
Integrating Materials and Manufacturing Innovation (2019) 8:226–246
https://doi.org/10.1007/s40192-019-00137-4

THEMATIC SECTION: 3DMATERIALS SCIENCE

Dictionary Indexing of Electron Back-Scatter Diffraction
Patterns: a Hands-On Tutorial

M. A. Jackson1 · E. Pascal2 ·M. De Graef2

Received: 7 March 2019 / Accepted: 25 April 2019 / Published online: 17 May 2019
© The Minerals, Metals & Materials Society 2019

Abstract
Dictionary indexing of electron back-scatter patterns was recently proposed as an alternative to the commercially available
indexing packages. In this tutorial paper, we describe in detail the various steps that need to be taken to successfully complete
an indexing run on an arbitrary data set. We provide three toy data sets for the reader to experiment with: poly-crystalline
nickel with several different acquisition conditions, orthorhombic forsterite, and a single slice from a large serial sectioning
experiment on a Ni-based superalloy. The data files and all files produced by the indexing routine are made available as
Supplementary Material (https://doi.org/10.1184/R1/7792505).

Keywords EBSD · Dictionary indexing · Pattern matching · Pattern simulation

What is Dictionary Indexing?

The identification of features in diffraction patterns and
relating them to the crystal lattice that gave rise to the
pattern is commonly known as “indexing the pattern.” This
can be as simple as assigningMiller indices to the individual
peaks of an X-ray powder diffraction (XRD) pattern, or
as complex as extracting the location, the orientation, and
the stress state of the volume giving rise to a set of
diffraction peaks in a high-energy diffraction microscopy
(HEDM) beam line experiment. The energetic beam used
to obtain the diffraction patterns can be formed by X-ray
photons, electrons, or neutrons, and a large number of

� M. De Graef
degraef@cmu.edu

M. A. Jackson
mike.jackson@bluequartz.net

E. Pascal
epascal@andrew.cmu.edu

1 BlueQuartz Software, LLC., 400 Pioneer Blvd., Springboro,
OH 45066, USA

2 Department of Materials Science and Engineering,
Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213-3890, USA

diffraction geometries are in use for each type of beam.
We refer to a particular diffraction geometry as a modality
to emphasize that the signal collected is dictated by
geometry of diffraction. In this tutorial paper, we focus on
the indexing of electron back-scatter diffraction (EBSD)
patterns obtained with a scanning electron microscope
(SEM), but other SEM modalities (electron channelling
patterns (ECP) [20] and transmission Kikuchi patterns
(TKD) [13]) can be indexed in an analogous manner.

EBSD is recognized as a relatively fast and inexpensive
texture analysis technique for a number of different
applications with distinct challenges from metals and
semiconductors to earth science. In the context of 3D
serial sectioning experiments, the EBSD modality takes
on a special role since it simplifies significantly the
segmentation of individual grains as well as the alignment
of consecutive slices. When EBSD patterns are acquired
and indexed for each slice, the resulting inverse pole figure
maps will, in principle, clearly outline each grain and thus
all grain boundaries. For high-quality EBSD patterns, the
conventional Hough-based indexing process achieves the
same end result; however, when (experimental) time is of
the essence, it is often easier and cheaper to rapidly acquire
low-quality patterns. Those patterns can still be indexed
using the approach described in this paper, even when
the Hough-based approach tends to fail due to the low
signal-to-noise ratio.

http://crossmark.crossref.org/dialog/?doi=10.1007/s40192-019-00137-4&domain=pdf
http://orcid.org/0000-0002-4721-6226
https://doi.org/10.1184/R1/7792505
mailto: degraef@cmu.edu
mailto: mike.jackson@bluequartz.net
mailto: epascal@andrew.cmu.edu

Integr Mater Manuf Innov (2019) 8:226–246 227

An EBSD pattern, or EBSP, is formed when a high-
energy electron beam (typically 10–30 keV) enters a
crystalline sample at a shallow incidence angle of around
20◦, and the back-scattered electrons are intercepted
by a planar detector, usually a scintillator converting
the electrons to photons, but more recently also a
CMOS direct detector [27] or a digital direct electron
detector [24] (unfortunately, these novel detectors are not
widely commercially available at the time of writing this
tutorial). As the electrons exit the sample, they channel
through the crystal lattice, which modulates the angular
distribution of the electrons at the detector. Kikuchi bands,
with a width proportional to twice the Bragg angle, are
rigidly attached to the crystal lattice, so that determination
of the band positions and orientations on the detector allows
for the computation of the lattice orientation with respect to
the sample reference frame.

This process involves the use of the Hough transform
to identify or extract individual Kikuchi bands from the
pattern. If the detector-sample geometry has been calibrated
accurately, then the band positions can be translated into
plane normals, and a comparison of the angles between
plane normals (or zone axes) against a pre-computed list
of angles based on the known sample crystallography
then results in the indexing of individual bands and,
subsequently, the determination of the orientation of the
crystal lattice. This process is generally well understood
and has been implemented by a number of vendors into
commercial EBSD packages, several capable of indexing
more than 1,000 patterns per second [18].

While Hough-based indexing (HI) has been extremely
successful on a broad spectrum of materials and microstruc-
tures, there are several circumstances for which the indexing
success rate is very low. Since HI depends on the extrac-
tion of Kikuchi bands from the pattern, the contrast between
the bands and the background is a crucial factor in the
extraction process; a low signal-to-noise ratio makes index-
ing more difficult and, sometimes, impossible, as we will
show later in this tutorial paper. Heavily deformed materi-
als also pose problems due to the more diffuse nature of
the Kikuchi bands, and the local deviations from the per-
fect lattice symmetry that is used to compute the interplanar
angle look-up table. Low-symmetry crystal structures and,
in particular, multi-phase mixtures of low-symmetry struc-
tures can also pose indexing challenges due to the presence
of pseudo-symmetry and potentially very similar phases.

In terms of accuracy of orientation determination, the
HI approach is ultimately limited by the precision with
which the bands can be localized and identified. The
localization confidence is determined by the resolution
chosen for the Hough space, which can be improved at the
cost of rapidly increasing computation time. The manner in
which peak assignment in the Hough space is implemented

in commercial algorithms is not well documented and,
therefore, the process is not widely understood by the
scientific community. It is known however, that, without
a sufficient number of peaks in the Hough transform, the
algorithm will fail to determine the orientation with a
high confidence level. Additionally, the Hough transform
assumes Kikuchi bands to be straight lines, when in reality
they have thickness and curvature; this is yet another source
of systematic error.

Dictionary indexing (DI) provides a powerful alterna-
tive to the HI approach because it does not involve feature
extraction from the EBSP; the entire pattern is simulated
using a physics-based forward model, and matched against
the complete experimental pattern. This means that back-
ground can be accounted for and low signal-to-noise images
are less of a problem; black box indexing results are avoided
since the entire DI implementation is open sourced. The
accuracy of orientation determination is theoretically lim-
ited by the orientation space sampling grid of the simulated
patterns. However, Ram et al. [16] showed that, in practice,
the DI approach accuracy is limited only by the precision
in determining the detector geometry, which in turn could
be improved by refinement to overcome the HI approach
inaccuracy.

In Section “General Implementation Notes,” we provide
a brief conceptual description of how dictionary indexing
works, starting from a forward model for EBSP formation
and ending with a discussion of useful pattern similarity
metrics. This process has been implemented as part
of the EMsoft open-source software package, and in
Section “Obtaining the Code/Executables” we describe how
the user can obtain and install the package; having access to
a recent working version of this package is crucial for the
remainder of this paper. The reader should ensure that the
version of the EMsoft package used is at least 4.2.

Section “Experimental Considerations and Tutorial Data
Sets” describes the experimental data collection in Section
“Experimental Suggestions” and the various experimental
data formats supported by EMsoft in Section “Pattern
Storage Formats.” In Supplementary Material (https://doi.
org/10.1184/R1/7792505), we provide three example data
sets along with all the scripts and meta-data needed for the
reader to perform the indexing computations; the data sets
are described briefly in Section “Experimental Consider-
ations and Tutorial Data Sets,” and consist of a small fcc-
nickel data set collected under three different detector
gain settings in Section “fcc-Nickel,” a larger orthorhombic
forsterite data set in Section “Orthorhombic Forsterite,” and
a single slice from a 1,000-slice Ni-based superalloy data
set in Section “Nickel-Based Superalloy.”

In Section “Preparatory Steps,” we describe a series of
steps the user must take in order to prepare for a dictionary
indexing run: definition of the crystal structure in Section

https://doi.org/10.1184/R1/7792505
https://doi.org/10.1184/R1/7792505

228 Integr Mater Manuf Innov (2019) 8:226–246

“Crystal Structure File”; Monte Carlo simulation of the
back-scattered electron yield distribution in Section “Monte
Carlo BSE Simulation”; computation of the EBSD master
pattern in Section “EBSD Master Pattern Simulation.”

Section “Dictionary Indexing” describes in considerable
detail how the dictionary indexing process can be carried out.
We begin with a description of the detector geometry refine-
ment process in Section ‘‘Setting the Detector Geometry,’’
followed by the creation of the DI input file in Section
“Setting Up the Indexing Run” and a description of the var-
ious output data sets that are generated along the way in
Section “Running the Dictionary Indexing Program.” In
some cases, an orientation refinement step will be needed,
which is described in detail in Section “Orientation Refine-
ment.” We encourage the interested reader to carry out the
long series of steps described in this paper to gain a clear
understanding of how our open source implementation of
the dictionary indexing process works, and we welcome
feedback on all aspects of this process.

