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Abstract A computational framework is proposed that
enables the integration of experimental and computational
data, a variety of user-selected models, and a computer algo-
rithm to direct a design optimization. To demonstrate this
framework, a sample design of a ternary Ni-Al-Cr alloy with
a high work-to-necking ratio is presented. This design exam-
ple illustrates how CALPHAD phase-based, composition
and temperature-dependent phase equilibria calculations
and precipitation models are coupled with models for elastic
and plastic deformation to calculate the stress-strain curves.
A genetic algorithm then directs the search within a specific
set of composition and processing constraints for the ideal
composition and processing profile to optimize the mechan-
ical properties. The initial demonstration of the framework
provides a potential solution to initiate the material design
process in a large space of composition and processing con-
ditions. This framework can also be used in similar material
systems or adapted for other material classes.
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Introduction

With the announcement of the Materials Genome Initiative
advocating for a 50% reduction in time and cost to develop
and deploy new materials, the need to accelerate compu-
tational material design approaches has become essential.
While there are many different approaches to computational
materials design [63, 69, 71, 77], all of the approaches
integrate processing, structure, property (PSP) relations to
predict a set of desirable material properties for a given
application. As noted by Kuehmann and Olson [50], a key
challenge of computational materials design is the optimiza-
tion of several conflicting requirements, which are repre-
sented by a variety of processing-structure-property models,
to achieve the desired materials performance. To achieve
this optimization, the models used must be integrated such
that composition, structure, processing variables are tracked
as needed. The biggest challenges in this design process are
the integration of a variety of models needed and the avail-
able experimental and computational data, the flexibility to
exchange different models depending on the design appli-
cation, and the ability to re-assess model parameters for
specific alloy systems. There have been a variety of attempts
to develop platforms and tools to support materials design
for different kinds of material classes and applications.
In particular, for Ni-based superalloys, there have been a
variety design optimization strategies employed, including
using trade-off diagrams [21, 50, 69, 100] and search algo-
rithms [40, 86, 87]. An essential part of all these designs is
the control of the precipitation of the γ ′ strengthening phase
and the high temperature properties.

Many strategies are used to design novel alloys for var-
ious applications. Reed et al. [69] used thermodynamic
equilibria and composition-based models to approximate
the PSP relations of a Ni-based superalloy. The alloy
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composition is selected according to the trade-off diagrams
to fulfill the performance requirements. Gheribi et al. [34]
combined CALPHAD software, FactSage, with the mesh
adaptive direct search algorithm to search the optimum
alloy composition and processing conditions for different
design objectives. This software provides effective search
in a larger parameter space. These two works are com-
putationally efficient but ignored the kinetics of phase
transformation during the heat treatment. Saunders et al.
[80] integrated the Johnson-Mehl-Avrami equation for γ ′
precipitation with mechanistic models for yield and creep
rupture properties to interpret the PSP relations of Ni-
based superalloys. This chain of forward calculations is
ideal to optimize the processing conditions, but an extra
module should be expected to select the material. Olson
used multiple tools to improve the computational material
design quality and reduce the number of design iterations
[63]. An extra connection between tools and data may cre-
ate a smooth workflow to initiate a new design project.
Another trade-off diagram approach was taken by Crud-
den et al. [21] which coupled the CALPHAD approach
with a data-driven model using an artificial neural network
(ANN) to estimate yield strength. Based on the concurrent
knowledge and data, this ANN model faithfully interpreted
the information in a certain composition domain, but this
non-physics based tool may not be applicable in a wider
design space. To summarize these design strategies, an
integration of phase-based models and data with search
algorithm is needed for the next generation of material
design.

These design examples demonstrate some of the com-
plexity of materials design and the need to optimize within
a framework of conflicting objectives. A variety of efforts
have been made to design efficient algorithms, including
genetic algorithms (GA) coupled with CALPHAD-based
tools [58, 86, 87], atomistic simulations [13, 31, 40], and
data-driven approaches [42, 55, 78, 102]. The goal of
this work is to develop a platform that integrates feder-
ated experimental and computational data repositories with
CALPHAD-based tools and mechanistic property models
to predict materials behavior and enable materials design
using a GA. A model ternary Ni-Al-Cr alloy is chosen to
demonstrate this platform.

