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Abstract
This work presents a comparison of simulation results with the experimental data for four of the six challenges within the National
Institute of Standards and Technology (NIST) Additive Manufacturing (AM) Benchmark Test Series (AM Bench) problem
AMB2018-02. This comparison is akin to a test case to assess the technology maturity level (TML) for the AM predictive
capabilities that can be utilized to improve AM products in the industry. The solutions are for the prediction of melt-pool geometry,
cooling rate, solidification grain shapes, and their 3D structure. These results were obtained using the Additive Manufacturing
Parameter Predictor (AMP2) software. AMP2 is an Integrated Computational Materials Engineering (ICME) suite of software
developed byApplied Optimization, Inc. (AO). The melt-pool geometry is obtained using a thermal-computational fluid dynamics
(CFD) solution of melt-pool physics. The melt-pool geometry, mean track cross section, 3D distribution of thermal gradient, and
the liquid-to-solid interface velocity are predicted by the thermal-CFD model and utilized as input for the solidification grain
structure computation. The grain shapes and 3D structure are modeled using cellular automata (CA). AO received a second-place
award for predicting the grain structure within three single laser tracks on a bare plate of alloy Inconel 625 (IN625).

Keywords Integrated computational materials engineering . Additive manufacturing . Computational fluid dynamics . Cellular
automata . Inconel 625

Introduction

Three salient aspects of the systems engineering process for
the technology transition of simulation methods within the
Department of Defense (DoD) are the evaluation of its cost,
feasibility, and technology maturity level (TML) [1, 2]. This
paper presents a test case, which is akin to an assessment of
TML for AM predictive capability within small- to medium-
sized industrial environments. The results presented in this
paper comprise an outcome of blind tests performed using
the material data available in open literature, off-the-shelf sim-
ulation software, and the experimental data provided by the
National Institute of Standards and Technology (NIST) for
Additive Manufacturing (AM) Benchmark Test Series (AM
Bench) problem AMB2018-02.

Benchmark problem AMB2018-02 consists of modeling a
series of single scan tracks on a bare metal substrate of alloy
Inconel 625 (IN625). The scope of this modeling challenge is
the prediction of melt-pool cross section, length and tempera-
ture characteristics, solidification microstructure, and 3D to-
pography of the solidified tracks.

The prediction of melt-pool geometry, temperature distri-
bution, and solidification microstructure was performed using
the AdditiveManufacturing Parameter Predictor (AMP2) soft-
ware developed by Applied Optimization, Inc. (AO) [3].
AMP2 is an Integrated Computational Materials Engineering
(ICME) suite of software capable of performing multi-scale
analysis of the additive manufacturing (AM) process, which
zooms in on the detailed material behavior at defined points of
interest. The multi-scale analysis procedure comprises three
levels of refinement: macro-, meso-, and micro-scales. The
analytical methods in AMP2 are developed based upon a rich
pedigree of AM research reported in the technical literature for
the simulation of high-temperature material behavior, thermal-
fluid flow, vaporization, rapid solidification, and microstruc-
ture evolution [4–9]. A major challenge in the industrial
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utilization of these analytical methods is the insufficiency of
high-temperature material properties and experimental data as
well as the time and effort required to assess the fidelity of
predictions versus only performing experimental trials (i.e.,
TML > 2). Since a direct comparison of one implementation
of AM predictive methods versus another is difficult for a
single organization, the AM-Bench provides a neutral forum
for such an evaluation [10].

The macro-scale analysis in AMP2 is performed at the part
scale on a layer-by-layer basis to predict the heat buildup and
the part distortion. The meso-scale analysis is performed at the
scale of an individual layer where one or more points of interest
reside, and it computes the build temperature distribution as a
function of the scan strategy. The micro-scale analysis is per-
formed at the scale of single or multiple tracks to predict the
melt-pool physics at the points of interest. Its results are utilized
to assess the propensity of build defects and to down select the
processing parameters. The micro-scale analysis is performed
using ParaGen software developed by AO. ParaGen is a soft-
ware application within AMP2. It automates the melt-pool
physics simulations, and its output serves as an input for the
modeling of solidification microstructure and solid-state trans-
formations in the as-deposited layers of material.

