a equiaxed and b bimodal grain size 
distributions with serrated grain boundaries (rasterized tessellations)

Table 1  Single-crystal elastic constants for the α phase of Ti–6Al–4V  
(see [9] for variable definitions)

C11 (GPa) C12 (GPa) C13 (GPa) C44 (GPa)

169.7 88.7 61.7 42.5

Table 2  Initial slip system strengths for the α phase of Ti–6Al–4V, 
including relative ratios normalized by each set’s basal strength. g

0,b , 
g
0,p and g

0,�
 are the initial slip system strengths of the basal, prismatic 

and pyramidal slip systems, respectively (see [9] for variable defini-
tions)

g0,b (MPa) g0,p (MPa) g0,� (MPa) g0,p

g0,b
∶

g0,�

g0,b

390 468 663 1.2:1.7

Table 3  Voce hardening model parameters used for the α phase of 
Ti–6Al–4V (see [9] for variable definitions)

h0 (MPa) gs0 (MPa) m m′

�̇�0 ( s−1) �̇�s0 ( s−1)

190 530 0.01 0.01 1.0 5 × 10
10
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the grain boundaries, but enforces continuity within grains. 
Figure 5 illustrates this process for one stress component. 
Figure 5a shows the quadrature point (raw) stress values 
and the corresponding smooth stress distribution over a 
single element (stress values projected at the nodes). Fig-
ure 5b shows the smoothed stress distribution over an entire 
grain and the elemental errors, computed with Eq. 6 over the 
same grain, respectively. From the elemental errors, grain-
averaged errors were computed and used to compute error 
distributions over the samples for the full loading histories.

The following subsections present results of all the simu-
lations performed. For the baseline case (Voronoi tessella-
tion and dual texture), we first summarize the results of a 
mesh refinement study. This study provides insight into the 
mesh dependence of the stress distributions. Focusing on 
two levels of refinement, error distributions are discussed 
in the context of the grain size and shape distributions, 
the strength of the initial texture, and the grain boundary 
representation.

Influence of Mesh Refinement

A necessary condition for the guarantee of accurate stress 
predictions is that the solution converges with increased 
mesh refinement. For this reason, the error distributions 
associated with the level of discretization are examined first. 
The Voronoi-tessellated sample with the dual texture, which 

serves as the baseline case, was discretized into 10-node 
tetrahedral elements using five levels of refinement: 50K, 
150K, 300K, 500K and 1000K elements. Figure 6 depicts 
the finite elements within one of the grains of the sample. 
The factor of 20 refinement from the 50K element mesh to 
the 1000K element mesh increases the element density in 
each spatial direction approximately by a factor of between 
two and three. Simulations were performed at each level of 
refinement, and the results were used to quantify the reduc-
tion in the stress distribution errors with mesh refinement. 
Trends with respect to mesh refinement for the baseline case 
appear in Fig. 7. The macroscopic stress–strain responses 
(Fig. 7a) are insensitive to the level of mesh refinement. The 
nominal stress is slightly lower with increasing numbers of 
elements, as expected. Generally speaking, as the number 
of degrees of freedom goes up in the case of a refined mesh, 
the mesh is better able to match the exact motion and the 
computed driving force for deformation is lower. However, 
the difference is slight, and consequently, the normalization 
of the error values with nominal stresses is not biased due 
to refinement.

Frequency distributions for the average grain error, 
E
g , are shown in Fig. 7b for all levels of discretization at 

the end of the loading ( ≈ 5% strain). Approximately 500 
grains from the central half of the sample (0.6 mm around 
the center) were considered for plotting this frequency dis-
tribution, to avoid the effects of top of bottom boundaries 

Fig. 5  a Quadrature point values of one stress component and corresponding smooth stress distribution (nodal stress values); b smooth stress 
distribution over a single grain and corresponding elemental errors

Fig. 6  Mesh refinement shown 
in a single grain in the Voronoi 
tessellation for total mesh size 
of: a 50K, b 150K, c 300K, d 
500K and e 1000K
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where boundary conditions are applied. Some of these 
grains touch the four free side surfaces of the geometry. 
The frequency distributions all have similar form, but 
there is a shift toward lower errors with increased mesh 
refinement. Mean and standard deviation values for error 
distributions were computed using grain-averaged error 
values for grains in the central half of the geometry—the 
grains within 25% volume from the top and bottom sur-
faces were not considered for this calculation. The mean 
and standard deviation values are plotted as a function 
of sample strain for each level of refinement in Fig. 7c. 
The mean and standard deviation values overall increase 
with strain for all levels of refinement. Crucially, there is 
a consistent trend toward lower values of each metric with 
higher refinement, indicating convergence of the solution. 
A maximum grain-level mean error of  20% was observed 
for the coarsest discretization of 50K elements. With 
refinement of the mesh, the grain-by-grain error values 
reduce by nearly a factor of two, as is evident from Fig. 7c. 