General Implementation Notes

Dictionary indexing requires the creation of a pattern
dictionary, either prior to the indexing run, or on-the-fly.
EBSD patterns are simulated using a sequence of programs
described in detail in Section “Preparatory Steps.” In this
section, we define the pattern similarity metric used for our
DI implementation; we also provide the reader with details
on how to obtain the executables and the (open) source code.

Dictionary Indexing Algorithm

Consider an experimental dataset consisting of Ne =
NROI

h ×NROI
v sampling points in the form of EBSD patterns

(ROI stands for region of interest). Each individual pattern
has dimensions N

p
x × N

p
y pixels before binning. The

intensity in each pixel (i, j) of experimental pattern (m, n)

(m ∈ [1 . . . NROI
h] and n ∈ [1 . . . NROI

v]) is represented
by Em,n(i, j) and is typically in the range [0 . . . 2d − 1],
where d is the dynamic range (bit range) of the detector
system; in practice, d = 8 and d = 12 or 16 are
commonly available values. For convenience, we will label
the experimental patterns with a single index q = (n −
1)NROI

h + m as Em,n(i, j) → Eq(i, j). The dictionary
patterns are generated using the forward model described
in Section “Preparatory Steps,” and are represented by
the intensities Dp(i, j), where the index p corresponds to
different crystal orientations: p ∈ [1 . . . Nd], with Nd the
number of patterns in the dictionary.

Each pattern can be represented by a unit column vector
by converting the indices (i, j) into a single index k =
(j − 1)Np

x + i; converting the intensities to floating point

numbers, and dividing them by the norm of the vector,
we obtain normalized pattern vectors êq and d̂p, with
components êq,k and d̂p,k . Each unit vector has N

p
x ×

N
p
y components and represents a normalized EBSP. The

simplest similarity metric between pairs of unit vectors is
the dot product, which produces a number in the range
[−1, 1], equivalent to the cosine of the angle between the
two vectors, cos θ ; this is valid in a space of arbitrary
dimension, so that two N-dimensional unit vectors are
similar when the angle θ is small. In the DI approach, this
very basic and simple principle is used to compare each
experimental pattern, êq , against all dictionary patterns,
d̂p, by computing a vector δq containing all possible dot
products δq,p:

δq,p = êq · d̂p, (p ∈ [1 . . . Nd]) (1)

and then ranking the values from large to small. The
top dot product value for a given q is considered to be
the best matching dictionary pattern for the corresponding
experimental pattern êq ; the next M nearest matches and
the corresponding orientations can also be stored for further
statistical analysis [16]. Since each dictionary pattern d̂p

(p ∈ [1 . . . Nd]) corresponds to a single orientation,
finding the top dot product, δmax

q,p , corresponds to finding the
orientation that best matches the experimental pattern êq ,
thereby indexing this experimental pattern.

While more involved similarity metrics could be
employed, the inner dot product was shown to be a good
proxy for the misorientation between the experimental
pattern and simulated patterns as long as a fine enough
orientation space is sampled [19]. So far, this method
has proven to be robust against noise [29], very similar
patterns [1], and pseudo-symmetry [3].

While the dot product can be implemented efficiently on
a CPU, the computation of Ne × Nd dot products between
unit vectors of length N

p
x × N

p
y becomes numerically

challenging, even in a multi-core implementation. A
graphical processing unit (GPU) has a significantly larger
number of cores than a typical workstation, and those cores
are well suited for dot product computations. Hence, the
EMsoft implementation of dictionary indexing is a hybrid
implementation, using the OpenMP framework to compute
dictionary patterns in parallel on multiple CPU cores, and
the OpenCL framework to compute dot products on the
GPU; the current implementation employs only a single
GPU, but the algorithm can be expanded to address multiple
GPUs. The largest data sets indexed thus far in our group
at Carnegie Mellon University are the following: (1) Ne =
1, 784 × 1, 931 = 3, 444, 904 patterns of size N

p
x × N

p
y =

160 × 120 pixels (i.e., pattern vectors of length 19,200) for
a shot-peened aluminum alloy [21]; the dictionary consisted
of Nd = 333, 227 patterns, resulting in the computation of

Integr Mater Manuf Innov (2019) 8:226–246 229

nearly 1.15 trillion dot products; (2) a 3-D serial sectioning
data set of a Ni-based superalloy consisting of 601× 601×
325 patterns of size 113 × 113 pixels each (i.e., pattern
vectors of length 12,769) for a total of 117,390,325 patterns,
resulting in nearly 40 trillion dot products, and (3) a 1,000-
slice serial sectioning data set on a Ni-based superalloy,
with 360,000,000 EBSPs (nearly 120 trillion dot products).
These numbers illustrate that the DI approach, in its current
implementation, is computationally intensive and requires
multi-processor hardware with at least one GPU. As we will
show later on in this tutorial, this significant demand on
resources and computation time is more than offset by the
quality and accuracy of the resulting orientation maps, in
particular on “difficult samples” for which the traditional HI
approach mostly fails.

Obtaining the Code/Executables

Detailed information on how to install and compile the
source code repositories, or how to obtain executables from
a nightly build site, can be found in the Supplementary
Material to this paper, in section SM-1.

Running the Code

Each EMsoft program has the same high-level source code
structure, and is called (from the command line) in the same
way. If EMprogram represents a program name (for instance
EMEBSD), then the following command line options can be
used:

EMprogram [-h] [-t] [file.nml]

The arguments between square brackets are optional, and
are defined as follows:

– -h: (h=help) This argument causes the program to
display a list of all available command line arguments
and their meaning. The program will quit after printing
the help message.

– -t: (t=template) This argument causes the program to
create template files for all the name list input files
used by the program. For each name-value entry in the
template file, a comment line is inserted with a brief
explanation of the variable and its units, if appropriate.
The user can then copy the template file to a new
file with the name list (.nml) extension and edit the
file with a regular text editor. The program will quit
after generating the template files. Each template file
contains the default values for each available parameter.

– file.nml: The main name list file to be used by the
program. If no name is present, then the default file
name EMprogram.nml will be used. If the provided
name list file does not exist, the program will report an
error and abort.

Note that there is a series of utility programs that do not
follow this convention; these programs instead take regular
command-line input.

EMsoft EBSD Coordinate Systems

Orientation determination requires a careful definition of
all the relevant reference frames. In the case of EBSD, the
important reference frames are attached to (1) the crystal
lattice; (2) the sample; (3) the microscope stage; and (4)
the detector. The ultimate goal of EBSD is to extract
the orientations of the grains with respect to the sample
reference frame; we refer to an orientation as the rotation
needed to bring the sample reference frame into coincidence
with the grain reference frame. Since this involves two
separate reference frames, the orientation is represented as a
passive rotation. Rotation angles are taken to be positive for
counterclockwise rotations when looking along the rotation
axis towards the origin.

In materials science, the sample reference frame is
often described in terms of directions related to the
sample processing, e.g., rolling direction (RD), transverse
direction (TD), and normal direction (ND). In the earth
sciences field, commonly used sample directions include
foliation and lineation. The crystal reference frame is a
Cartesian reference frame, ec

i , connected to the Bravais
lattice by means of the following convention (based on the
International Tables for Crystallography, Volume A [8]):

ec
x = a

|a| ;
ec
y = ec

z × ec
x;

ec
z = c∗

|c∗| ,
where a is a Bravais lattice vector and c∗ a reciprocal
lattice vector. The EMsoft package uses this reference frame
to describe crystal quantities in a Cartesian frame; in
particular, grain orientations are described with respect to
this Cartesian crystal reference frame.

Figure 1 shows the relevant reference frames in a
schematic drawing. Note that the detector reference frame,
ed
i , has the e

d
x axis horizontal and pointing toward the right

when looking at the detector from the sample position; the
ed
y axis points upward toward the top of the microscope at
an angle θ with respect to the vertical direction (i.e., the
incident beam direction). The microscope stage reference
frame, em

i , has its e
m
x axis horizontal and pointing toward the

right when looking at the stage from the detector (i.e., ed
x and

em
x are anti-parallel). The sample is assumed to be mounted
so that the transverse direction TD (= es

y) is parallel to the
stage em

x axis. The em
y axis points up toward the top of the

microscope at an angle π/2−σ from vertical, where σ is the
sample/stage tilt angle from horizontal. The sample rolling

230 Integr Mater Manuf Innov (2019) 8:226–246

sample

es
x

esy

es
z

Δx

Δy
ROI

(a)

ed
x

edy

ed
z

δ
δ

(b)detector

em
x

emy
em

z

(i,j)
Sed

x

edy

ed
z

θ
σ

Pattern Center (c)

RD

TD
ND

escan
x

escany

escan
z

Fig. 1 The reference frames involved in the EMsoft implementation of EBSD; a the sample’s right-handed reference frame as viewed from the
detector; b the detector’s frame as viewed from the sample, with δ the edge size of a pixel; and c the relationship between the two. See the text for
further details

direction RD (= es
x) is anti-parallel to the stage e

m
y axis, and

em
z ‖ es

z =ND.
Looking at the sample from the detector, the EMsoft

sample reference frame has its origin on the upper left side
of the region of interest (ROI), as shown in Fig. 1a. The
sampling step sizes are Δx along TD, and Δy along -RD;
in the current version of the dictionary indexing algorithm,
only square sampling grids of dimension N

p
x × N

p
y , with

N
p
x = N

p
y , are supported. The detector reference frame

is shown in Fig. 1b, looking at the detector from the
sample position. In EMsoft, the origin is at the center of
the detector, at a corner point between four pixels; detector
pixels are assumed to be square with edge length δ (μm).
Note that the scan reference frame in commercial packages
is typically oriented as indicated in the lower right corner of
Fig. 1a.