The results reported in this paper were obtained using a
two-step approach as follows:

1. Predict melt-pool geometry: The prediction of melt-pool
geometry as a function of the laser scan parameters was
performed using the ParaGen software. Since the laser
scan tracks were made on bare metal, the macro- and
meso-scale analyses in AMP2 were not required. From
the simulation results, the melt-pool geometries and the
3D temperature distributions were extracted and utilized
as inputs for microstructure predictions.

2. Predict solidification microstructures: The thermal data
from the melt-pool simulation was utilized in order to
predict the 3D geometry of the liquid-to-solid interface

locations, and the thermal gradient (G) and the liquid-to-
solid interface velocity (R). The dendrite tip temperature
was calculated using the interface response function the-
ory [9]. The 3D geometry of the liquid-to-solid interface
and the G and R parameter data were provided as input to
a cellular automata (CA) code developed by AO (CA-
Solidification) to predict the evolution of the solidification
grain structure.

Melt-Pool Simulation

The melt-pool simulation is the third step of the multi-
scale simulation procedure in AMP2 (Fig. 1). The
macro- and meso-scale simulations are on a length scale
of millimeters. The micro-scale melt-pool simulation is on
a length scale of ~ 10* (melt-pool length). Since the melt-
pool length is unknown a priori, the micro-scale length
scale is set automatically by the iterative solution, which
computes the melt-pool dimensions. The thermal bound-
ary conditions for the melt-pool simulation at a given
location are generated from the macro- and meso-scale
simulations. Although the temperature distribution at the
part and layer scale is non-uniform, the thermal boundary
conditions for the melt-pool simulation are assumed to be
steady state, corresponding to the temperature distribution
on a plane perpendicular to the longitudinal axis of the
laser track at the location of interest. In Fig. 1, such a
plane would be a radial cross section through the wall
of the part. Accordingly, the melt-pool thermal-CFD sim-
ulation solves the incompressible Navier-Stokes equations
and the thermal energy equation with a solid–liquid phase
change for steady-state melt-pool physics. The simulation
uses inputs of material property data and AM process
setup parameters to perform detailed parametric analyses.
From the numerical analysis, the melt-pool geometry,
flow field, and temperature distribution are predicted.

Fig. 1 Illustration of multi-scale
simulation procedure in AMP2 [3]
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The melt-pool cross-section geometry and length are com-
puted iteratively such that the thermal and fluid flow equi-
librium conditions are fulfilled.

The thermal-CFD melt-pool solution accounts for the
effects of phase change, heat of fusion, and heat of va-
porization. It uses a Eulerian, steady-state, CFD solver to
simulate melt-pool shape, temperature, and fluid flow
[11]. Equations (1), (2), and (3) are utilized to model
the conservation of mass, momentum, and energy,
respectively.
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where, ui is liquid velocity, Vi is the laser scan velocity, xi is the
Cartesian coordinate, T is temperature, δij is the Kronecker
delta, p is the dynamic pressure (total minus hydrostatic

pressure), μ is the dynamic viscosity, Hf is latent heat of fu-
sion, g is the gravitational constant, hd is the depth from the
top surface of the melt pool, cp is specific heat, k is thermal
conductivity, and ρ is density. Dc is the D’arcy type phase
coefficient which is used to switch between constant velocity
in the solid and momentum conservation in the liquid. α is the
phase fraction and equal to 0 in the solid region and 1 in the
liquid region. The last two terms in Eq. (3) represent the laser
energy absorption (Q̇L ) and the energy lost to evaporation (Q̇E

). The rate of material evaporation is computed using a scaled
form of the Langmuir equation [12]:
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where ai is the activity of element i in the liquid alloy, Po
i is

the equilibrium vapor pressure of element i over pure liquid
at temperature T, andMi is the molecular weight of element
i. To calculate Po

i , the Clausius-Clapeyron equation is used
as follows:
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Table 1 Other thermal material
properties of IN625 Material property Value

Latent heat (J kg−1) [16] 2.27e5

Vaporization heat (J kg−1)* 6.40e6

Solidus temperature (K) 1563

Liquidus temperature (K) 1623

Boiling temperature (K)* 3188

Solid emissivity* [17] 0.53

Liquid emissivity* [17] 0.41

Laser absorptance [18] 0.51

Viscosity (kg m−1 s−1) 6.14e−7
Gradient of surface tension with respect to temperature (N m−1 K−1)* − 1.10e−4
Reference value for surface tension (σ0 (N m−1))* 1.842