For computational materials design, it is useful to iden-
tify key PSP links in a system design chart [65]. The key
PSP relations, as seen in Fig. 1a, for Ni-based superal-
loys used for turbine blades are reviewed to identify the
data and models that are to be incorporated in this exam-
ple. The desired properties for this application include creep
resistance, fatigue strength, ductility and toughness, high
strength, high temperature phase stability, and oxidation
resistance. The strength is optimized by controlling the
precipitation and stability of the γ ′ phase in the γ matrix

during the solution treatment and tempering processes.
The creep resistance is determined by the lattice mismatch
between the γ /γ ′ phases and diffusion in the γ matrix. The
ductility and toughness are dependent on the matrix grain
size and the inclusions present. The high temperature phase
stability is dependent on avoiding TCP phases precipitating
in the matrix during the solution treatment and tempering
processes. This work focuses on developing a ternary Ni-
Al-Cr alloy that optimizes the strength and the ductility for
a given set of processing conditions. Based on this simplifi-
cation, Fig. 1b highlights critical process-structure-property
relations for this work. The critical relations that must be
included in this design process include simulation of the
precipitation, growth, and coarsening of the γ ′ phase; pre-
diction the γ /γ ′ interfacial energy; calculations of solid
solution, grain boundary, and dislocation-based strengthen-
ing mechanisms; and prediction of the plastic deformation.
The details of the models employed will be described in the
“γ ′ Precipitation” to “Plastic Deformation” sections.

To optimize this design problem, an efficient search
algorithm is needed to obtain the solution from the large
composition and processing condition spaces. In the present
work, we propose a tool which integrates the simulation of
γ ′ precipitation and mechanical property models within the
framework of a genetic algorithm (GA) to design a high
work-to-necking (EWT N ) Ni(1−x−y)AlxCry ternary alloy.

Computational Framework

Infrastructure Framework

Experimental and computational data, CALPHAD-based
tools, and elastic/plastic property models with a design
optimization code are integrated using a Python-based envi-
ronment. The Materials Data Curation System (MDCS)
[23] enables the curation and reuse of experimental and
computational data. Using the representational state trans-
fer application programming interface (REST-API) enables
seamless linkage of these data with the user models and
optimization tools. Different user models written in a vari-
ety of programming languages (C, Fortran, and Python) are
modularized and integrated within the Python-environment.
A genetic algorithm is coupled with this framework to
optimize the desired properties as a function of composi-
tion and processing conditions. In addition, reference data
are used with either the GA or basin-hopping algorithm
[43] to calibrate models. Figure 2 illustrates how the data
and different user models are integrated within this design
framework.

Four modules with models for phase-based properties are
developed to interpret the PSP relations as shown in Fig. 3.
To ensure that the model alloy is in the γ /γ ′ two phase
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Fig. 1 a The system design
chart for γ /γ ′ Ni-based
superalloy. b The focus of the
present work

field region at the processing temperature, the thermody-
namic equilibrium is calculated using Thermo-Calc [4] with
the TCNI6 database [88]. This equilibrium calculation is
followed by calculations with the precipitation module for
γ ′ precipitation. The resulting γ ′ size and volume fraction
are the inputs in the materials knowledge systems in Python
(PyMKS) [97] which simulates the elastic deformation of
the alloy. A constitutive module has been developed for

plastic deformation. The work-to-necking is then calculated
as the area beneath the stress-strain curve from the initial
elastic deformation to necking.

After casting, hot working, solution treatment, and coat-
ing, the microstructure of a γ /γ ′ Ni-base superalloy ideally
contains a homogeneous, disordered face centered cubic
(FCC, γ ) phase. During the tempering treatment at process-
ing temperature (Tp), the strengthening phase, ordered FCC

Fig. 2 The data flow diagram
for the present framework
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Fig. 3 The flowchart of the
computational process

(γ ′), precipitates (Fig. 1). The radius and volume fraction
of the γ ′ particles are the important microstructure features
affecting the yield stress [19, 49]. The next four sections will
review the models used to predict the precipitation, yield
strength, elastic and plastic deformation.

γ ′ Precipitation

The models for the precipitation kinetics, including classic
nucleation, diffusion controlled growth, and coarsening, are
well developed [12, 14, 66, 67, 85] and have been success-
fully applied to simulate the γ ′ precipitation in Ni-based
superalloys [3, 5, 64, 65, 68, 74]. Olson et al. validated a
similar precipitation model implemented in PrecipiCalc for
3rd generation disk alloys [64, 65]. The phase equilibria
and diffusivity data that are needed for these models are
obtained from CALPHAD (calculation of phase diagrams)
computations using thermodynamic and diffusion mobility
databases [11, 25, 71, 79]. In this work, we implement a
module to simulate the γ ′ precipitation during the temper-
ing treatment. The precipitate size and volume fraction are
calculated as a function of the processing time. The yield
stress (σys) at service temperature (Ts) will be estimated
from these parameters and the processing time is optimized
once the yield stress is maximized.