In this tutorial paper, we will assume that the sample
is mounted and perfectly aligned with the stage reference
frame, i.e., the es

i basis vectors are exactly parallel to the e
m
i

vectors, but rotated clockwise by 90◦ around the em
z axis.

In principle, sample misalignments, as described in [12],
can be taken into account in the indexing process; they can
also be corrected for afterwards, by applying the appropriate
rotation to the entire data set.

Experimental Considerations and Tutorial
Data Sets

Experimental Suggestions

To ensure a successful dictionary indexing run, this section
contains a few tips for the microscope operator that will
make the whole indexing process go more smoothly:

1. Identify a ROI on your sample for which you want to
perform an EBSD scan; set up the proper conditions as

you would for any other EBSD scan. Make sure that you
set the software to a square sampling grid; hexagonal
sampling grids are currently not supported in EMsoft.

2. You will need to store all experimental EBSD patterns
on disk; it is not possible to perform DI analysis
without those patterns. Depending on your EBSD
system, you may be able to store the patterns in an
open or proprietary binary format, or in HDF5 format;
the formats recognized by EMsoft are described in the
following section.

3. Before starting the scan, record a single high-quality
full-size EBSD pattern from a point near the center of
the ROI and save this pattern in an image file; this is
your reference pattern that will be used to determine
accurate detector parameters.

4. Without changing any microscope parameters, except
for perhaps the pattern binning and the sampling step
size, start your data acquisition. Make sure you have
recorded the microscope accelerating voltage, sample
and detector tilt, detector pixel size, binning factor,
sampling step size, and the number of sampling points
in the ROI. Most of these are stored in various data files,
but you will need them to set up the proper input files
for the DI run.

Pattern Storage Formats

The dictionary indexing approach requires that all experi-
mental EBSPs be stored in a file format that is accessible to
EMsoft. Currently, the following file formats are recognized:

– EMEBSD HDF5 format;
– EDAX/TSL up1 and up2 formats;
– EDAX/TSL HDF5 format;
– Bruker HDF5 format;
– Oxford single-pattern file format;
– MatLab-generated Binary format for Oxford patterns.

Integr Mater Manuf Innov (2019) 8:226–246 231

Table 1 Acquisition parameters for the Ni data sets accompanying this tutorial paper; for the bottom three entries, three numbers are listed,
corresponding to the three data sets in the Ni HDF5 data file (in the order Scan 1, Scan 6, Scan 4)

Voltage 20 kV Sample tilt 75.7◦

Detector size
(
N

p
x × N

p
y

)
480 × 480 Detector tilt 10◦

Binning 8 × 8 Pattern center (0.50726, 0.73792, 0.55849)

Scan size
(
NROI

h × NROI
v

)
186 × 151 Scan step size 1.5 μm

Exposure level 90% Camera gain 512, 832, 896

Camera exposure (msec) 0.94, 0.23, 0.17 Hough indexing rate 99.1, 60.2, 19.4

The EMEBSD format is generated by EMsoft’s EMEBSD
program when the program is used in dictionary generation
mode; this file is needed when static dictionary indexing is
carried out, i.e., indexing against a pre-computed dictionary.
The EDAX/TSL up1 and up2 formats are simple binary
formats in which each intensity is stored as a single byte
(up1) or as a two-byte integer (up2); a short 16-byte header
precedes the first pattern. Both EDAX/TSL’s and Bruker’s
HDF5 formatted files are the preferred storage modes for
EBSPs and they can both be read using various EMsoft
programs. At the time of writing of this tutorial, the Oxford
Aztec software does not offer the option to store the patterns
in a single HDF5 file; the only option is for the user to export
the patterns from a proprietary binary format to individual
image files (.tiff or .bmp format). The user should then
employ a MatLab script, provided in the Supplementary
Materials section, to convert the individual image files into
a single binary data file, which can then be read into EMsoft.
The user should note that most operating systems have
issues when hundreds of thousands or more image files are
stored in a single folder.

Tutorial Data Sets

fcc-Nickel

The Ni data file provided as Supplementary Material (for-
matted in the EDAX/TSL HDF5 format) contains three
EBSD scans of the same region of interest in a polycrys-
talline sample; the experimental acquisition parameters are
listed in Table 1. The data was acquired on an FEI XL30
FEGSEM, and originally indexed using a Hikari camera and
the EDAX/TSL OIM acquisition software. The patterns are

stored in three different data sets in the HDF5 file, each cor-
responding to a different camera gain and exposure setting,
resulting in a constant exposure level of 90%. The data sets
are labeled “Scan 1,” “Scan 4,” and “Scan 6” in the HDF5
file. The purpose of using this data set as an example is to
illustrate the robustness of the dictionary indexing technique
against acquisition noise; all three data sets can be indexed
with better than 95% success rate using the DI approach.

Orthorhombic Forsterite

The forsterite data set was acquired on a Quanta 200 SEM
equipped with a Hikari camera using the EDAX/TSL OIM
acquisition software. The patterns were acquired in the binary
up1 format, along with an .ang file containing several of the
acquisition parameters as well as the results from the Hough-
based indexing algorithm. The relevant parameters are listed
in Table 2. The individual patterns were then aggregated in
a single Binary .data data set using a MatLab script.

Nickel-Based Superalloy

The third data set made available with this paper is a
single slice (slice number 434) from a larger 1,000-slice
data set acquired at the Air Force Research Laboratory
(WPAFB, Dayton, OH) on a nickel-based superalloy using
a Tescan SEM equipped with the Bruker EBSD package;
acquisition parameters are listed in Table 3. The serial
sectioning data set was acquired on an automated robot-
controlled sectioning implementation [23]. Note that the
indexing algorithm can not distinguish between the γ and
γ ′ phases; hence, the indexing is carried out with respect to
the disordered fcc structure.

Table 2 Acquisition
parameters for the
forsterite/enstatite data set
accompanying this tutorial
paper

Voltage 20 kV Sample tilt 70.0◦

Detector size
(
N

p
x × N

p
y

)
488 × 488 Detector tilt 10◦

Binning 8 × 8 Pattern center (0.4782, 0.7982, 0.6895)

Scan size
(
NROI

h × NROI
v

)
400 × 401 Scan step size 1.0 μm

232 Integr Mater Manuf Innov (2019) 8:226–246

Table 3 Acquisition
parameters for the nickel-based
superalloy data set
accompanying this tutorial
paper

Voltage 20 kV Sample tilt 70.0◦

Detector size
(
N

p
x × N

p
y

)
60 × 80 Detector tilt −1.3◦

Binning 1 × 1 Pattern center (0.4991, 0.4729, 0.6698)

Scan size
(
NROI

h × NROI
v

)
600 × 600 Scan step size 1.0 μm

Preparatory Steps

Before the DI algorithm can be applied to experimental
data, a number of computations must be performed. In
this section, we describe a general approach that should be
followed in order to correctly set up the necessary input
files.

Crystal Structure File

To generate a crystal structure input file (an HDF5 file with
default extension .xtal), the user will need the following
pieces of information from the literature:

– Chemical formula or compound/mineral name: This
may be useful to generate the filename; e.g., one could
use the filename Ni3Al.xtal for the L12 γ ′ structure
in superalloys, cpx.xtal for the monoclinic clinopyrox-
ene structure, and Nd-garnet.xtal for a neodymium-
containing garnet structure.

– Crystal system:Cubic, tetragonal, hexagonal, orthorhom-
bic, rhombohedral, monoclinic or anorthic (triclinic).
For the trigonal system, the user is offered both the
rhombohedral and hexagonal settings.

– Lattice parameters: Depending on the crystal system,
anywhere from one to six parameters may be needed. In
all, EMsoft quantities are expressed, whenever possible,
in SI-based or derived units with their unit prefixes, e.g.,
lattice parameters are given in nanometers throughout.
Exceptions to this are the electron energies assumed to
be in kiloelectron volts and tilt angles given in degrees.
All input parameters have their units explicitly stated in
the comment lines in the program input files.

– Space group number: A number between 1 and 230;
EMsoft uses the International Tables for Crystallog-
raphy, Volume A, for all crystallographic conventions.
Only standard settings are available for the space
groups, but some space groups may have two origin
settings.

– Atom coordinates: For each atom in the asymmetric
unit, a triplet of fractional coordinates is needed; option-
ally, coordinates can be entered as Wyckoff positions.

– Site occupation parameters: In the range [0. . . 1], these
parameters describe the occupation of each lattice site.
Generally, those numbers are set to 1.0.

– Debye-Waller factors: for each atom in the asymmetric
unit, the isotropic Debye-Waller factor is needed in

units of squared nanometers. If this factor is not known
for the user’s material, then one can assign a reasonable
default value; experience has shown that a value in the
range [0.004 . . . 0.006] is almost always a reasonable
choice.

The structure information is stored in HDF5 format and
can be created either from the command line calling the
EMmkxtal program (either entering the input lines one by
one or creating an input file redirecting that input to the
EMmkxtal command via $ EMmkxtal < myinputfile),
or via the EMsoftWorkbench GUI. With very few excep-
tions, all EMsoft programs make use of these crystal struc-
ture files.

For the examples made available with this tutorial, three
crystal structure files need to be created (they are made
available as part of the Supplementary Material):

• fcc Nickel (Ni): This structure file is easily generated
with just a few key strokes. Taking data from Pearson’s
Handbook [25], and the room temperature Debye-
Waller factor from [14]:

– Crystal system: 1 (cubic)
– Lattice parameter: a = 0.35236 nm
– Space group: 225
– Atomic number: 28
– Atom position, site occupation parameter,

Debye-Waller factor:
0,0,0,1.0,0.0035 (nm2)

– Output file name: Ni.xtal
– Source: ‘Pearson”s Handbook; Peng et al.