Reference temperature (T0 (K))* 1998

Fig. 2 Initial substrate generated
with DREAM.3D software [19]
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where PATM is the ambient pressure, Tboil is the boiling tem-
perature,Hv, i is the enthalpy of vaporization for the element
i, and R is the universal gas constant. The rate of mass loss
(Jv) is used to compute a rate of energy loss due to evapo-
ration as follows:

Q˙ E ¼ J v Hv þ cpT
� � ð6Þ

where Hv is the enthalpy of evaporation for the alloy. The
Marangoni shear stress at the gas-liquid interface is
modeled using Eqs. (7) and (8):

ui n̂̂i ¼ V j n̂̂j ð7Þ
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where n̂i is the normal vector at the gas-liquid interface bound-
ary and dγ

dT is the derivative of surface tension with respect to
temperature. The thermal-CFD solver uses a pressure-
corrector formulation to solve the incompressible conserva-
tion equations. Accordingly, the out-flow faces are set to
zero-gauge pressure, and all other faces are assigned a zero-
pressure gradient in the direction of the surface normal, or:

p ¼ 0 on the out−flow faces ð9Þ
∂p
∂x j

n̂̂j ¼ 0 elsewhere ð10Þ

Related Work on the Assessment of Accuracy
for Melt-Pool Predictions

A comparison of the predictions of melt-pool dimen-
sions with the experimental work reported by Heigel
and Lane [13] and Criales et al. [14] is given in
Appendixes 1 and 2. The experimental data includes
the melt-pool geometry for scan passes on a bare plate
as well as with powder recoat for alloy IN625 for laser
power ranging from 49 to 195 W and scan speed be-
tween 200 and 875 mm/s. The thermophysical proper-
ties of IN625 were obtained from Capriccioli and Frosi
[15]. Table 1 contains the remaining material properties
with the corresponding reference citations. Material
properties with asterisks in Table 1 are data reported
for alloy IN718 and are thus approximate values for
alloy IN625.

Criales et al. [14] studied the powder bed scan passes;
the width and depth of the melt pool were measured.
These experiments consisted of multiple tracks alternat-
ing scan direction, which resulted in higher substrate
temperature at the beginning of subsequent tracks. The
melt-pool width and depth were measured close to the
end of the substrate, which provided two distinct melt-
pool dimensions. For a cooler substrate, the simulations
had an average error of 4% and 18% for the prediction
of width and depth, respectively. For the subsequent
track where the substrate was at higher temperature, the
simulations had an average error of 18% and 24% for
width and depth, respectively.

The scan passes on a bare plate were performed by
Heigel and Lane [13]; the length was measured experi-
mentally, and the simulation predictions had an error
ranging from 5 to 65%. We observed that for higher laser
power, the error percentage was larger.

Fig. 3 Schematic of the substrate
with all ten tracks [21] with the
dimensions in millimeters

Table 2 Process parameters for each case

Case Laser power (W) Scan speed (m s−1)

A 150 0.4

B 195 0.8

C 195 1.2
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Solidification Grain Structure Simulation

The solidification grain structure simulation was per-
formed using the CA-Solidification software developed
by AO. This software uses the temperature and melt-pool
dimension data generated by the melt-pool simulation as
input. It uses a 3D uniform discretization to represent the
CA grid (Fig. 2). At the start of simulation, each cell in the
CA grid is initialized with a random distribution of grain
size and crystal orientation using the DREAM.3D software
[19]. Then, for each track in the simulation, the melt-pool
thermal profile from the melt-pool simulation is mapped
onto the CA grid. Next, the solidification grain structure
is updated based on the melt-pool solidification front pa-
rameters as it moves through the CA grid.

The CA growth rules for the CA grid cells define the pro-
cess for the growth of solidification grain structures. These
rules utilize the growth model from Rai et al. [20]. This
growth model considers that there is a “grain envelope” at
the center of each CA cell, which emulates the dendrite arms.
The salient steps for the CA calculation using this model are as
follows: (1) At each time step, the grain envelopes are consid-
ered to grow in the epitaxial direction. (2) The solid cells on
the solid-liquid interface are grown based on the simulation
time step, easy growth directions, and the dendrite tip velocity
which is computed as a function of the melt-pool geometry
and the liquid-to-solid interface velocity. (3) Next, the liquid
cells are considered to become solid with the orientation of the
neighboring cell that has grown the furthest into the liquid
cell. If no neighboring growing cells have sufficiently grown

Fig. 4 Schematic of the cooling
rate definition [21]

Fig. 5 Top view of the melt pool for each case

Fig. 6 Transverse cross-section view of the melt pool for each case
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into the liquid cell, it remains liquid for the present time step.
(4) This process of mapping the melt pool at each time step
and the growth and solidification of CA cells is repeated for
the entire length of each track.