Overall, the convergence behavior shown in Fig. 7d is typi-
cal of standard h-type mesh refinement in which the error 
diminishes linearly with the logarithm of the number of 
elements [2] .

For the examinations of error associated with the grain 
size distributions, boundary representations and features of 
the microstructure, presented in the following sections, only 
two of the five discretizations were utilized—the 50K and 
500K levels. These levels are noted at appropriate points in 
the discussion.

Influence of Grain Geometry

The influence of grain geometry on the errors associated 
with stress distributions was examined in terms of four types 
of grain geometries, as defined in “Virtual Samples: Instan-
tiation and Loading” section and shown in Fig. 1: Voronoi, 
equiaxed, bimodal and grain growth tessellations. Recall 
that these tessellations exhibit qualitative differences in the 

(a) (b)

Std. Dev.
(Dashed)

Mean
(Continuous)

(c) (d)

Fig. 7  a The macroscopic stress–strain curves for five levels of dis-
cretizations (50K, 150K, 300K, 500K and 1000K) for the baseline 
case (Voronoi tessellation and dual texture). b Grain-averaged error 
distributions for five levels of mesh refinement shown in Fig.  6 at 

4.6% strain. c Evolution of mean and standard deviation of grain-level 
error, Eg , with applied strain. d Stress convergence with mesh refine-
ment at 0.42%, 0.75% and 4.60% macroscopic strain
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grain size and shape distributions, as quantified by the grain 
diameter and sphericity metrics in Fig. 2. The grain diam-
eter distributions range from a narrow unimodal distribution 
for the equiaxed tessellation to the distribution with widely 
separated peaks for the bimodal tessellation. Between these 
lie the Voronoi and grain growth tessellations. The spheric-
ity distributions differ primarily in the widths of the distribu-
tions, with the Voronoi tessellation exhibiting the broadest 
range in shape.

All of the tessellations have 1000 grains and are deformed 
in uniaxial tension to ≈ 5% strain as summarized in “Vir-
tual Samples: Instantiation and Loading” section using the 
mechanical properties for the α-phase of Ti–6Al–4V. Two 
levels of finite element discretization are reported here: 50K 
and 500K elements. The stress distributions were computed 
for all combinations of the tessellations and the discretiza-
tions over the full loading history. Using the methodol-
ogy reported in “Error Estimation Methodology” section, 
smoothed stress distributions were computed and used to 
construct the error estimates. Figure 8 shows the error distri-
butions for the baseline case (Voronoi tessellation and dual 
texture) at the end of the loading along with the distribution 
of effective plastic strain. Banding of the deformation is a 
prominent feature of the behavior, as is evident from the plot 
of effective plastic strain. Banding depends on the initial 
texture and correlates with lattice misorientations, as dis-
cussed in greater detail in “Correlation with Microstructural 
Features” section.

The evolution of the error estimate metrics is shown 
in Fig. 9 for the grain-averaged errors, Eg . Error values 
remain low within the elastic domain, but grow steadily as 
plastic strain accumulates. Increasing the mesh refinement 

delivers a reduction in the error overall. The mean values 
of the error distributions are not highly sensitive to the 
type of tessellation, although the two tessellations with 
greater range of grain size (bimodal and grain growth) 
generate slightly larger mean values than the other two. 
Much more notable are the differences in the standard 
deviation histories. Tessellations with larger grain size 
variations display larger standard deviations in the error 
distributions. The standard deviation for the bimodal 
tessellation is markedly higher, by approximately a fac-
tor of two, than the standard deviation of the equiaxed 
tessellation.