1996’

Note that the Source parameter is a string and should be
surrounded by single quotes when entered by the user.
If a single quote is needed inside the string, it should be
preceded by an escaping quote.

• orthorhombic forsterite (Fo): The structure data can be
found in [22] in the non-standard Pbnm space group
setting; since EMsoft only uses the standard setting
for orthorhombic and monoclinic space groups, the
lattice parameters and fractional coordinates need to be
permuted x → z → y → x to obtain the standard
Pnma setting.

– Crystal system: 3 (orthorhombic)
– Lattice parameters: a = 1.0207 nm, b =

0.5980 nm, c = 0.4756 nm

Integr Mater Manuf Innov (2019) 8:226–246 233

Table 4 Atom types, positions,
site occupations f , and Debye-
Waller factors B along with the
Wyckoff symbols for the
Mg2SiO4 forsterite structure in
the Pnma setting [22]

Atom Z (x, y, z) f B [nm2] Wyckoff

Mg 12 (0.0000, 0.0000, 0.0000) 1.0 0.0026 4a

Mg 12 (0.2774, 0.2500, 0.9915) 1.0 0.0022 4c

Si 14 (0.0940, 0.2500, 0.4262) 1.0 0.0008 4c

O 8 (0.0913, 0.2500, 0.7657) 1.0 0.0027 4c

O 8 (0.4474, 0.2500, 0.2215) 1.0 0.0024 4c

O 8 (0.1628, 0.0331, 0.2777) 1.0 0.0027 8d

– Space group: 62
– Atom position, site occupation parameter,

Debye-Waller factor: see Table 4; the table
also contains the Wyckoff positions since the
EMmkxtal program can be called with the -w
option.

– Output file name: Fo.xtal
– Source: ‘Smyth & Hazen, Amer. Mineral.

(1973) 58:588-593’

• orthorhombic enstatite (En): Structure information can
be found in [7] in the Pbca space group setting; there is
a small amount of enstatite (Mg2Si2O6) present in the
sample used for this tutorial.

– Crystal system: 3 (orthorhombic)
– Lattice parameters: a = 1.8235 nm, b =

0.8818 nm, c = 0.5179 nm
– Space group: 61
– Atom positions, site occupation parameter,

Debye-Waller factor and Wyckoff positions:
see Table 5. Note that the Debye-Waller factors
are taken to be the average of the diagonal
elements of the vibration ellipsoid reported
in [7].

– Output file name: En.xtal
– Source: ‘Ghose et al., Z. Kristall. (1986)

176:159-175’

Monte Carlo BSE Simulation

The forward models used in EMsoft for the simulation of
EBSD, ECP, and TKD patterns require knowledge of the
energy, depth, and directional distributions of back-scattered
electrons (BSEs) for a given incident electron energy and
sample type and orientation.

The problem of predicting these distributions correctly is
a notoriously difficult one [6]. Here, we use a Monte Carlo
model based on David Joy’s implementation of Bethe’s
continuous slowing down approximation (CSDA) [9]. This
approach simplifies the channels of discrete inelastic
scattering by a continuous sum of their effect. The benefit is
that the computation can be faster while the downside is that
for very small energy losses, the prediction is inaccurate.

Recently, Winkelmann et al. [28] argued that this approx-
imation leads to incorrect overall energy distributions. They
supported this claim by comparing the energy averages
of back-scattered electrons in different positions on the
detector, calculated by Ram et al. [15] from CSDA Monte

Table 5 Atom types, positions,
site occupations f , and
Debye-Waller factors B along
with the Wyckoff symbols for
the Mg2Si2O6 enstatite
structure [7]

Atom Z (x, y, z) f B (nm2) Wyckoff

Mg 12 (0.3758, 0.6539, 0.8658) 1.0 0.00478 8c

Mg 12 (0.3768, 0.4869, 0.3588) 1.0 0.00669 8c

Si 14 (0.2717, 0.3417, 0.0503) 1.0 0.00340 8c

Si 14 (0.4736, 0.3373, 0.7983) 1.0 0.00335 8c

O 8 (0.1835, 0.3401, 0.0347) 1.0 0.00472 8c

O 8 (0.5623, 0.3403, 0.8002) 1.0 0.00479 8c

O 8 (0.3109, 0.5025, 0.0432) 1.0 0.00578 8c

O 8 (0.4328, 0.4829, 0.6891) 1.0 0.00580 8c

O 8 (0.3032, 0.2226, 0.8320) 1.0 0.00575 8c

O 8 (0.4476, 0.1951, 0.6036) 1.0 0.00544 8c

234 Integr Mater Manuf Innov (2019) 8:226–246

Carlo, with ad hoc normal energy distributions. They con-
cluded that, since the similarity metric used by them (cross-
correlation) gives slightly poorer matches when compared
to a normal energy distribution centered at the values Ram
predicted, then the CSDA model must be flawed. This argu-
ment is surprising for a number of reasons. First, the real
overall back-scattered electron distribution is very far from
normal and deriving meaning from comparing statistical
metrics from different distributions is challenging if not
dubious [11]. Second, the 0.5 keV full width half maxi-
mum chosen for the normal distribution does not seem to
match experimental evidence of diffraction patterns formed
by electrons that lost more than 5 keV energy [4]. Third,
as mentioned above, the real overall back-scattered energy
distribution matches fairly well with Monte Carlo CSDA
predictions [5]. The challenge is to improve predictions
for low loss electrons and this is a work in progress. The
Monte Carlo program is available in two forms: one using
the graphical processing unit (using OpenCL), the other
operating in multi-threaded mode (using OpenMP).

The energy, depth, and directional distributions of BSEs
are computed as histograms. The user has the freedom to
decide the smoothness of the energy and depth distributions

by trading the number of histogram bins and precision per
bin for computation time. The distributions are dependent
on material, the geometry of the setup, and the incident
energy. For energy, the maximum binned energy is the
incident energy, i.e., master patterns for a number of
different incident energies require the same number of MC
computations, while the minimum is the smallest energy
to be considered for back-scattering; a smaller value than
5 keV is not recommended since the probability that these
electrons will contribute substantially to the diffraction
pattern is vanishingly small, the MC computation becomes
slower since there are more scattering events to track, and
the CSDA predictions for low energy electrons are quickly
losing accuracy.

For the examples in this paper, the name list files are
identical in all parameters except for the crystal structure
file name and the output file name; the sample tilt and
microscope accelerating voltage are set to 70◦ and 20 keV,
respectively. The name list file for the EMMCOpenCL
program, obtained by calling the program with the -t option,
has the following relevant entries (other entries should be
left at their default values):

&MCCLdata

mode = ’full’, ! ’bse1’ for ECP; ’full’ for EBSD/TKD

xtalname = ’Ni.xtal’, ! or ’Fo.xtal’ for the forsterite example

sig = 75.7, ! sample tilt angle or 70.0 for Fo/En

numsx = 501, ! # pixels along x-direction [odd number!]

platid = 2, ! GPU platform ID selector (from EMOpenCLinfo)

devid = 1, ! GPU device ID selector

totnum_el = 2000000000, ! total number of incident electrons (< 2ˆ(31)-1)

multiplier = 1, ! use if more than 2ˆ(31)-1 electrons needed

EkeV = 20.D0, ! incident beam energy [keV]

Ehistmin = 10.D0, ! minimum energy to consider [keV]

Ebinsize = 1.0D0, ! energy bin size [keV]

depthmax = 100.D0, ! maximum depth [nm]

depthstep = 1.0D0, ! depth step size [nm]

dataname = ’datapathname/Ni-master-20kV.h5’ ! or ’Fo-master-20kV.h5’

! or ’En-master-20kV.h5’

Note the presence of the datapathname prefix for
the output file name dataname; this is the stan-
dard EMsoft approach for locating files with respect
to a root folder set with the EMdatapathname vari-
able in the configuration file (see section SM–1.7 for
details). Once the template file is populated with the
user’s input parameter and its termination is changed
from .template to .nml (e.g., on UNIX-like system
$ mv EMMCOpenCL.template myEMMCOpenCL.nml or

using rename onWindows) the EMMCOpenCL program can
be called and pointed to the .nml input file:

EMMCOpenCL path_to_nml_file/myEMMCOpenCL.nml

If the .nml file is not explicitly provided, then the
program will look for an input file with the default name
EMMCOpenCL.nml file in the current directory.

Execution of the program with either one of these input
files will generate an HDF5 file that contains the spatial,

Integr Mater Manuf Innov (2019) 8:226–246 235

energy, and depth histograms used by the next program,
EMEBSDmaster. Example output for the Ni structure is
shown as a stereographic projection for three different
energy bins in Fig. 2; more information can be found in [2].

EBSDMaster Pattern Simulation

The master pattern simulation is typically the most time-
consuming part of an EBSD pattern simulation sequence,
but this has to be carried out only once for a given crystal struc-
ture, microscope voltage, and sample tilt angle; the master file
can be reused often, regardless of the detector parameters.