AM-Bench Experimental Work

The AM-Bench experimental work was performed by NIST.
The experiment was designed to isolate the effect of individual
tracks printed on a bare plate of alloy IN625. The plate dimen-
sion is 24.82 mm × 24.08 mm × 3.18 mm [21]. The tracks
were printed at the center of the plate and were separated by
a distance of 0.5 mm. The plate geometry and the track posi-
tions are shown in Fig. 3. To avoid heat buildup, each track
was printed at 5-min intervals. The nominal temperature of the
base plate was 25 °C at the start of experiment. Three different
process parameter sets were used to produce the tracks as
shown in Table 2. The laser was a continuous-wave ytterbium
fiber (Yb-fiber) laser with a wavelength of 1070 nm. The
experimental work was performed using twomachines, name-
ly Additive Manufacturing Metrology Testbed (AMMT) and
Commercial Built Machine (CBM) for which the laser spot
sizes were 100 μm and 59 μm, respectively. The cooling rates
were measured as shown in Fig. 4.

Results and Discussion

The results submitted by AO to NIST for the AMB2018 Test
Series are shown in this section. Figure 5 shows the top view
of the simulated melt pool which is shown for each case from
Table 2. It can be observed that as the scan speed increases, the
melt-pool shape elongates, while its width becomes

marginally narrower. Figure 6 shows a transverse cross section
of the simulated melt pool at its widest location for each case.
Similar to Fig. 5, the penetration of the melt pool in the sub-
strate is a function of the combination of laser power and scan
velocity, which correspond to different values of input energy
density. The simulated melt-pool dimensions are summarized
in Tables 3 and 4 along with their respective experimental
results published by NIST [22]. Note only the melt-pool
length was reported for the CBM machine.

The AMMT machine laser powers were revised at a later
date byNIST to 137.9, 179.2, and 179.2W for cases A, B, and
C, respectively. Table 3 shows the melt-pool measurements
obtained from the AMMT machine. The width and depth, as
well as the length of the melt pool, are in agreement with the
experiment results presented in Table 3. In general, the length
of the melt pool is underpredicted by the model by ~ 23% for
the AMMT machine. The length prediction errors are much
larger for the CBMmachine (Table 4). Even though the power
and scan speed are the same for both machines, the input
energy density for CBM is higher than AMMT because its
spot size is significantly smaller. As a result, the phenomenol-
ogy for the melt-pool thermal-fluid flow for the AMMT and
CBM machines is likely to be different, resulting in different
values for the melt-pool length. It is possible that the melt-pool
model in AMP2 simulations is more suited for the lower en-
ergy density values for AMMT. In any case, it is worthwhile to
note that NIST has expressed that the melt-pool length mea-
surements between the two machines differ significantly, and
the source of this discrepancy is yet undetermined [22].

The cooling rates were calculated using the data from the
predicted 3D temperature distributions and the equation given
in Fig. 4. The results along with the experimental values are
shown in Table 5. In general, the cooling rates are
overpredicted. Figure 7 shows the temperature profiles along
the scan track for all three cases, which were utilized for the
cooling rate calculation. Ahead of the melting pool (0 μm< x
< 500 μm), the temperature profiles are similar for all three
cases. Within the melt pool, Fig. 8 shows that case A has a
lower peak temperature than cases B and C. These values of
peak temperature depend on the procedure utilized to model
material vaporization. Behind the peak (x < 0), the cooling
profiles are different for each case as shown in Fig. 9.