Nucleation

The nucleation energy, ΔGnu (J/m3), for forming the pre-
cipitate from the supersaturated solid solution is determined
by the chemical driving force, ΔGch, and the elastic strain

energy, ΔGel , resulting from different atomic volumes
[94]:

ΔGnu = ΔGch + ΔGel (1a)

ΔGch = −RgTp

V
γ ′
M

∑

i

X̄
γ ′
i ln(

ai

ae
i

) (1b)

ΔGel = 8μγ 1 + ν

1 − ν
(
lγ − lγ

′

lγ + lγ
′ )

2 (1c)

Rg is the gas constant; Tp is the processing tempera-

ture; V
γ ′
M is the molar volume of γ ′. X̄

γ ′
i and ae

i are the
solubility and the thermodynamic activity of element i in
γ ′ phase at equilibrium state at processing temperature. ai

is the thermodynamic activity of the element i. Accord-
ing to Thomas et al., the Poisson ratio, ν, was set to 1/3
[89]. μγ is the shear modulus of γ phase. lγ

′
and lγ are

the lattice parameters of γ ′ and γ , respectively, which are

calculated from the molar volumes, V
γ

M and V
γ ′
M , obtained

from TCNI6 database: l = ( 4VM

NA
)1/3. NA is Avogadro’s

number. Frost et al. proposed a temperature dependent for-
mula based on experimental observations to approximate
the shear modulus of the γ phase [33, 89]:

μγ = μ
γ

0

(
1 − 0.5

T − 300

TM

)
(2)

μ
γ

0 is adopted as 112 GPa [30] and 1673 K was chosen as
an average melting temperature TM [33]. The effects from
alloy composition are not included in this model.
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According to the classic homogeneous nucleation model,
the number density of the γ ′ particles is Nt = ∫

J̇ dt . J̇ is
the nucleation rate which can be estimated using [76]:

J̇ = ZβN0 exp

(−ΔG∗

kBTp

)
exp

(−tincu

t

)
(3)

Z and β are Zeldovich factor and the attachment rate of
solute atoms to γ ′. N0 is the number density of initial nucle-
ation sites. tincu = t0/(Z

2β) is the incubation time [76, 94]
and t0 is the adjustable parameter which is adopted as 1.5 in
this work. t is the processing duration. kB is the Boltzmann

constant. N0 exp
(−ΔG∗

kBTp

)
describes the initial number den-

sity distribution as function of the Gibbs energy. ΔG∗ is the
activation energy for forming a critical γ ′ nucleus [94]:

ΔG∗ = 16π

3

E3
int

ΔG2
nu

(4)

Eint is the interfacial energy between γ and γ ′. The param-
eters N0 and Eint will be assessed later.

Zeldovich factor and the attachment rate of solute atoms
to γ ′ are obtained from [1, 5, 24]:

Z = V
γ ′
M

2πNAR∗2

√
Eint
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(5a)
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X̄
γ

i and X̄
γ ′
i are the equilibrium composition of element

i of the γ and γ ′ phases. D
γ

i is the chemical diffusion
coefficient of element i in γ which is calculated using
Thermo-Calc with TCNI6 and NIST Ni-mobility databases
[10, 11].

The critical nucleus size (R∗) can be calculated using
[94]:

R∗ = − 2Eint

ΔGnu

(6)

Growth

The γ ′ precipitates continue to grow, due to the supersatura-

tion of the γ phase. The radius, Rγ ′
t , of the growing γ ′ phase

can be modeled using a diffusion controlled approach [14]:

dR
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= D
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Assuming that the γ ′ phase has an equilibrium compo-

sition X̄
γ ′
i , the growth of the precipitates is dominated by

the chemistry of the remaining γ with the supersaturated

composition X
γ

i,t . ξi,tR
γ ′
t describes the effective diffusion

distance from γ /γ ′ interface and is calculated using the

mass balance equation (Xγ

i,t = (X
γ

i,0 − V
γ ′
f X̄

γ ′
i )/(1 − V

γ ′
f )

[5]) and the mean field approximation based on the vol-
ume fraction of γ ′. The parameter ξi,t is calculated using
the analytic solution of the diffusion equation in spherical
coordinates [14]:

ξi,t = 1 − λi,tπ exp(λ2
i,t )erfc(λi,t ) = 1

2λ2
i,t
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λi,t is a numerical parameter that can be obtained by the
solution of the function: [14, 74].
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i,t )erf c(λi,t ) = X
γ

i,t − X̄
γ

i

X̄
γ ′
i − X̄

γ

i

(9)

Coarsening

Once the composition is fully partitioned, the γ ′ growth
mechanism transforms from a growth to a coarsening pro-
cess. Perez et al. used a growth equation and linearized form
of the Gibbs-Thomson effect to predict the coarsening rate
[66]:

dR
γ ′
t

dt
= 8

27

EintV
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γ

i
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(10)

V
γ ′
at = V

γ ′
M

NA
is the mean atomic volume of γ ′.