To set up the simulation parameters, add the -t option
to the EMEBSDmaster command. This will generate two
new files in your folder: EMEBSDmaster.template and
BetheParameters.template. The Bethe parameters are used
to control the cutoffs for strong beams, weak beams, and
beams that can be ignored safely in the dynamical scattering
simulations. The default values (see [26] for an extensive

description) are appropriate for low to middle range atomic
numbers but may need to be increased slightly (10–20%) for
heavier elements (Ag, Au, etc.). For a regular EBSD master
pattern computation, simply leave the parameters at their
default values and rename the file to BetheParameters.nml.
The relevant Bethe parameter file contents for EBSD
simulations are:

&Bethelist

! strong beam cutoff

c1 = 4.0,

! weak beam cutoff

c2 = 8.0,

! complete cutoff

c3 = 50.0,

/

Rename the second template file to EMEBSDmaster.nml
and edit the relevant parameter values (all other parameters
can be left at their default values):

Fig. 2 Stereographic projections
for Ni for energy bins a 12, b 18,
and c 20; the numbers at top left
of each projection indicate the
maximum intensity in each plot
as a percentage of the plot in (c).
The incident beam direction is
indicated by a white dot in the
upper half of the projections

(a) (b) (c)

3.9% 30.2% 100%

&EBSDmastervars

! smallest d-spacing to take into account [nm]

dmin = 0.05, ! reasonable compromise between speed & accuracy

! # pixels along x-direction of the square master pattern (2*npx+1)ˆ2

npx = 500, ! this value produces good master patterns

! name of the energy statistics file produced by EMMCOpenCL program;

! this file will also contain the output data of the master program

energyfile = ’datapathname/Ni-master-20kV.h5’, ! or Fo-master-20kV.h5

! or En-master-20kV.h5

! number of OpenMP threads

nthreads = 1, ! # of threads to be used for computation

/

The dmin parameter defines the smallest d-spacing taken
into account in the computation of the electrostatic lattice
potential and, hence, sets the number,N , of scattered beams.
Since computation time scales with N3, decreasing dmin
will dramatically increase the computation time; a value of
0.05 nm has been found to be a reasonable compromise
between speed and accuracy.

The number of pixels parameter npx sets the size of
the master pattern; the computation time scales with the

square of this parameter. A value of 500, which effectively
produces a master pattern of size 1, 001 × 1, 001, has been
found to produce reasonably accurate EBSD patterns for
pattern sizes in the range 640 × 480 and smaller. If larger
detectors are to be considered, then the master pattern size
parameter may need to be increased to 750 or 1000, with a
corresponding increase in computation time.

The nthreads parameter should be set to the number
of cores available on your system. Experience shows that

236 Integr Mater Manuf Innov (2019) 8:226–246

the execution time of this program scales well with the
number of threads used up to the number nc of available
physical cores. On systems with hyper-threading, increasing
nthreads to values in the range [nc . . . 2nc] does not
necessarily provide linear scaling.

Execution of the EMEBSDmaster program with these
input files (for Ni, forsterite, and enstatite) will store the
master patterns as both square Lambert projections [17] and
stereographic projections in a new group in the original
HDF5 file generated by the EMMCOpenCL program. The
Northern hemisphere stereographic projections for energy
bin 18 keV are shown in Fig. 3 for Ni (a) and forsterite (b).
Note that in all EMsoft programs, the coordinate convention
puts the crystallographic a axis pointing to the right along
the horizontal direction, and the reciprocal c∗ axis normal to
the plane of the figure.

Note that the Kikuchi bands are strongly defined in the
fcc-Ni case, but are much weaker in the forsterite case.
Looking at the most intense bands, the forsterite master
pattern also shows a near-hexagonal symmetry, despite the
orthorhombic unit cell. This is a consequence of the fact that
the oxygen lattice is hexagonal close packed, and the cations
occupy the interstitial sites in an orthorhombic arrangement.
Both Mg and Si are light atoms, and we can obtain a simple
estimate of how much each atom species contributes to
the master pattern by multiplying the number of atoms per
formula unit by the square of the atomic number for each
species (recall that the Rutherford scattering cross-section is
proportional to Z2). For forsterite, Mg2SiO4, we obtain the
following numbers:

Mg : 2 × 122 = 288
Si : 1 × 142 = 196
O : 4 × 82 = 256

Hence, the anion sub-lattice contributes an estimated
34.6% of the total Rutherford scattering, with Mg and
Si contributing 38.9% and 26.5%, respectively. Thus,
the hexagonal anion lattice contributes significantly to

the master pattern, which explains the near-hexagonal
appearance when looking along the orthorhombic c-axis.

It should be noted that the steps carried out thus far (gen-
erate crystal structure and perform Monte Carlo and master
pattern simulations) can also be carried out from within
a graphical user interface (GUI) currently under develop-
ment. The interface is known as the EMsoftWorkbench and
is available through the nightly builds for Mac OS X and
Windows 10 platforms. Since this interface is still under
development, we will not refer to it any further in the paper.

Dictionary Indexing

In this section, we describe in detail how both Ni and
forsterite/enstatite data sets can be indexed using the EMsoft
programs. We will assume that the reader has already
computed the master patterns and has downloaded the
data files containing the patterns from the Supplementary
Materials website. The forsterite data set is formatted in
the EDAX/TSL up1 format, i.e., each pixel intensity is
represented by a single byte. The three Ni data sets are
formatted in the EDAX/TSL HDF5 format. The slice from
the serial sectioning data set from a nickel-based superalloy
is available in the Bruker HDF5 format.

Setting the Detector Geometry

Regardless of the vendor software used to acquire the data,
the user should have an initial estimate of the detector
geometry (pattern center and distance from sample to
scintillator). This estimate, which can typically be found
as (x∗, y∗, z∗) in an .ang or corresponding file, can be
used to start the geometry refinement, but the parameters
must first be converted into the internal units xpc, ypc,
and L used by EMsoft. In principle, this conversion
requires knowledge of the detector pixel size, δ; unless
a subsequent orientation refinement is carried out (see
Section “Orientation Refinement”), the exact value of δ

Fig. 3 EBSD master patterns for
Ni (a) and forsterite (b) for
energy bin 18 keV

(a) (b)

oFiN

Integr Mater Manuf Innov (2019) 8:226–246 237

turns out to be unimportant. For the EDAX/TSL conversion,
we use the following relations:

xpc = Ns
x (x∗ − 1/2);

ypc = Ns
x y∗ − b Ns

y/2; (EDAX/TSL) (2)

L = Ns
x δ z∗,

where the detector dimensions are N
p
x × N

p
y pixels before

binning. Since L is proportional to δ, any reasonable value
for δ will result in a usable value for L; this is due to the
fact that the EBSD pattern will not change if the detector-
sample distance and the pixel size are both scaled by the
same amount. It is only in the refinement step that the true
detector pixel size must be used. Thus, if the pixel size is
known, then that value should be used, otherwise a default
value of δ = 60 μm can be employed. For the Oxford
Instruments .ctf file, the conversion is slightly different:

xpc = Ns
x (x∗ − 1/2);

ypc = Ns
y (y∗ − 1/2); (Oxford) (3)

L = Ns
x δ z∗.

For the Bruker EBSD system, the pattern center coordinates
are defined with respect to the top left corner of the detector
as a fraction of the detector width and height, respectively,
for x∗ and y∗; the z∗ parameter is defined as the ratio of
the detector-sample distance to the detector height. This
results in the following conversion expressions to the EMsoft
pattern center coordinates:

xpc = Ns
x (x∗ − 1/2);

ypc = Ns
y (1/2 − y∗); (Bruker) (4)

L = Ns
y δ z∗.

For the data sets provided with this tutorial, we find the
initial detector parameter sets listed in Table 6. Refinement
of these detector parameters requires either the selection of
a representative experimental pattern from the acquired data
set, or a separate (preferably full size) pattern acquired near
the center of the region of interest for the same detector
setup.

Using the detector parameters from the original acquisi-
tion run as a starting point, we can in principle refine those
parameters for the selected Ni and forsterite patterns. From
the .ang files, we extract the estimated orientations (Euler
angle triplets) as initial guesses. There are a number of ways
to refine the detector parameters:

– Using the vendor software;
– Interactively, using the IDL GUI efit;
– Manually, using the EMsoftWorkbench;
– Automatically, using the EMDPFit program

For the present tutorial, we recommend that the detector
parameter values in Table 6 are used. For the latter three
approaches, more detailed information will be made avail-
able via the wiki help pages on GitHub; the descriptions are
too extensive to be discussed in detail in the present paper.

Determination of Pattern Pre-Processing Parameters

The pattern pre-processing parameters consist of the high-
pass filter parameter, w, and the number of regions to be
used for adaptive histogram equalization. To determine their
optimal setting, a program is provided (EMEBSDDIpreview)
that will generate a matrix of pre-processed patterns for a
range of both parameters; the user can then select the best
combination of parameters to be used for the next step.
The EMEBSDDIpreview program requires a single pattern
as input; this can either be the full-size pattern recorded by
the user, or a single pattern extracted from the pattern input
file. The interested reader should consult the explanation of
the EMgetADP program in section SM–1.10 for additional
information.

From the ADP maps, one can select a single pattern from
a relatively large grain near the center of the map; the pixel
coordinates of this point must be determined with respect to
the upper-left corner. For the Ni data set, we select the point
with coordinates (85, 75) in ADP map Fig. SM-1a of the
Supplementary Material; for forsterite we select the point
with coordinates (138, 269) in Fig. SM-1d; and for the Ni-
based superalloy, the point with coordinates (243, 286) in
Fig. SM-1e. These EBSD patterns, shown in Fig. 4, can be
used to optimize the pattern pre-processing parameters.