The denominator of the cooling rate calculation is the
distance over which the temperature drops from 1290 to

Table 3 Comparison of predicted
versus measured values of melt-
pool dimensions obtained from
the experimental data [22] for the
AMMT machine (dimensions in
μm)

Power (W) Velocity (m s−1) Modeled values Measured values (AMMT)

Length Width Depth Length Width Depth

137.9 0.4 246 142 37.2 300 148 42.5

179.2 0.8 287 121 30.7 359 124 36.0

179.2 1.2 305 109 26.7 370 106 29.6

Table 4 Comparison of predicted versus measured values of melt-pool
dimensions obtained from the experimental data [22] for the CBM
machine (dimensions in μm)

Case Modeled values Measured values (CBM)

Length Width Depth Length Width Depth

A 252 144 37.7 659 N/A N/A

B 298 124 32.4 782 N/A N/A

C 312 110 27.3 754 N/A N/A
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1000 °C, which corresponds to a region adjoining the melt-
pool boundary since 1290 °C is solidus temperature for
alloy IN625. The distance over which the temperature
drops to 1000 °C is influenced by the melt-pool tempera-
ture distribution, which is governed by complex high-
temperature phenomenology for which the material data
is scant and approximate. The modeling of vaporization
and melt-pool depression is particularly challenging in this
regard. In addition, the measurement of temperature adja-
cent to the melt-pool boundary is also a difficult endeavor
due to high scan velocity of the laser, the small size of the
melt pool, and the sensor saturation caused by the high
temperature melt pool. Thus, the discrepancy in the predic-
tion of cooling rate can potentially be due to the limitations
in the simulation as well as the measurement data.

The evolution of solidification grain structure was comput-
ed using the CA-Solidification software. An initial substrate
was assumed to have a normal distribution of grain size with
an average of 5 μm (Fig. 2). The CA grid was defined to have
a resolution of 1 μm. The size of the substrate used by CA-
Solidification for each case was chosen on the basis of their
respective melt-pool dimensions. Specifically, the substrate
dimensions were chosen to be sufficiently large in order to
be able to attain a “quasi-steady state” for the size and shape
of solidification grains as the melt pool passes through the
substrate CA grid.

The 2D grain shapes and morphology were obtained from
the 3D simulations. The transverse cross sections of the pre-
dicted grain shapes for each case are shown in Figs. 10, 11,
and 12, which illustrate the predicted and measured

Table 5 Comparison of predicted
versus measured values of
cooling rates obtained from the
experimental data [22] for the
CBM and AMMT machines

Case Modeled cooling
rate (K s−1)

Measured cooling rate
(K s−1) for CBM

Measured cooling rate
(K s−1) for AMMT

A 2.23E6 6.20E5 1.16E6

B 4.31E6 9.35E5 1.08E6

C 6.28E6 1.28E6 1.90E6

Fig. 7 Temperature (K) profile
along the scan track direction for
each case

Fig. 8 Close-up view on the peak
temperatures
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Fig. 9 Close-up view on the
cooling region of the temperature
profiles

Fig. 10 Prediction of 2D grain structure (case A) with the numbers in grain length in micrometers

Fig. 11 Prediction of 2D grain structure (case B) with the numbers in grain length in micrometers
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Fig. 12 Prediction of 2D grain structure (case C) with the numbers in grain length in micrometers

Fig. 13 Prediction of 3D grain
structure (case A) with the
numbers in grain length in
micrometers

Fig. 14 Prediction of 3D grain
structure (case B) with the
numbers in grain length in
micrometers
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morphologies and growth directions of the grains. A few
grains are highlighted in each figure in order to identify their
respective size. The dimension of each highlighted grain in
micrometers is denoted with a number adjacent to that grain.
The cross sections were taken at 0 μm, − 6.3 μm, and
128.7 μm from the origin along the x-axis for cases A, B,
and C, respectively. The center of the melt pool is identified
with an arrow.

Case A seems to produce wider grains with a lower aspect
ratio than cases B and C. Case B seems to have produced the
most elongated grain shapes. As for case C, long grain shapes
were predicted with a slightly wider shape when compared
with case B’s results. In all three cases, the growth direction
of the grains is toward the center of the melt pool.

For the prediction of 3D structure, the CA-Solidification
procedure was utilized to generate a 3D prediction of the so-
lidification grain structure. Figures 13, 14, and 15 show the
3D grain structure for cases A, B, and C, respectively. These
figures show only half the width of the substrate in order to
look at a longitudinal cross section along the x-axis. A few
grains are also highlighted in each figure. Each identified
grain is denoted with its approximate length in micrometers.
The black region is the current melt-pool position.