Parameter Assessment for γ ′ Precipitation Model in
Ni-Al-Cr System

In this example design for an Ni-Al-Cr system, the interfa-
cial energy Eint and initial number density N0 are the two
remaining parameters that depend on composition and pro-
cessing conditions. These two parameters are determined
using a regression analysis of available experimental data
for number density, mean radius of γ ′ particles, and volume
fraction [6, 7, 84]. For Ni-Al-Cr, there are three available
data sets that are listed in Table 1 and the digital data is
stored in the MDCS. For each alloy composition, the γ ′
precipitation is simulated and the predicted number density,
mean radius, and volume fraction of γ ′ as a functions of
time are compared to the experimental results. The precip-
itate radius can be correlated to the number density at each
numerical time step by the size distribution function [1, 14].

The computed number density at each time step is used

to calculate the mean radius of γ ′ (R̄γ ′
t ) as the nucleation

and growth continue along with the processing time. The

volume fraction of γ ′ (V γ ′
f,t ) is calculated from the area of

this size distribution function:

R̄
γ ′
t =

∑
NtR

γ ′
t∑

Nt

(11a)

V
γ ′
f,t =

∑
Nt

4π(R
γ ′
t )3

3
(11b)
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Table 1 The alloy composition and model parameters used in kinetic simulation: Eint and N0 are determined by data fitting; |ΔHγ−γ ′ | and αint

are the calculated values

Experimental conditions Model parameters

Sample Composition Tp K Ref Eint mJ/m2 N0 1/m2 |ΔHγ−γ ′ | × 104 J/mol αint × 10−6 mol/m2

Kt1 Ni-7.5Al-8.5Cr 873 [6] 15 1.5 × 1026 1.52 0.99

Kt2 Ni-9.8Al-8.3Cr 1073 [84] 24 5.0 × 1027 1.34 1.80

Kt3 Ni-6.5Al-9.5Cr 873 [7] 18 4.0 × 1026 1.64 1.10

The growth process finishes when the volume fraction
and composition of γ ′ reach the equilibrium values and
coarsening begins as modeled by Eq. 10. The number
density of particles decreases with increasing γ ′ radius.
Figures 4a and b shows that the predicted number density
and mean radius of γ ′ for the Kt1 sample are close to the
experimental results. However, in Fig. 4c, the differences of
the volume fractions for these samples are significant. This
may be because the size distribution as number density func-
tion does not follow the classic nucleation model, or other
experimental difficulties. The investigation of the reasons
is beyond the scope of the present work. For the Kt2 and

Kt3 samples, the equilibrium volume fractions (V̄ γ ′
f ) pre-

dicted with the present model agree within about 2 to 5%
of the reported experimental values (Fig. 4c). This results in
differences in number density and mean radius of γ ′, espe-
cially for Kt2 sample, compared to the experimental results
in Fig. 4a and b.

Eint is determined by the chemical composition and pro-
cessing temperature and can be modeled as a function of a
geometric parameter, αint , and enthalpy difference between
the γ and γ ′ phases at the interface (ΔHγ−γ ′

) [53, 62]. αint

is the ratio of the atomic bonds across the interface to the
total number of the atomic bonds of the interface atoms. In
this work, we propose αint as a linear function of the pro-
cessing temperature. The best agreement with the values of
Eint in Table 1, is obtained by:

Eint = αint · |ΔHγ−γ ′ | = (3.75 × 10−2Tp − 2.23)

×10−6 · |ΔHγ−γ ′ | (12)

For the present work, it is assumed that the composition
dependence of Eint is represented by |ΔHγ−γ ′ |. The initial
number density of particles is the other adjustable parame-
ter for the phase transformation modeling and is related to
the initial microstructure. In this work, we adopt a constant
value of N0 = 4.0 × 1026 according to the Kt3 sample in
Table 1. Ideally a constant value should only be assumed
when alloy preparations are the same to ensure similar
microstructures.