Both sets of experimental and simulated patterns
undergo two pre-processing steps: a high-pass filtering
operation, which removes most of the background intensity
variations (noise), and adaptive histogram equalization,
which levels the intensity histogram of each pattern. This
makes sure no spurious effects are picked up by the
similarity metric. Figure 5 illustrates the effect of adaptive
histogram equalization on the experimental pattern selected
in the previous section from the forsterite data set. The
EMEBSDDIpreview program can be used to generate a tiff

Table 6 Initial detector
parameters for the data sets
provided with this tutorial; the
first two data sets use the
EDAX/TSL convention and the
third one the Bruker convention

Data (x∗, y∗, z∗) δ (μm) (xpc, yPC) L (μm)

Ni (0.50726, 0.73792, 0.55849) 59.2 (3.4848, 114.2016) 15,767.7

Fo/En (0.47821, 0.79819, 0.68948) 59.2 (−10.6320, 145.5187) 19,918.9

Ni-Super (0.4991, 0.4729, 0.6698) 50.0 (−0.55, 13.00) 16075.2

238 Integr Mater Manuf Innov (2019) 8:226–246

Ni-1 Ni-4 Ni-6 Fo Ni-Super
Fig. 4 Experimental patterns corresponding to the marked positions in the ADP maps (Fig. SM-1); the Ni-1, Ni-4, and Ni-6 patterns are 60 × 60
pixels, forsterite (Fo) 61 × 61, and Ni-Super 80 × 60

output file containing an array of pre-processed patterns for
a range of filter settings. The program parameters for the

pre-processing of pattern (patx, paty) = (243, 286) of the
Ni superalloy data set are as follows:

Fig. 5 Array of pre-processed
patterns for the Ni-based
superalloy reference pattern; the
high-pass parameter varies from
left to right, the number of
regions in the adaptive histogram
equalization from bottom to top.
The outlined image represents a
set of parameters that typically
results in a high indexing rate for
the dictionary indexing approach

0.0009 0.0019 0.0039 0.0078 0.0156 0.0312 0.0625 0.1250 0.2500 0.5000
High-pass filter parameter

rete
marap snoiger # noitazilauqe

margotsih evitpadA 1

2

3

4

5

6

7

8

9

10

&EBSDDIpreviewdata

numsx = 80, ! number of pattern pixels along x (Nx)

numsy = 60, ! and along y (Ny)

ipf_wd = 600, ! number of patterns along horizontal axis (Nh)

ipf_ht = 600, ! and along vertical axis (Nv)

hipasswmax = 0.5, ! hipass width parameter maximum (starts near zero)

hipasswnsteps = 10,! and number of steps

nregionsmin = 1, ! minimum # regions for adaptive histogram equalization

nregionsmax = 10, ! maximum number

nregionsstepsize = 1, ! step size

! preprocessed pattern tiff file

tifffile = ’DItutorial/NiSuper/NiSuper-matrix.tiff’,

! raw original pattern tiff file

patternfile = ’DItutorial/NiSuper/NiSuper-reference.tiff’,

exptfile = ’DItutorial/NiSuper/Bruker-NiSuper.h5’, ! data file

inputtype = ’BrukerHDF’, ! input file type

HDFstrings = ’LEROY_0089_Section_434’ ’EBSD’ ’Data’ ’RawPatterns’ , ! HDF path

patx = 243, ! pattern coordinate x to be used for the preview

paty = 286, ! y coordinate

/

Integr Mater Manuf Innov (2019) 8:226–246 239

Setting Up the Indexing Run

The EMEBSDDI program takes many parameters via the
usual name list mechanism; the template file is generated

in the usual way using the -t option. The input parameters
are grouped in several sections that we will describe one
by one.

&EBSDIndexingdata

!###

! INDEXING MODE

!###

!

! ’dynamic’ for on the fly indexing or ’static’ for

! pre-calculated dictionary

indexingmode = ’dynamic’,

! ...

The indexingmode can take two values: dynamic or static;
in static mode, the program will use an existing dictionary
file created by the EMEBSD program (see wiki help page
on GitHub for additional information). This mode is only
recommended if you have many data sets to index and
they all have the same detector parameters (for instance,
multiple slices from a serial sectioning FIB experiment).

This requires a computer with a lot of memory (many tens
of Gb of RAM, and lots of disk space). In the dynamic
indexing mode, the dictionary patterns are generated on-the-
fly during the indexing process; this would be the typical
mode for a single data set similar to the ones provided with
this tutorial. In that case, having a computer with a large
number of cores will speed up the process.

!###

! DICTIONARY PARAMETERS: COMMON TO ’STATIC’ AND ’DYNAMIC’

!###

! do you want Email or Slack notification when the run has completed?

Notify = ’Off’,

ipf_wd = 100, ! width of data set in pattern input file or Nh

ipf_ht = 100, ! height of data set in pattern input file or Nv

! define the region of interest as ROI = x0 y0 w h;

! Leave all at 0 for full field of view.

! Region of interest has the point (x0,y0) as

! its lower left corner and is w x h patterns

ROI = 0 0 0 0,

stepX = 1.0,

stepY = 1.0, ! X and Y sampling step sizes

nnk = 50, ! # top matches to keep

nnav = 20, ! # top matches used for orientation averaging (<nnk)

nosm = 20, ! # top matches used for OSM computation

maskpattern = ’n’, ! mask ’y’ or ’n’

maskradius = 240, ! mask radius (pixels, AFTER binning)

hipassw = 0.05, ! high pass filter width parameter; 0.05 is reasonable

nregions = 10, ! # regions for adaptive histogram equalization

! ...

The parameters in this block are common to the dynamic
and static indexing modes. Since the final output of indexing
is usually an inverse pole figure (IPF) map, one must specify
the IPF width and height, in pixels (ipf wd, ipf wd), for the
complete data set; as an example, let us consider a data

region of 600 × 400 pixels. One can then select a sub-
region via the ROI parameter, which has four integers; if
all integers are set to 0, then the complete 600 × 400 ipf
is indexed. If the integers are 60,100, 200, 200, then a
square area of 200 × 200 pixels is selected with one corner

240 Integr Mater Manuf Innov (2019) 8:226–246

located at the point (60, 100). The sampling step size is
next and is specified in microns. The next three integers
(nnk, nnav, and nosm) define, respectively, how many of
the top matches should be kept in the output file (typically
about 30 would be useful); how many of the top matches
should be used to generate an IPF with orientations averaged
over the top nnav matches; and how many top matches
should be used to generate the orientation similarity map
(OSM). Then, the user can specify the filename for an
optional mask file; this is currently an experimental option
in which one can define an arbitrary mask to be applied to

the patterns before indexing. For details of the file format,
see the wiki help page. If maskpattern is set to ’y’, then a
circular mask of radius maskradius will be applied before
indexing; this can be used to exclude the outer portion of
the patterns. Finally, the hipassw and nregions parameters
define the pre-processing parameters for the high-pass
filtering and adaptive histogram equalization steps that all
patterns (both experimental and simulated) undergo before
indexing; these were discussed in Section “Determination
of Pattern Pre-Processing Parameters.”

!###

! ONLY SPECIFY WHEN INDEXINGMODE IS ’DYNAMIC’

!###

ncubochoric = 100, ! # cubochoric points to generate orientation list

L = 15000.0, ! distance scintillator - illumination point [microns]

thetac = 10.0, ! camera tilt [degrees]

delta = 50.0, ! CCD pixel size on scintillator [microns]

numsx = 640, ! # CCD pixels along x

numsy = 480, ! and y

xpc = 0.0, ! pattern center x [pixels]

ypc = 0.0, ! pattern center y

omega = 0.0, ! angle between normal of sample and detector [RD, degrees]

energymin = 10.0, ! minimum energy to use for interpolation [keV]

energymax = 20.0, ! maximum energy

beamcurrent = 150.0, ! incident beam current [nA] (irrelevant, but not zero)

dwelltime = 100.0, ! beam dwell time [micro s] (irrelevant, but not zero)

binning = 1, ! binning mode (1, 2, 4, or 8)

scalingmode = ’not’, ! intensity scaling mode ’not’ = no scaling,

! ’lin’ = linear, ’gam’ = gamma correction

gammavalue = 1.0, ! gamma correction factor

!...

In this block, we define the detector parameters and the
orientation sampling. The ncubochoric parameter defines
the angular step size in orientation space; typically a value
of 100, corresponding to an angular step size of 1.4◦,
will produce good results. The detector parameters are
L (distance from scintillator to detector in μm), thetac
(detector tilt from vertical in degrees), CCD pixel size in
μm, the number of detector pixels along x and y directions,

the pattern center in units of pixel size, omega (sample
misalignment along RD axis in degrees), the energy range to
be used in the pattern interpolation, beam current and dwell
time (the actual values do not really matter for indexing, as
long as they are both non-zero), binning factor, scalingmode
(typically you would use gamma scaling), and the gamma
value (0.33 is a good value).

!###

! INPUT FILE PARAMETERS: COMMON TO ’STATIC’ AND ’DYNAMIC’

!###

exptfile = ’undefined’, ! data file location [w.r.t. EMdatapathname]

inputtype = ’Binary’, ! input file type parameter: Binary, EMEBSD,

! TSLHDF, TSLup1, TSLup2, OxfordHDF,

! OxfordBinary, BrukerHDF

HDFstrings = ’’ ’’ ’’ ’’ ’’ ’’ ’’ ’’ ’’ ’’, ! data set full path & name

! ...

Integr Mater Manuf Innov (2019) 8:226–246 241

Next, we have information about the pattern input file.
There are several types (described in Section “Pattern
Storage Formats”) and the correct type should be entered
in the inputtype variable. The file name goes in the exptfile
parameter (along with the appropriate partial path). If the
input file is an HDF5 file, then you must define the complete
path inside this file. For instance, if the pattern data set
is called EBSDpatterns, and it is located inside a nested

group Scan 1/data/EBSD, as it is for one of the Ni data
sets, then you would enter four strings for HDFstrings:
’Scan 1’, ’data’, ’EBSD’, and the last one is the data set
name ’EBSDpatterns’. Note that these strings are all case
sensitive, so make sure you get them right. You can use the
HDFView program from the HDF group to figure out what
the correct strings are. Leave the other strings (there are 10
in total) empty.