Conclusions

The results presented in this paper comprise an outcome of a
blind test of the predictive capability of AM simulations and
can be considered akin to a single data point toward an assess-
ment of a TML to reduce the testing required to develop a
material or process in the industry [2]. The results are present-
ed for four of the six challenges of the AM-Bench Test Series
AMB2018-02. The melt-pool geometry, cooling rate, grain
shapes, and 3D structures were obtained using the AMP2 soft-
ware developed by AO. The melt-pool geometry and cooling

rate were predicted using a thermal-CFD solution of the melt-
pool. The predictions of grain shapes and 3D structure were
obtained by using the thermal predictions from the melt-pool
simulation as input to a CA algorithm.

The prediction ofmelt-pool width and depth provided good
agreement with the AM-Bench experiment data. The melt-
pool length was underpredicted for both AMMT and CBM
machines. The prediction error was < 25% for the AMMT
where the melt-pool lengths were shorter and > 100% for
CBM where the melt-pool lengths were over twice as large.
This discrepancy in the melt-pool length measurements is yet
undetermined. The cooling rates were overpredicted. These
under-/overpredictions are potentially a result of limitations
of the simulation model as well as the challenges in collecting
experimental data for a small fast-moving melt pool that con-
tains very high-temperature material, which cools rapidly as
the melt pool moves away.

The patterns of solidification microstructure were ob-
served to be consistent with the electron backscatter dif-
fraction (EBSD) image provided in the NIST description
of the benchmark challenge. The grain size predicted by
the CA simulation was measured by processing its output
image data. Typical length and width for grains in the
transverse cross section were observed to be ~ 7 μm and
~ 22 μm, respectively. The grains at the top surface of the
substrate were observed to be wider and longer than the
grains in the transverse cross section. Based on the com-
parison of the predictions with the EBSD data, AO re-
ceived a second-place award for Challenge AMB2018-
02-GS for predicting the grain structure within three sin-
gle laser tracks on a bare IN625 plate [23].
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Fig. 15 Prediction of 3D grain
structure (case C) with the
numbers in grain length in
micrometers
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Appendix 1: Related Work on the Prediction
of Melt-Pool Length

In this attachment, we compare Applied Optimization, Inc.’s
melt-pool simulation results for melt-pool length with the ex-
perimental data published by Heigel and Lane [13]. Their
work reports the melt-pool length during a single scan track
on a bare plate of IN625 for seven different cases with a laser

power ranging from 49 to 195 W and a scan speed between
200 and 800 mm s−1. The plate is 3.2 mm thick with a width
and length of 25.4mm. The initial temperature of the plate and
the ambient temperature are both 30 °C. The laser used is an
Yb-fiber laser with a maximum power of 200W, a spot size of
100 μm, and an estimated absorption of 0.51. The experimen-
tal data for the corresponding results for the melt-pool length
predictions are given in Table 6.

Appendix 2: Related Work on the Prediction
of Melt-Pool Width and Depth

Criales et al. [14] published data on the modeling of multi-
track processing for laser powder bed fusion of alloy IN625.
This process is different from the AM-Bench experiments
because the laser follows a zig-zag scan path. Applied
Optimization, Inc. predicted the melt-pool width and depth
for a total of 14 cases with two predictions each for type I
and II tracks. Type I simulations accounted for heat buildup
where type II simulations assumed no heat buildup (i.e., sub-
strate at initial temperature). The laser power ranged from 169
to 195 W, and the scan speed ranged from 0.725 to 0.875 m/s.
For type II simulations, the initial temperature of the plate with
powder and the ambient temperature were both 80 °C. For

type I, the initial temperature of the plate with powder was
obtained from type II simulations. The location of the mea-
sured temperature is two hatch distances behind the melt pool
and one hatch distance over. The laser used is anYb-fiber laser
with a maximum power of 200 W, a spot size of 100 μm, and
an estimated absorption of 0.51. The powder has an estimated
average diameter of 30.6 μm with a packing density of 0.5.
The bed drop is 20 μm.

Tables 7 and 8 present the predicted width and depth for
type I melt pool, and Tables 9 and 10 depict the predicted
width and depth for type II melt pool. The melt-pool width
prediction is in good agreement with the experimental data for
type II melt pool (average error of 4%). As for the type I width
and type II depth, the predicted values have an average error of
18%. Type I depth has an average error of 24%.