The error metrics indicate that grain size and shape 
have significant influences on predicted stress field and 
the allied error values. Within the limited number of tes-
sellations examined, grain size variations have a stronger 
effect on errors in comparison with grain shape variations. 
Comparing the grain growth tessellation to the Voronoi 
tessellation illustrates this point. For both tessellations, 
the grains are more or less spherical in shape, but the 
grain growth tessellations generate higher errors. The 
grain growth tessellation has a large variety of grain sizes 
wherein small and large grains are often located next to 
each other. The bimodal tessellation has characteristics 
of both size and shape variations, although the size dif-
ference is the dominating parameter for this sample. This 
case develops larger error variations compared to any 
other tessellation. In contrast, the uniformity of size pre-
sent in the equiaxed tessellation offers the most favora-
ble situation for stress prediction. It is important to note 
that the larger grains contain more elements than smaller 
grains in the same geometry and that might influence the 

Fig. 8  The distributions of axial stress, equivalent plastic strain and 
errors in stress distribution over individual grains and over individual 
elements at 4.6% applied strain for the Voronoi sample with the dual 

texture. The small cut-out in the geometry shows the behavior inside 
the sample. The results are for the mesh with 50K elements
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grain-averaged error distribution over the geometry in 
the current study. Using local mesh refinements for small 
grains to generate uniform grain-averaged error distribu-
tions provides a good scope for future improvements on 
the current work.

Influence of Initial Texture

The simulations were repeated for the four types of micro-
structures using the uniform texture in place of the dual 
texture. Distributions of stress, deformation and error 
for the Voronoi tessellation with the uniform texture 

are shown in Fig. 10 and can be contrasted with Fig. 8. 
The crystallographic texture has a strong influence on 
the error distributions through its influence of the het-
erogeneity of the deformation. The strong deformation 
band exhibited in the corresponding sample with the dual 
texture is no longer presented, and correspondingly, the 
spatial distribution of error is more diffuse. Correlations 
between the deformation and the error are discussed in 
“Correlation with Microstructural Features” section.

The error distribution metrics for the uniform texture 
simulations (Fig. 11) also provide evidence of the influ-
ence of the texture on errors in the stress predictions. 

Std. Dev.
(Dashed)

Mean
(Continuous)

(a)

Std. Dev.
(Dashed)

Mean
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Fig. 9  Evolution of the mean and standard deviation of the grain-level error values with applied strain for the four different types of microstruc-
ture: Voronoi, equiaxed, bimodal and grain growth using the dual texture and two levels of discretizations (50K and 500K elements)

Fig. 10  The distributions of axial stress, equivalent plastic strain and 
errors in stress distribution over individual grains and over individual 
elements at 4.6% applied strain for the Voronoi sample with the uni-

form texture. The small cut-out in the geometry shows the behavior 
inside the sample. The results are for the mesh with 50K elements
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Overall, the mean values are comparable between the two 
textures, but the standard deviations differ significantly.

Influence of Grain Boundary Representation

Tessellation methods differ significantly in how the grain 
boundaries are represented as a consequence of how the 
grain domains are defined. For Voronoi tessellations, the 
domain is defined by an inner envelope of intersecting 
planes. The planes are created from the bisections of space 
equidistance between any two seed points of the tessella-
tion. In contrast, a rasterized tessellation creates a grain 
from the union of voxels spatially proximate to its seed 
point. Such tessellations are readily generated from voxel-
based characterization methods (like EBSD or X-ray dif-
fraction). For the same seed points, these two different 
methods can produce microstructures with very similar 
grain arrangements. However, one will have smooth grain 
boundaries and the other serrated grain boundaries unless 
further processing is done to the geometric input such as 
the methods described in [20]. It is expected that these 
differences in grain definitions would influence computed 
stress distributions and thus potentially influence the accu-
racy of the stress predictions.

Two possibilities emerge that bear on the stress distribu-
tions and their accuracy. First, because the computational 
domains are indeed different, the solutions, in general, will 
be different. In spite of the domains being distinct, the solu-
tions nevertheless should bear strong similarities, as both are 
attempting to model essentially the same real microstructure. 
Second, the distinct computational domains each will have 
their own convergence characteristics as the converged solu-
tions will be distinct as well. Here, the latter possibility is 
examined via the error estimation methodology discussed in 

this paper. In particular, the distributions of error are exam-
ined for samples having the same numbers of grains, each 
with the same initial tessellation.