The two model parameters, Eint and N0, are com-
position and processing history dependent and need to

be re-adjusted for new alloy compositions and process-
ing histories. To apply these phase transformation models

Fig. 4 Kinetic modeling of Ni-Al-Cr ternary alloys a number density,
b average radius, c volume fraction of γ ′; the points are the experi-
mental results from [6, 7, 84] and the dotted lines are the equilibrium

V
γ ′
f from TCNI6



Integr Mater Manuf Innov (2017) 6:229–248 235

for material design, i.e., new composition and processing
domains, the ability to predict these parameters is needed.

Yield Stress

During tempering, γ ′ precipitation occurs as described in
the “γ ′ Precipitation” section. To optimize the strength of
the alloy, the optimum tempering conditions must be deter-
mined. The strengthening contributions from dislocation
shearing or bowing around the γ ′ precipitates are modeled
taking the microstructure and chemistry of the alloy into
account. For these models, the volume fraction and mean
radius of γ ′ (V γ ′

f and R̄γ ′
) are the needed microstructure

parameters [49, 54, 93] and the anti-phase boundary energy
(EAPB ) is an important chemical parameter that determines
whether a weak or strong dislocation coupling effect dom-
inates over the dislocations shearing effect [19, 20, 22].
The models for additional strengthening mechanisms, such
as solid solution strengthening and Hall-Petch effect, have
also been implemented based on the statistical analyses [49,
73]. Using these strengthening models, the processing con-
ditions (processing temperature and time) are chosen to
maximize the yield strength of the microstructure [3, 41,
91].

Once the essential properties of precipitation process are
determined, the yield stress (σys) is calculated. Stress, σ ,
is described as a sum of contributions from lattice friction,
σ0, solid solute stress from the matrix phase, σSS , grain
boundary effect, σGB , dislocation strengthening, σdis , and
precipitation hardening stress, σp [72]: (the unit is MPa)

σ = σ0 + σSS + σGB +
√

σ 2
dis + σ 2

p. (13)

According to Thompson [90], the value of the contribu-
tion from the lattice friction (σ0) can be set to 21.8 MPa
for Ni-based alloys. Except for the precipitation hardening
stress, the contributions from the other mechanisms can be
approximated using the chemical composition of the matrix
phase, the grain diameter, dγ , and the initial dislocation
density in the γ phase, ρ

γ

0 , [2, 57, 60, 72, 73, 82]:

σSS =
(

50625X
γ

Al,t + 113569X
γ

Cr,t

)1/2
(14a)

σGB = μγ b

dγ
n∗[1 − exp(−�SP ε

bn∗ )] (14b)

σdis = 0.25μγ b

√
ρ

γ

0 (14c)

where μγ is the shear modulus (2). b is the magnitude of
the Burger’s vector which is lγ /

√
2 [19]. �SP = 0.15 μm

is the average distance between slip planes [52, 72]; ε is
the applied strain. n∗ is the critical number of dislocations
piling up at the grain boundary and is set to be 4 for FCC

phase [72]. Grain size and initial dislocation density are
process history dependent parameters and are selected as
typical values 10 μm and 1013 1/m2 for Ni-based alloys in
this work. The factors in Eq. 14a were proposed by Mishima
et al. which were obtained by the regression analyses of
the compressive 0.2% flow stresses of the binary Ni alloys
with 0 to 0.08 Al or 0 to 0.08 Cr at 77 K [60]. Although
the temperature effect on solid solution strengthening is
not included, this model has been successfully applied in
different composition and temperature domains [2, 9, 49].

Depending on size, volume fraction, and chemistry of γ ′,
the precipitation hardening stress, σp, is determined by dif-
ferent effects: weak (σwc), strong (σsc) dislocation coupling
and dislocation bowing between the particles (Orowan’s
bowing) (σor ) [19, 20, 49, 70]:

σwc = M
EAPB

2b

⎡

⎢⎣

⎛

⎝1.91R̄γ ′
EAPBV

γ ′
f

LT

⎞

⎠
0.5

− V
γ ′
f

⎤

⎥⎦ (15a)

σsc = 0.22M
μγ b

R̄γ ′

⎛

⎝πR̄γ ′
EAPBV

γ ′
f

LT

− V
γ ′
f

⎞

⎠
0.5

(15b)

σor = M
μγ b

R̄γ ′

⎛

⎝V
γ ′
f

π

⎞

⎠
0.5

(15c)

where M is the Taylor factor and is adopted as 3 [73]; EAPB

represents the anti-phase boundary energy. R̄γ ′
and V

γ ′
f are

the mean radius and volume fraction of γ ′. LT = μγ b2/2
is the line tension of a dislocation [19].