Table 6 Comparison of melt-
pool length prediction with
experimental data [13]

Case Power (W) Speed (mm s−1) Experimental
melt-pool length (m)

ParaGen prediction
of melt-pool length (m)

Error (%)

1 49 200 1.71E−04 1.81E−04 5.89
2 122 200 5.19E−04 2.62E−04 − 49.44
3 122 500 3.61E−04 2.65E−04 − 26.56
4 122 800 3.15E−04 2.69E−04 − 14.60
5 195 200 8.24E−04 2.96E−04 − 64.10
6 195 500 9.03E−04 3.11E−04 − 65.58
7 195 800 8.13E−04 3.16E−04 − 61.11

Table 7 Type I predicted width
result comparison with
experimental data [14]

Case P (W) v (mm s−1) h (mm) Experimental data ParaGen Error (%)

Type I width (μm) SD Type I width (μm)

1 169 875 0.10 134 12 109.9 18
2 195 875 0.10 170 25 122.5 28
3 182 875 0.09 149 17 115.3 23
4 182 725 0.11 153 25 123.7 19
5 195 800 0.11 143 13 123.8 13
6 182 725 0.09 134 18 139.0 4
7 182 800 0.10 132 11 113.8 14
8 195 725 0.10 152 13 138.5 9
9 182 875 0.11 134 13 112.0 16
10 169 725 0.10 159 13 120.9 24
11 169 800 0.09 154 14 119.2 23
12 169 800 0.11 150 28 113.7 24
13 195 800 0.09 149 15 135.6 9
14 195 800 0.10 155 11 128.9 17
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Table 8 Type I predicted depth
result comparison with
experimental data [14]

Case P (W) v (mm s−1) h (mm) Experimental data ParaGen Error (%)

Type I depth (µm) SD Type I depth (µm)

1 169 875 0.10 35 6 32.4 7
2 195 875 0.10 49 7 29.9 39
3 182 875 0.09 45 7 33.7 25
4 182 725 0.11 48 8 35.8 25
5 195 800 0.11 44 7 33.7 23
6 182 725 0.09 45 7 38.5 14
7 182 800 0.10 44 7 32.6 26
8 195 725 0.10 52 18 38.6 26
9 182 875 0.11 47 7 33.7 28
10 169 725 0.10 51 8 36.2 29
11 169 800 0.09 47 8 35.5 24
12 169 800 0.11 43 6 33.1 23
13 195 800 0.09 49 7 37.4 24
14 195 800 0.10 50 6 39.8 20

Table 9 Type II predicted width
result comparison with
experimental data [14]

Case P (W) v (mm s−1) h (mm) Experimental data ParaGen Error (%)

Type II width (µm) SD Type II width (µm)

1 169 875 0.10 92 9 102.2 11
2 195 875 0.10 111 7 111.7 1
3 182 875 0.09 101 16 104.3 3
4 182 725 0.11 107 12 115.2 8
5 195 800 0.11 109 9 112.4 3
6 182 725 0.09 113 11 115.2 2
7 182 800 0.10 109 10 106.5 2
8 195 725 0.10 114 11 115.4 1
9 182 875 0.11 110 15 104.3 5
10 169 725 0.10 106 8 108.9 3
11 169 800 0.09 107 9 100.1 6
12 169 800 0.11 96 11 100.1 4
13 195 800 0.09 103 16 112.4 9
14 195 800 0.10 112 15 112.4 0

Table 10 Type II predicted depth
result comparison with
experimental data [14]

Case P (W) v (mm s−1) h (mm) Experimental data ParaGen Error (%)

Type II depth (µm) SD Type II depth (µm)

1 169 875 0.10 31 5 31.3 1
2 195 875 0.10 46 8 33.5 27
3 182 875 0.09 38 5 31.8 16
4 182 725 0.11 39 9 31.6 19
5 195 800 0.11 42 7 29.3 30
6 182 725 0.09 36 10 31.6 12
7 182 800 0.10 38 6 38.5 1
8 195 725 0.10 42 10 31.6 25
9 182 875 0.11 32 7 31.8 1
10 169 725 0.10 42 6 32.9 22
11 169 800 0.09 45 9 30.0 33
12 169 800 0.11 33 6 30.0 9
13 195 800 0.09 39 12 29.3 25
14 195 800 0.10 41 7 29.3 29
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