!###

! OTHER FILE PARAMETERS: COMMON TO ’STATIC’ AND ’DYNAMIC’

!###

tmpfile = ’EMEBSDDict_tmp.data’, ! temporary data storage file name;

! stored in HOME/.config/EMsoft/tmp

keeptmpfile = ’n’, ! keep or delete tmp file ?

datafile = ’undefined’, ! output file; path relative to EMdatapathname

ctffile = ’undefined’, ! ctf output file; path relative to EMdatapathname

! angfile = ’undefined’, ! ang output file; path relative to EMdatapathname

eulerfile = ’undefined’ ! euler angle input file

! ...

This block defines where all the results and temporary
files will be kept. The indexing program uses a temporary
file with the pre-processed patterns in the standard tmp
folder (usually in the .config/EMsoft/tmp folder in your
user home directory). You need to define the name of this
temporary file in the tmpfile variable (no path necessary);
it is important to pick a unique name if you are running
multiple simultaneous indexing runs. You can keep the file
if you want by setting keeptmpfile to ‘y.’ The indexing
output is stored in two or three files: datafile is an HDF5
output file that has all the program output in it, whereas
ctffile is the standard Oxford .ctf output file that can be

read by most EBSD analysis programs. For the EDAX/TSL
.ang output file, fill in the desired file name in the angfile
variable; both .ctf and .ang files can be created in the same
program run. If you set the eulerfile parameter to anything
other than ‘undefined,’ then the program will use the
orientations in that file instead of the cubochoric sampling
of orientations controlled by the ncubochoric parameter.
This can be useful if you know that all the orientations
are clustered around some orientation; you can then use
the EMsampleRFZ program to generate a uniform sampling
around that orientation instead of sampling the complete
Rodrigues fundamental zone.

!###

! ONLY IF INDEXINGMODE IS STATIC

!###

dictfile = ’undefined’, ! filename of dictionary file,

! path relative to EMdatapathname

!

!###

! ONLY IF INDEXINGMODE IS DYNAMIC

!###

masterfile = ’undefined’, ! master pattern input file;

! path relative to EMdatapathname

! ...

In static indexing mode, this is where you define the file
that has the complete dictionary in it. Dictionary files can
get very, very large, so be careful if you decide to use

static indexing. It can be useful for serial sectioning data
sets, where you use the same dictionary for all consecutive
slices. In our experience, it is usually best to use the

242 Integr Mater Manuf Innov (2019) 8:226–246

dynamic indexing mode when working with single region-
of-interest data sets. In dynamic mode, you need to define

the master pattern file from which all the dictionary patterns
are computed.

!###

! SYSTEM PARAMETERS: COMMON TO ’STATIC’ AND ’DYNAMIC’

!###

numdictsingle = 1024, ! # dictionary patterns in column for dot product

! on GPU (multiples of 16 perform better)

numexptsingle = 1024, ! # experimental patterns in column for dot product

! on GPU (multiples of 16 perform better)

nthreads = 1, ! # threads for parallel execution

platid = 1, ! platform ID for OpenCL portion of program

! if you are running EMEBSDDI, EMECPDI, EMTKDDI, then define the

! device you wish to use

devid = 1, ! device ID

multidevid = 0 0 0 0 0 0 0 0, ! leave unchanged

usenumd = 0, ! # GPU devices do you want to use?

/

This final block controls the computational resources. In its
present form, dictionary indexing requires a GPU (graphical
processing unit); use the EMOpenCLinfo program to figure
out the platform and device IDs for the GPU that you intend
to use for indexing. In the current implementation, only
one single GPU can be used, but the name list file already
allows for multiple devices. If the GPU you want to use
is part of platform 2, and is device number 4, then set
platid to 2 and devid to 4; also, put usenumd to 1 and the
first entry of multidevid to the same number as devid. The
nthreads parameter defines how many CPU cores (threads)
you want to use for the pattern computations; the GPU
takes care of computing the pattern dot products while the
threads compute patterns. Finally, the numdictsingle and
numexptsingle parameters define how large the memory
chunks are that the program will send to the GPU; for
optimal performance, this number should be a multiple of
16. If you set these parameters too large, then the GPU
may not have sufficient global memory to perform the

computations, and the program will likely abort with an
error message. It is suggested that you keep both numbers
set to the same value. If your pattern size is 640 × 480,
then the patterns will be organized as 1D vectors of length
307,200 components each, and the GPU will receive two
arrays of single precision floating point numbers (4 bytes
each) of dimensions 307,200 by numdictsingle. You can
easily check whether or not your GPU will be able to
accommodate this array size.

Running the Dictionary Indexing Program

At this point we are ready to execute the EMEBSDDI
indexing program; simply enter the name of the program
followed by the name of the input name list file and hit
return. The program will provide progress updates and
estimates of the time remaining until completion. Generally,
it is a good idea to run long indexing processes on UNIX-
type platforms in the background using nohup:

$ nohup EMEBSDDI EMEBSDDI-Ni.nml > EMEBSDDI-Ni.out 2> EMEBSDDI-Ni.err &

Alternatively, one can install and run the screen facility.
Both these packages allow for the user to log out of
the account (close the terminal) without interrupting the
execution. It is possible to have the program send out
an email or Slack message when the run has ended; see
the Package Configuration wiki help page on the main
source code repository for details. For serial sectioning
experiments, where many individual slices need to be

indexed, one can script the indexing process using Python,
MatLab, or any other scripting language; in that case, the
script should generate the name list input files, and spawn
the shell command to execute the indexing program.

Indexing the tutorial data sets produces six HDF5 output
files as well as .ctf and .ang files that can be downloaded as
part of the Supplementary Material. The dot product HDF5
files contain many data items that are described in a bit

Integr Mater Manuf Innov (2019) 8:226–246 243

more detail in the Supplementary Material, section SM–2.
The .ctf and .ang files created by the indexing program can
be read by the regular vendor software, so that the standard
operations on orientation data sets can also be carried out
on the results of the dictionary indexing runs. A utility
program is provided to extract five different maps from the
dot product HDF5 file. The program EMdpextract takes a
dot product HDF5 file as input and generates, in a separate
folder, a confidence index (CI) map, an image quality (IQ)
map, an average dot product (ADP) map, kernel average
misorientation (KAM) map (without an angular threshold),
and an orientation similarity (OS) map. For the definitions
of these maps, we refer the interested reader to reference
[10]. Figure 6 shows the ADP, IQ, CI, and OSM maps for
the nickel superalloy data set. Maps for all other data sets
as well as inverse pole figure (IPF) maps are available as
Supplementary Material.

Orientation Refinement

The DI implementation makes use of a discrete grid
of orientations to compute the dictionary patterns. Since

the true orientation for a particular EBSD pattern is
likely to fall in between multiple grid points, this means
that there is always an angular accuracy associated with
each indexing run. The average semi-distance between
neighboring orientation grid points is a reasonable estimate
for the angular accuracy; for a cubochoric sampling
parameter of N = 100, the average angular step size in
degrees can be parameterized as:

〈Δθ〉 = 0.03732 + 131.97049

N
.

The estimated orientation accuracy, θa , is then half of this
value, or 0.686◦ for N = 100; in other words, the difference
between the true orientation and the measured orientation,
when expressed as a misorientation angle, lies generally
between 0◦ and θa . This value can be improved upon by
performing a refinement of the orientations by allowing
each orientation to deviate from the discrete grid points.
This can be done by means of a grid that is repeatedly
(hierarchically) refined, or by a numerical minimization.

The EMFitOrientation program takes the following name
list as input:

Fig. 6 Maps extracted from the
dot product HDF5 file for the Ni
superalloy data set using the
EMdpextract program. The maps
are the average dot product map
(ADP), the image quality map
(IQ), the confidence index map
(CI), and the orientation
similarity map (OSM)

QIPDA

MSOIC

100 m

244 Integr Mater Manuf Innov (2019) 8:226–246

&RefineOrientations

! number of parallel threads to use for refinement run

nthreads = 1,

! name of input dot product HDF5 file

dotproductfile = ’undefined’,

! name of ctf output file for refined orientations

ctffile = ’undefined’,

! name of temporary file for pre-processed patterns

! (will override the temporary file name defined in the dot product file)

tmpfile = ’undefined’,

! modality (’EBSD’ or ’ECP’)

modality = ’EBSD’,

! keep the pre-processed patterns all in memory?

inRAM = .FALSE.,

! how many items from the top matches list need to be refined?

matchdepth = 1,

! refinement method:

! ’SUB’ : refinement by hierarchical sub-sampling of cubochoric grid

! ’FIT’ : fit by "bound optimization by quadratic approximation" (BOBYQA) in

! homochoric space (generally faster than SUB)

method = ’FIT’,

! ===================================

! if method == ’SUB’

! number of hierarchical iterations

niter = 1,

! number of points sampled around given point [(2*nmis+1)ˆ3]

nmis = 1,

! ===================================

! if method == ’FIT’

! max step size to take in homochoric space during the refinement

step = 0.03,

! In FIT mode, this program can also include pseudo-symmetric variants

! in the list of starting orientations to refine. Pseudo-symmetric variant

! Euler triplets or axis-angle pair(s) are stored in the PSvariantfile.

! format: first line ’ax’, second line number of axis-angle pairs,

! then one pair per line (unit vector, angle last in degrees)

! or format: first line ’eu’, second line number of Euler triplets,

! then one triplet per line (in degrees)

PSvariantfile = ’undefined’,

! ===================================

/

The program can operate in a hierarchical refinement
SUB mode, in which the cubochoric grid is niter times step-
wise refined by a factor of 2, or a minimizing FIT mode, in
which the highest dot product is sought inside a box of edge
length 2×step in homochoric space. If matchdepth is set to
1, then only the best match from the dictionary indexing
is refined; if necessary, the next best N matches can be
refined by setting matchdepth to N + 1. Finally, for some
structures, multiple orientations can produce EBSD patterns

that are very similar (pseudo-symmetry); by defining the
rotations that connect pseudo-symmetric orientations in the
PSvariantfile, either in axis-angle pair format or as an Euler
angle triplet, the program can be made to refine the dot
product for all potential pseudo-symmetric orientations. The
refinement program adds data sets to the dot product file
generated by the dictionary indexing program (EMEBSDDI),
and, optionally, generates an .ang or .ctf file that can be read
by the vendor software for further analysis.