As the mean radius and volume fraction of γ ′ increase,
the precipitation hardening stress increases after a short
processing period and is dominated by the weak disloca-
tion coupling effect. With increasing heat treatment time,
the precipitation hardening mechanism changes from a size
effect to a composition dependent effect. The competition
between larger γ ′ diameter and anti-phase boundary energy
causes the dislocation shearing mechanism to switch from
weak dislocation coupling to a lower shearing-stress bar-
rier path that is the strong dislocation coupling effect. As
the γ ′ diameter grows, the strong dislocation coupling stress
decreases, as well as the precipitation hardening stress. As
the processing time increases, γ ′ particles become too large
to be cut through by dislocations and Orowan’s effect domi-
nates. Therefore, the effective precipitation hardening stress
follows the minimum stress path among these three mecha-
nisms [19]. The critical transition point from weak to strong
dislocation coupling mechanism is considered as the maxi-
mum precipitation hardening stress that can be determined
by the competition of size effect (R̄γ ′

) and material chem-
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istry (EAPB in [1 1 1] plane). EAPB can be calculated under
a single particle, equilibrium assumption: [20, 59]:

EAPB,[111] = W1 − 3W2 + 4W3√
3(lγ

′
)2

(16a)

W1 = 0.75W13 (16b)

W3 = 0.125W13 (16c)

W13 =
3ΔH

γ

eff + ΔHord 1−X̄
γ ′
s

X̄
γ ′
s

24NAX̄
γ ′
s

(
1 − X̄

γ ′
s

) (16d)

W2 =
ΔHord

(
1 − X̄

γ ′
s

)
− ΔH

γ

eff X̄
γ ′
s

12NA(X̄
γ ′
s )2

(
1 − X̄

γ ′
s

) (16e)

where lγ
′

is the lattice parameter of γ ′; W1, W2, and W3

are the bounding energies between center atom and first,
second and third nearest neighbours. ΔH

γ

eff = ΔHγ /1.1
is the disordered enthalpy with considering 10% short range
ordering effect [59] and ΔHord = ΔHγ ′ − ΔH

γ

eff is the

enthalpy of ordering. X̄γ ′
s = X̄

γ ′
Al+X̄

γ ′
Cr is the total solubility

of γ ′ at service temperature.
To test the Eq. 16 with the TCNi6 database, the APB

energy of binary Ni-Al alloys is calculated for service tem-
perature ranging from 473 to 1073 K and the results are
presented in Fig. 5. Each open circle is a randomly selected

condition where X̄
γ ′
Al is the result of the equilibrium cal-

culation while the overall composition XAl is set to be in
the range of 0.09–0.25 and Tp is from 473 K to 1473 K.
The other thermochemical properties (ΔHγ and ΔHγ ′

) and
the lattice parameter of γ at service temperature are cal-
culated using TCNI6 database. The calculated APB energy
is in the range from 0.188 to 0.218 Jm−2 for the selected
domain. Figure 5 shows that the APB energy is higher at
lower service temperature and higher Al content in γ ′ which

Fig. 5 The calculated EAPB at various Ts ; the open circles are the
calculated alloys

agrees with the trend reported in [19, 20]. The same model is
applied for the Ni-Al-Cr ternary in the domain of XAl = 0.1
to 0.25, XCr = 0.05 to 0.25, Tp = 673 to 1273 K, and
Ts = 473 to 1073 K, EAPB of 293 randomly selected
samples are calculated and stored in MDCS. The values of
EAPB are in the range of 0.06 to 0.18 Jm−2.

Elastic Deformation

The materials knowledge systems (MKS) package is used to
determine the elastic deformation with inputs from the yield
stress predictions. MKS is a statistical tool using a response
variable of the local material state to estimate the local phase
or stress status of the microstructure in an applied thermal or
strain field [28, 29, 46]. MKS provides efficient calculations
to simulate the elastic deformation of the microstructure.
The local response variables are obtained from a regression
process using the results from a finite element method. In
this work, we use the Python version of MKS (PyMKS)
to simulate the elastic deformation of the alloy [97]. Finite
element calculations using SfePy software [17] are carried
out to generate the reference data for PyMKS. The model
training in PyMKS is conducted using simple geometries,
which are so-called delta microstructures. SfePy calculates
the elastic stress of the delta microstructure and PyMKS
assessed the model parameters using two-point statistics.
With PyMKS, the model can then be applied to more
complicated geometries.