From the set of four microstructures defined in “Virtual 
Samples: Instantiation and Loading” section, two, the equi-
axed and the bimodal, were chosen for examination relative 
to the grain boundary representation. These two generated 
the least and greatest standard deviations of error, respec-
tively, for the baseline case as discussed in “Influence of 
Grain Geometry”. The smooth grain boundary and serrated 
grain boundary samples have the same grain seed points 
for each of the two types of microstructures. However, the 
different instantiation approaches define different grain 
domains, one with smooth and the other with serrated grain 
boundaries. The initial lattice orientations for the grains are 
the same for each type of microstructure and were drawn 
from the dual texture. Simulations were performed using 
the Ti–6Al–4V  single-crystal properties given in “Virtual 
Samples: Instantiation and Loading” section and the more 
refined discretizations having 500K elements. The error 
distributions are displayed for the equiaxed grain distribu-
tion in Fig. 12 (distributions for the bimodal microstruc-
ture show similar trends at the conclusion of the loading). 
Visual examination of the average grain errors suggests that 
the serrated grain boundary sample have higher error levels 
in corresponding grains in comparison with smooth grain 
boundary sample.

To be more precise about the influence of the grain 
boundary representation, it is useful to compare the 
metrics of the error distributions, which are provided in 
Fig. 13. The metrics reveal interesting differences between 
the two types of microstructures (equiaxed and bimodal) 
in regard to the influence of the boundary representations 
(smooth and serrated). For the equiaxed samples, the 
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Fig. 11  Evolution of the mean and standard deviation of the grain-level error values with applied strain for the four different types of microstruc-
ture: Voronoi, equiaxed, bimodal and grain growth using the uniform texture and two levels of discretizations (50K and 500K elements)
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samples with serrated grain boundaries displayed modestly 
higher values for both the mean and standard deviation 
of the error distributions. The differences were consistent 
throughout the loading history. In contrast, for the bimodal 
samples, the samples error distribution metrics changed 
their relative orders as the deformation proceeded. A 
crossover point occurred between 2 and 3% strain. While 
it cannot be concluded definitively, a cause of this may be 
a transition from the error highest around grain boundaries 
to it being highest in the grain interiors due to the large 
strain gradients associated with the plastic strain bands. 
If this is correct, then whether there is a crossover point 
and, if so, at what strain it occurs is likely to be sample 

dependent. Correlation of the deformation heterogeneity 
to the error is discussed in greater detail in “Correlation 
with Microstructural Features” section.

Correlation with Microstructural Features

Using the simulation results, it is possible to test for the 
existence of correlations between microstructural features 
and error in the computed stress distributions. This has been 
done for all four types of microstructures (Voronoi, equi-
axed, bimodal and grain growth) with each of the two ini-
tial textures (uniform and dual). The results presented were 
generated using 1000 grain samples discretized with 500K 

Fig. 12  The geometry showing the distribution of axial stress, equiva-
lent plastic strain, percentage error in stress distribution over individ-
ual grains and over individual elements at 4.6% applied strain for the 
equiaxed samples with a smooth grain boundaries and b serrated or 

rough grain boundaries. The small cut-out in the geometry shows the 
behavior inside the sample. The results are for the mesh with 500K 
elements
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elements and subjected to tensile loading. All cases exhibit 
similar trends to that discussed in previous sections of the 
paper. Consequently, we focus our discussion here primar-
ily on just one of the eight cases (bimodal microstructure 
with dual texture). Statistics are presented, however, for all 
eight cases. Additional contour plots for several other cases 
are provided in the supplement entitled, “Supplemental 
Results”.

The spatial distribution of error evolves qualitatively, as 
well as quantitatively, over the course of the deformation 
history. This is because the character of the deformation 
changes over the history, proceeding from the initial elastic 
regime into the elastic–plastic transition and finally oper-
ating in the fully developed plastic regime as the sample 
is deformed to an average strain of ≈ 5% . As the loading 

progresses through these regimes, the stress state evolves 
in concert with the evolving heterogeneous deformation 
patterns. To illustrate the correlation between the error 
distributions and the regime of deformation, three sets of 
contour plots are presented and discussed. Figure 14 shows 
the macroscopic stress–strain response for the sample and 
the corresponding histories of the metrics of the error dis-
tributions. Three points are indicated on the plots (Points 
(a), (b) and (c)), which correspond to strains at which con-
tour plots are shown in Fig. 15. Point (a) is in the elastic 
regime, Point (b) is in the elastic–plastic transition and 
Point (c) is in the fully developed plasticity regime.