Integr Mater Manuf Innov (2019) 8:226–246 245

Fig. 7 [001] Inverse pole figure
maps extracted from the dot
product HDF5 files for the Ni-1
(a), Ni-4 (b), Ni-6 (c), forsterite
(d), and Ni superalloy (e) data
sets, along with the
stereographic triangle color
legends for cubic and
orthorhombic crystal symmetry.
All maps are shown at their true
pixel size (186 × 151 for (a–c),
400 × 401 for (d), and
600 × 600 for (e); actual pixel
sizes are 1.5 μm for (a–c), and
1.0 μm for (d) and (e))

(a)

(c)

(d)

(e)

(b)

Concluding Remarks

In this tutorial, we have described in detail the process that
needs to be carried out to index an EBSDdata set using the dic-
tionary indexing approach that is part of the EMsoft open
source package. The final indexing results for the data sets
made available with this paper are shown in Fig. 7 as [001]
inverse pole figure (IPF) maps. Additional maps can be
extracted from the dot product HDF5 files, and the standard
vendor software can be used to explore the .ang and .ctf output
files generated by the indexing and refinement programs.

The Supplementary Material pdf file, all experimental
data sets, the crystal structure files, the program input files,
and all output generated by the indexing and refinement
programs are made available via the KiltHub data repository
at CarnegieMellon University at the following URL: https://
doi.org/10.1184/R1/7792505. The ReadMe.txt file in this
repository describes all the data sets and files in detail.

The minimum EMsoft version needed to perform all the
indexing steps and regenerate the output files is version 4.2,
which is available via the following DOI: https://doi.org/10.
5281/zenodo.2581285. Finally, all EMsoft-related material
and links are made available via the URL http://vbff.
materials.cmu.edu/EMsoft.

Acknowledgments The authors would like to thank Stuart Wright,
Katharina Marquardt, and Michael Uchic for making experimental
data sets available and allowing us to make them publicly accessible.
We would like to thank Melanie Gainey and the KiltHub team at
Carnegie Mellon University for their support in permanently hosting
the data files.

Funding Information The authors received funding from a DoD
Vannevar-Bush Faculty Fellowship (no. N00014-16-1-2821) as well as
the computational facilities of the Materials Characterization Facility
at CMU under grant no. MCF-677785.

References

1. Burch MJ, Fancher CM, Patala S, De Graef M, Dickey EC
(2017) Mapping 180◦ polar domains using electron backscatter
diffraction and dynamical scattering simulations. Ultramicroscopy
173:47–51

2. Callahan P, De Graef M (2013) Dynamical EBSD patterns Part I:
pattern simulations. Microsc Microanal 19:1255–1265

3. De Graef M, Lenthe WC, Schäfer N, Rissom T, Abou-Ras
D (2018) Unambiguous determination of local orientations of
polycrystalline CuInSe2 thin films via dictionary-based indexing.
physica status solidi (RRL)–Rapid Research Letters p 1900032

4. Deal A, Eades A (2005) Energy-dependence of an EBSD pattern.
Microsc Microanal 11(S02):524–525

5. Deal A, Hooghan T, Eades A (2008) Energy-filtered electron
backscatter diffraction. Ultramicroscopy 108(2):116–125

6. Eades A, Deal A (2008) Why is it difficult to simulate EBSD
patterns accurately? Microsc Today 16(3):50–51

7. Ghose S, Schomaker V, McMullan R (1986) Enstatite, Mg2Si2O6:
a neutron diffraction refinement of the crystal structure and a rigid-
body analysis of the thermal vibration. Z Kristall 176:159–176

8. Hahn T (ed) (1996) The international tables for crystallographyvolA:
space-group symmetry. Kluwer Academic Publishers, Dordrecht

9. Joy D (1995) Monte Carlo modeling for electron microscopy and
microanalysis. Oxford University Press, USA

10. Marquardt K, De Graef M, Singh S, Marquardt H, Rosenthal
A, Hiraga T (2017) Quantitative electron backscatter diffraction
(EBSD) data analyses using the dictionary indexing (DI)
approach: overcoming indexing difficulties in gological materials.
Am Mineral 102:1843–1855

https://doi.org/10.1184/R1/7792505
https://doi.org/10.1184/R1/7792505
https://doi.org/10.5281/zenodo.2581285
https://doi.org/10.5281/zenodo.2581285
http://vbff.materials.cmu.edu/EMsoft
http://vbff.materials.cmu.edu/EMsoft

246 Integr Mater Manuf Innov (2019) 8:226–246

11. Matejka J, Fitzmaurice G (2017) Same stats, different graphs:
generating datasets with varied appearance and identical statistics
through simulated annealing. In: Proceedings of the 2017 CHI
conference on human factors in computing systems. ACM, pp
1290–1294

12. Nolze G (2007) Image distortions in SEM and their influences on
EBSD measurements. Ultramicroscopy 107:172–183

13. Pascal E, Singh S, Callahan P, De Graef M (2018) Energy-
weighted dynamical scattering simulations of back-scattered
electron diffraction modalities. Ultramicroscopy 187:98–106

14. Peng LM, Ren G, Dudarev S, Whelan M (1996) Debye-Waller
factors and absorptive scattering factors of elemental crystals.
Acta Crystallogr A: Found Crystallogr 52:456–470

15. Ram F, De Graef M (2018) Energy dependence of the spatial
distribution of inelastically scattered electrons in backscatter
electron diffraction. Phys Rev B 97(13):134104

16. Ram F, Wright S, Singh S, De Graef M (2017) Error analysis
of the crystal orientations obtained by the dictionary approach to
EBSD indexing. Ultramicroscopy 181:17–26

17. Roşca D (2010) New uniform grids on the sphere. Astron
Astrophys 520:A63

18. Schwarzer RA, Hjelen J (2010) Orientation microscopy with fast
EBSD. Mater Sci Technol 26(6):646–649

19. Singh S, De Graef M (2016) Orientation sampling for dictionary-
based diffraction pattern indexing methods. Modell Simul Mater
Sci Eng 24(8):085013

20. Singh S, De Graef M (2017) Dictionary indexing of electron
channeling patterns. Microsc MicroAnal 23:1–12

21. Singh S, Guo Y, Winiarski B, Burnett T, Withers P, De Graef M
(2018) High resolution low kv EBSD of heavily deformed and
nanocrystalline Aluminium by dictionary-based indexing. Nat Sci
Rep 8:10991

22. Smyth J, Hazen R (1973) The crystal structures of Forsterite and
Hortonolite at several temperatures up to 900 ◦C. Amer Mineral
58:588–593

23. Uchic M, Groeber M, Shahi M, Callahan P, Shiveley A,
Scott M, Chapman M, Spowart J (2012) An automated multi-
modal serial sectioning system for characterization of grain-scale
microstructures in engineering materials. In: De Graef M, Poulsen
H, Lewis A, Simmons J, Spanos G (eds) Proc. 1st int. conf. on 3D
materials science. Springer, Cham, pp 195–202

24. Vespucci S, Winkelmann A, Naresh-Kumar G, Mingard KP,
Maneuski D, Edwards PR, Day AP, O’Shea V, Trager-Cowan C
(2015) Digital direct electron imaging of energy-filtered electron
backscatter diffraction patterns. Phys Rev B 92(20):205301

25. Villars P (1997) Pearson’s handbook (desk edition) crystallo-
graphic data for intermetallic phases. American Society for Metals

26. Wang A, De Graef M (2016) Modeling dynamical electron
scattering with Bethe potentials and the scattering matrix.
Ultramicroscopy 160:35–43

27. Wilkinson AJ, Moldovan G, Britton TB, Bewick A, Clough
R, Kirkland AI (2013) Direct detection of electron backscatter
diffraction patterns. Phys Rev Lett 111(6):065506

28. Winkelmann A, Britton TB, Nolze G (2019) Constraints on
the effective electron energy spectrum in backscatter kikuchi
diffraction. Phys Rev B 99:064115

29. Wright SI, Nowell MM, Lindeman SP, Camus PP, De Graef M,
Jackson MA (2015) Introduction and comparison of new EBSD
post-processing methodologies. Ultramicroscopy 159:81–94

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Dictionary Indexing of Electron Back-Scatter Diffraction Patterns: a Hands-On Tutorial
	Abstract
	What is Dictionary Indexing?
	General Implementation Notes
	Dictionary Indexing Algorithm
	Obtaining the Code/Executables
	Running the Code
	EMsoft EBSD Coordinate Systems

	Experimental Considerations and Tutorial Data Sets
	Experimental Suggestions
	Pattern Storage Formats
	Tutorial Data Sets
	fcc-Nickel
	Orthorhombic Forsterite
	Nickel-Based Superalloy

	Preparatory Steps
	Crystal Structure File
	Monte Carlo BSE Simulation
	EBSD Master Pattern Simulation

	Dictionary Indexing
	Setting the Detector Geometry
	Determination of Pattern Pre-Processing Parameters
	Setting Up the Indexing Run
	Running the Dictionary Indexing Program

	Orientation Refinement
	Concluding Remarks
	Acknowledgments
	Funding Information
	References
	Publisher's Note