The model parameters used by PyMKS are the shear
modulus (μ) and Poisson ratio (ν), and the volume frac-
tion of γ ′, which is taken from the precipitation calculation
described in the “γ ′ Precipitation” section. The shear mod-
uli are calculated by Eq. 2 where μ0 is adopted as 112 GPa
for γ and 108 GPa for γ ′ for Ni-based alloys [30]. In this
work, Eq. 2 treats the shear moduli for γ and γ ′ as con-
stants independent of alloy composition at the same service
temperature. Ideally, these two parameters should be com-
position dependent. Based on these assumptions, Fig. 6a
depicts the representative volume element (RVE) at 300 K
for the PyMKS calculation. The black and white areas
represent 90% γ and 10% γ ′, respectively, in the two-
dimensional 100×100 mesh domain. This microstructure is
strained by 1% in the x direction at Tp = 1123 K. The peri-
odic boundary condition is defined in y direction. Figure 6b
is the elastic stress field obtained from PyMKS. Some mod-
eling errors can be seen as light dots at the interface but
are minor in comparison to the overall response as shown
in Fig. 7. In this figure, Young’s modulus (Y) calculated by
PyMKS is compared to the one calculated by SfePy using
the same conditions. These calculations were performed
for 16 microstructures with different volume fractions of
γ ′ ranging from 5 to 80%. The Young’s modulus is con-
trolled by the average stress and applied elastic strain. These
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Fig. 6 a The physical model of V
γ ′
f = 10% (white) in γ (black)

used to calculate Young’s modulus. b The calculated elastic stress field
created by 1% strain using PyMKS

estimates using the MKS method are compared to finite
element (FEM) simulations with the same conditions using
SfePy. The results of MKS and FEM are compared in Fig. 7.
It shows small differences of Young’s moduli between these
two computational methods but SfePy and PyMKS take 22
and 1 s, respectively, in average to finish one calculation. In
this work, we adopt μ as the function of service temperature
and γ ′ volume fraction is obtained from the precipitation
simulations.

Plastic Deformation

After yield strength prediction and PyMKS modeling to
find the elastic limit, the plastic deformation is simulated
to complete the stress-strain curve. Different approaches are

Fig. 7 The comparison between calculated Young’s modulus (Y) from
PyMKS (YPyMKS ) to SfePy (YSf ePy )

available to model the plastic deformation. The constitu-
tive models to simulate the plastic deformation, such as the
power law [36, 37, 96, 100] and hyperbolic sine law [56, 95,
99], require model parameters that capture the strain harden-
ing behavior of the alloy. After fitting the experimental data,
the effects from material chemistry, geometry, and testing
conditions are no longer distinguished by the model param-
eters, and, therefore, the trained models can only be used
under specific conditions. Other constitutive models include
more physical phenomena and provide generic, high-quality
results compared to the experiments [15, 26, 45, 47] and
require the assessments of the model parameters. The finite
element method (FEM) provides an even higher level of
accuracy but is computationally more expensive and is com-
monly not used within an integrated computational design
framework [16, 32, 48, 51, 61, 92, 101]. As shown in Fig. 3,
we adopt the constitutive model with irreversible thermo-
dynamics model to simulate the plastic deformation of the
alloy.

During plastic deformation, the applied mechanical work
increases the dislocation density and raises the entropy, S,
of the alloy. Considering the energy for dislocation kinetics
(dE) and the heat dissipation (dQ) in the testing environ-
ment, the energy conservation can be formulated as follows:

dE + dQ = T dS (17)

where dE can be calculated from the total energy for
dislocation generation (dWge), glide (dWgl), and annihila-
tion (dWan). dQ can be estimated from the variation of
the internal energy (dU ) and the input of the mechanical
work (dW ). These quantities are described by the following
relationships [38, 39, 72]:

dE = dWge + dWgl + dWan = 1

2
μb2dρ+

+τb�MFP dρ+ + 1

2
μb2dρ− (18a)

dQ = dU − dW = 1

2
μb2dρ − τdisdε (18b)
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dρ+ and dρ− are the generation and annihilation of the
dislocation density, respectively. The variation of the dislo-
cation density can be presented as dρ = dρ+ − dρ−. The
mean free path of the dislocation motion is obtained from

�MFP = (1/dγ +
√

ρ
γ

0 )−1 [8, 27]. Huang et al. proposed
that the increasing entropy is presented as a linear function
of the shear stress: dS = [θb/(T �MFP )]dτ [38] with θ

being a temperature dependent factor. Combining Eqs. 13
and 18 and using the relation τ = σ/M , the variation of the
dislocation density, ρε+dε, can be calculated [52]:

ρε+dε =ρε+
(μγ b2 + τb�MFP )ω

ε̇
exp(−ΔGρ

kBT
)ρε−τdis

1
8θμb2 − (μb2 + τb�MFP )

Δε

(19)

where Δε is the strain increment. ω = 1013 is the atomic
vibration frequency [39]. ε̇ is strain rate. ΔGρ is the
energy barrier for the dislocation annihilation. The stress in
Eqs. 13 and 14c is accordingly updated by the increasing
strain steps. The calculation stops at necking, which occurs
when Considère’s criterion, σ = dσ/dε, is fulfilled [83].
The work-to-necking is calculated as the area beneath the
stress-strain curve.