Five contour plots are provided in Fig. 15 for each level 
of strain. Shown, from left to right, are: the grains, deline-
ated by the current lattice orientation; the effective plastic 
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Fig. 13  Evolution of the mean and standard deviation of the grain-level error values with applied strain for the smooth and serrated grain bound-
ary samples using dual texture and mesh with 500K elements for a equiaxed samples and b bimodal samples shown in Figs. 1 and 4, respectively
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Fig. 14  a Stress–strain response with markers for contour plots shown in Fig. 15; b Error metric histories with markers for contour plots shown 
in Fig. 15. Point (a) is in the elastic regime, Point (b) is in the elastic–plastic transition, and Point (c) is in the fully developed plasticity regime
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Fig. 15  Bimodal microstructure with dual texture; tensile loading. 
Left to right: grain orientation; plastic strain; misorientation; grain 
error; element error. Distribution shown for applied strain of a 0.42% 

(elastic regime), b 0.7% (macroscale elastic–plastic transition) and c 
4.6% (plastic regime)
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strain; the lattice misorientation (referenced from the ini-
tial grain orientations); the grain-averaged stress error; the 
elemental stress error. The lattice misorientation is calcu-
lated between the initial ( q

i
 ) and current ( q

c
 ) orientations 

of an element and is expressed in terms of quaternions:

The misorientation angle, �� , is given by:

where �q0 is the scalar component of the misorientation 
quaternion �q . �� is plotted here to illuminate the correla-
tions between distributions of misorientation and error of 
the stress. Comparing the corresponding images at increas-
ing levels of strain, evolution is evident in all of the fields 
plotted. Plastic strains develop, eventually forming clearly 
resolved bands; lattice orientations rotate with slip, exhibit-
ing intragrain misorientations due to deformation hetero-
geneity within grains, and errors in the stress strengthen in 
magnitude as the deformation increases. The lattice misori-
entation develops most strongly in highly deformed regions 
where the errors also grow larger with increasing strain.

In the elastic regime (Fig. 15a), there is virtually no plas-
tic strain1 and lattice misorientation is minimal (note the 
scale). Nevertheless, the error is present before the onset of 
plastic flow. Error in the stress distribution is expected at all 
levels of stress unless the computed stress matches the exact, 
which is typically not possible at finite levels of resolution. 
The magnitude of the error correlates with proximity to the 
grain boundaries. Prior to loading the sample, the lattice ori-
entation is initially uniform within grains. It remains nearly 
uniform throughout the elastic regime because the strains 
and rotations are small everywhere. As long as the sample 
remains elastic, the largest gradients of the deformation field 
tend to occur near the grain boundaries. Without enhanc-
ing the spatial resolution of the mesh in the vicinity of the 
grain boundaries, the errors tend to be larger near the grain 
perimeter and smaller in the grain interior. The mean error 
levels remain relatively low throughout the elastic regime—
approximately 1%, as indicated in Fig. 14b. Recognizing 
that stress gradients tend to be higher near grain boundaries 
than in the grain interior, Resk and colleagues [21] based an 
a priori mesh refinement strategy (both for the initial mesh-
ing and for re-meshing) on the proximity of an element to 
a grain boundary. They demonstrated that using higher ele-
ment densities near the grain boundaries provided more 

(8)�q = q
−1
i

q
c

(9)�� = 2 cos�q0

effective allocation of the elements and reduced errors in 
comparison with non-adaptive meshing.

Plastic deformation initiates before the sample reaches 
1% strain, as is apparent from the stress–strain response 
shown in Fig. 14a and the plastic strain distribution shown in 
Fig. 15b. The plastic deformation is spatially heterogeneous: 
the bands that appear at 0.7% sample strain are well-formed 
by 4% sample strain (Fig. 15c). Lattice rotation accompanies 
plastic flow by slip, leading to intragrain lattice misorienta-
tions in grains with heterogeneous deformation fields. From 
the misorientation distributions shown in Fig. 15c, it is evi-
dent that misorientation is high in the deformation bands. 
From the perspective of the errors in the stress distributions, 
a major transition in the spatial position of regions of high 
error occurs during the elastic–plastic transition. Domains of 
highest error shift from the grain boundaries to the deforma-
tion bands. Error levels constantly grow in concert with the 
misorientation levels as the plastic deformation increases, as 
indicated by the evolution of the error distribution metrics 
given in Fig. 14b.

To quantify a correlation between the error and misori-
entation or plastic deformation, the Spearman correlation 
was used [22]. The Spearman correlation is a nonparamet-
ric measure of how the relationship between two variables 
can be described by a monotonic function [23, 24], whether 
linear or nonlinear. This coefficient was generated for each 
test case at 0.4%, 0.7% and 4.6% strain. The Spearman cor-
relations for the different cases are summarized in Table 4. 
It was found that plastic deformation and misorientation are 
not correlated with the error at 0.4% and 0.7% strain. How-
ever, once the samples reached 4.6% strain, the plastic defor-
mation and misorientation were shown to have a moderate, 
positive correlation with the error, with all values of the 
Spearman coefficient ranging between 0.4 and 0.7. Across 
all of the test cases at 4.6% strain, the plastic deformation 
had a stronger correlation when compared to the misorienta-
tion. Another observation made from these correlations was 
that the dual texture cases resulted in a stronger correlation 
when compared to the uniform texture cases. Further tests 
would need to be conducted to see whether these correla-
tions become stronger the further out the sample is strained.

The elemental error estimates are shown in Fig. 16 as 
correlations against the local plastic strain and the lattice 
misorientation at 4.6% macroscopic strain. These plots are 
for one point on the macroscopic stress–strain curve (Point 
(c) in Fig. 14) and show spatial heterogeneity of error that 
is associated with the spatial variability of strain and mis-
orientation. This is in contrast to the growth of error with 
macroscopic strain over the entire loading history previously 
shown in Fig. 14b. To construct these plots, the elemental 
error values were sorted into 500 bins of either the (a) plastic 
strain or (b) the lattice misorientation. Error values within 
bins were averaged and plotted against the bin midpoint 

1 Rate-dependent crystal plasticity admits plastic flow at any resolved 
shear stress, but with low rate sensitivity the slip system activity is 
very small unless the resolved shear stress is close to the slip system 
strength.
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value. For both plots, two trends are evident. First, the cor-
relation shows less spread at lower values of plastic strain 
and lattice misorientations. At higher levels of strain and 
misorientation, the correlated behavior observed for low 
strain becomes increasingly noisy. Second, the errors for the 
coarser mesh are larger than for the finer mesh for the same 
level of plastic strain or lattice misorientation. This indicates 
that increased mesh resolution facilitates better estimation 
of stress in regions of high gradients. Note that the ranges of 
strain and misorientation are larger for the finer mesh, which 
can be attributed to finer mesh resolution capturing sharper 
gradients of the deformation and consequently producing 
sharper gradients in the lattice orientation.

The higher correlation between the plastic strain and 
stress error than between the misorientation and stress error 
as quantified by the Spearman rank coefficient in Table 4 
merits further consideration. Plastic deformations can poten-
tially impact the simulation accuracy in several ways. Plastic 
deformations result both in a change of shape of the body 
and in changes to its mechanical state. The plastic strain is 
a measure of the former—shape changes of the constitu-
ent grains. The mechanical state is characterized in the 
present model with the lattice orientation, the slip system 
strengths and the elastic strain. Plastic deformations alter 
the first two of these—the lattice orientations and the slip 
system strengths. The question arises: does the plastic strain 
exhibit a stronger correlation with error than misorienta-
tions because it increases concurrently with mechanical state 
evolution as well as shape changes or because the shape 
changes themselves are a principal source of higher levels 
of error? To answer this question, we consider the element 
quality based on the geometric metrics [25]. Elements in the 

Table 4  The tabulated results of the Spearman rank correlation coef-
ficient for error versus either misorientation or plastic deformation 
across the different tessellations, textures and three macroscopic 
strain cases

Tessellation Texture Strain (%) Misorienta-
tion correla-
tion

Plastic 
deformation 
correlation

Bimodal Dual 0.42 0.23 0.01
0.75 0.40 0.41
4.6 0.55 0.65

Uniform 0.42 0.28 − 0.01
0.75 0.31 0.29
4.6 0.45 0.52

Voronoi Dual 0.42 0.21 0.02
0.75 0.44 0.49
4.6 0.57 0.66

Uniform 0.42 0.21 0.03
0.75 0.33 0.39
4.6 0.47 0.58

Grain growth Dual 0.42 0.24 0.04
0.75 0.44 0.54
4.6 0.63 0.73

Uniform 0.42 0.26 0.04
0.75 0.36 0.35
4.6 0.43 0.51

Equiaxed Dual 0.42 0.19 0.01
0.75 0.44 0.52
4.6 0.58 0.68

Uniform 0.42 0.24 0.03
0.75 0.31 0.39
4.6 0.51 0.61

Fig. 16  Elemental error estimates at 4.6% macroscopic strain for the 
case of bimodal tessellation and dual texture. Error estimates shown 
for 50K and 500K element meshes. Errors are shown versus elemen-

tal a plastic strain and b lattice misorientation. Each point corre-
sponds to the average error value within 500 bins for each distribution
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mesh initially have acceptable quality owing to constraints 
imposed in mesh generation algorithms used by Neper. 
However, the shape changes associated with the plastic 
deformation can be detrimental to accuracy if the elements 
become too highly distorted. This effect can be quantified 
through changes in the Jacobians of the elemental paramet-
ric mapping. In FEpX, the coordinates are advanced during 
each time step using the converged velocity field. This will 
distort the elements and degrade the element quality if the 
Jacobian values over the element volume become fall outside 
acceptable limits [26]. If the elements are repaired at each 
timestep by returning the midside nodes of the tetrahedral 
elements to the center of the corresponding edge (as is done 
in FEpX), then the Jacobian remains constant over the ele-
ment. Consequently, element degradation from distortion is 
not a source of the growing error in the stress distributions. 
We surmise instead that the stronger correlation between 
the stress error and the plastic strain is because gradients 
in the other state variables (slip system strength and elastic 
strain) also are captured to some extent with the plastic strain 
correlation.

Discussion

In this section, we discuss how the error in the computed 
stress distributions presented in the previous sections might 
impact future investigations that include simulations of 
mechanical behaviors of polycrystals. First, several impor-
tant points are reiterated.

• Error accompanies heterogeneity in the stress, which fol-
lows from heterogeneity of the microstructure.

• At small strains, heterogeneity coincides with features 
in the initial microstructure, such as grain boundaries, 
irregular grain shapes or non-uniform distributions of 
grain size.

• At larger strains, additional heterogeneity in microstruc-
ture arises from gradients of the deformation—an exam-
ple demonstrated here being intragrain lattice misorienta-
tions.

• In the examples examined here, the overall level of error 
grew substantially as plastic deformation accumulated 
spatially in bands and lattice misorientation concurrently 
increased.

• Efforts to mitigate the error by increasing the mesh reso-
lution improved the stress prediction by reducing both the 
mean and standard deviation of the error distribution.

• Differences in grain shape and in the grain size distribu-
tion tended to influence the standard deviations of the 
error distributions more so than the means of the distri-
butions.

• Samples with smooth, versus those with serrated, grain 
boundaries did not show unequivocal trends in terms of 
the error, as other factors (such as modality of the grain 
size or existence of strong texture) tended to dominate 
the error.

Error estimation is strongly suggested for investigations in 
which the determination of stress distributions is a primary 
objective. A baseline case can be examined critically with 
meshes of increasing refinement to check for convergence 
of critical quantities. Steps can be taken to assess the error 
in stress and to take remedial steps if required. We note two 
points in this regard. First, the impact of the error will be 
more severe if intragrain stress predictions are needed and 
less severe if average stresses, such as macroscopic or fiber-
averaged values, are the end goal. Second, if the estimation 
of representative properties is a goal, the type of property 
being estimated sets constraints on the sample size. For 
example, estimating strength imposed different constraints 
on the size of a representative volume than does estimating 
stiffness [12]. These can influence the priorities set in con-
trolling the metrics of the error distribution.

For studies focused on accuracy of the intragrain stress 
predictions, a few considerations are offered. At small strains 
(within the elastic domain), the process is relatively straight-
forward. The samples can be instantiated to control the grain 
size and shape metrics to produce tessellations with good 
fidelity [27]. Tessellation methods that provide equiaxed 
grains (uniform size and high sphericity) give lower errors 
than other tessellations. If no experimental information is 
available regarding grain size and shape distributions, the 
equiaxed tessellations are preferred for limiting errors in 
the stress distribution. It is probably advisable to maintain 
smooth grain boundaries to the extent possible. Further, 
steps can be taken to guarantee a high-quality mesh is built 
based on the geometry of the microstructure, as discussed 
and demonstrated in [28]. At larger strains, however, the 
process becomes more complicated. Deformation-induced 
heterogeneity controls the growth of error over the course of 
the loading. Adaptive mesh refinement should be considered 
in applications that exhibit significant strain localization. In 
this case, adaptive re-meshing is a more certain approach to 
high confidence than simple mesh refinement.

Conclusions

An established methodology for estimating errors of the 
stress distribution has been implemented for simulations of 
polycrystals. The methodology operates on the premise that 
the stress distribution will be a continuous function over 
grains wherein the lattice orientations are also continuous 
fields.
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The following observations can be drawn from the esti-
mated error distributions presented in this paper:

1. Stress uncertainty reduces with increased mesh resolu-
tion in terms of both the mean and standard deviation 
values of the stress distributions.

2. Mean values of the stress distributions are not as 
strongly dependent on the grain size distributions as are 
the standard deviations.

3. Stress errors are moderately higher in samples with ser-
rated (voxel) grain boundaries compared with smooth 
grain boundaries.

4. Estimated errors of the stress distributions are low at 
small strains, where the intragrain lattice orientation is 
nearly uniform and the response is elastic; larger errors 
correlate with proximity to the grain boundaries.

5. Estimated errors of the stress distributions are much 
higher at strains in the fully developed plastic regime; 
larger errors correlate with deformation bands where lat-
tice misorientations are high.

6. Overall, structural factors that promote deformation het-
erogeneity can have a substantial impact on stress uncer-
tainty. This is apparent from the differences between the 
uniform and dual texture results.

Based on the results presented here, several possibilities 
are apparent for improving stress predictions in polycrys-
tal, elastoplastic simulations. These range from relatively 
straightforward post-processing of stress distributions of the 
current models to much more involved extensions of the cur-
rent methodologies. Here are a number of these:

1. No effort has been made here to determine the optimal 
method for computing error. Given the importance of 
assessing error in the stress in general and the trends 
reported herein regarding modeling variables, an effort 
targeted at determining the optimal method has a sub-
stantial merit.

2. Methods to improve the accuracy of the computed stress 
could be put to effective use, including stress recovery, 
error-based mesh refinement and adaptive re-meshing.

• Stress recovery utilizes a posteriori local and global 
methods, especially for stress fluctuations in vicinity 
of grain boundaries. This could be done with stress 
distributions of particular importance to the analyst, 
such as those being used in direct comparisons to 
experimental data.

• Error-based mesh refinement is the most useful for 
improving solutions at a particular state of deforma-
tion. As noted previously, the locations of high error 
change as the deformation proceeds, so error-based 

refinement might be necessary for solutions at criti-
cal points in the loading.

• Adaptive re-meshing the results point highest 
errors develop in zones of more intense deforma-
tion. The spatial location of the deformation bands 
is not known a priori, so the polycrystal could be 
adaptively re-meshed to increase element densities 
in large deformation zones and decrease element 
densities elsewhere. This could improve the stress 
accuracy more economically than simply refining the 
uniformly over the polycrystal.

3. Intragrain lattice continuity was not explicitly enforced 
in the simulations reported here, but may offer a pathway 
to lower errors in the stress distributions in more highly 
deformed samples. Recent work done in [29] provides 
the necessary framework in order to verify this premise.

In closing, the results presented in this paper explore the 
influences of several modeling factors on the accuracy of 
finite element stress distributions in deforming polycrystals 
using an existing methodology to estimate the error levels 
in the stress. Mesh refinement reduces error consistent with 
previously reported trends for h-type discretization. The spa-
tial locations of higher error shift from grain boundaries to 
zones of high lattice misorientation as the sample loading 
proceeds from the elastic regime through the elastic–plastic 
transition and into fully developed plastic flow. The results 
point to additional steps that can be taken to further improve 
stress predictions.
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