The two remaining parameters, θ and ΔGρ , are tem-
perature dependent and are fitted using the experimental
stress-strain curves reported by Wu et al. [98] under the
strain rate (ε̇) of 1x10−3 s−1. These parameters are listed
together with the experimental yield points (σys and εys)
from Wu et al. in Table 2. Since no composition dependence
needs to be fitted, the experimental values are preferred
over the ones from Eq. 13 to prevent the error propagation
through the models. By appropriately selecting θ and ΔGρ ,
the predicted strain hardening rates agree with the experi-
mental results at 1123 and 1273 K, (Fig. 8). To efficiently
determine these two parameters, we use a basin-hopping
method [43] to minimize the data-prediction error. Accord-
ing to Huang et al. [38], these two parameters are linear
functions of the processing temperature. Using the values
listed in Table 2, they can be represented as θ = −0.0356Tp

and ΔGρ = Tp/600 + 1.188 (eV). Figure 8 shows that the
calculated stress-strain curves are in good agreement with
the experiments.

Table 2 The test samples for plastic deformation model [98]; σys and
εys are stress and strain at the yield point

Tp , K σys , MPa εys ,% θ ΔGρ , eV

1123 129 0.4 − 40 3.06

1173 89 0.3

1273 48 0.2 − 45.3 3.31

1423 27 0.1

Fig. 8 Predicted stress-strain curves at various temperatures; the
points are the experimental results from [98]

Optimization by Genetic Algorithm

To optimize the design parameters presented in Fig. 1b
using the models and data described in the “γ ′ Precipita-
tion” section to “Plastic Deformation” section, a genetic
algorithm is implemented. A GA is used as it enables ran-
dom but directional iterative optimization of the design
parameters [35]. It has been successfully applied in many
material research related problems [13, 42, 58, 87]. Unlike
the gradient-based or the other grid search algorithms,
each GA process requires a significant number of iter-
ations to converge but it is efficient for multi-objective,
multi-dimensional optimizations [35, 75].

Before beginning with the optimization process, the
boundaries of the stable two-phase (γ + γ ′) field are estab-
lished. Figure 9 shows the γ +γ ′ regions at 973 and 1473 K
and the corresponding boundaries for the design composi-
tion space are given in Table 3. Accordingly, the objective
of the GA optimization is to search for the optimum XAl ,
XCr and processing temperature within these ranges to max-
imize work-to-necking at Ts = 973 K. Individual values in
these input ranges are assigned bits in the computer mem-
ory in the form of binary numbers. For instance, while 6 bits
of memory are used for each variable, the input domain is
discretized by a 26 × 26 × 26 mesh and each mesh point is
labeled by 18 digits of binary number.

The GA initially randomly selects 12 samples as the 1st
generation and evaluates the resulting alloy samples fol-
lowing the computational steps described in Fig. 3. After
the evaluation, this Python-based framework outputs the
data and meta-data of each sample to a XML file which
is then stored in MDCS using REST API. To continue the
search process, only the two samples with highest work-to-
necking are kept and the others are ignored, which is the
so-called elimination. The reproduction operator duplicates
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Fig. 9 Phase diagram of
Ni-Al-Cr calculated using
Thermo-Calc with TCNI6
database at a 973 K and b
1473 K; the FCC L12 (γ ) and
FCC L12#2 (γ ′), two phase
field, is of interested in this work

these two samples five times to maintain the same number
of the samples for each generation. The match operator and
the crossover operator exchange the label numbers in the
five new pairs of samples to create the next generation. The
last applied operator before the next evaluation is a muta-
tion that is designed to create the variance of the samples.
More detailed information about the genetic algorithm can

be found in the literature [18, 35, 81]. The crossover and
mutation rates are minor as the γ + γ ′ composition space
as determined by the phase diagram is relatively small, and
this improves the efficiency of the search. In this work, we
apply single crossover by random selection of the label sec-
tions and the mutation rate is adopted as 1/(total memory
size) (1/6 × 6 × 6) [18]. The converge rate is defined as
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Table 3 The data ranges used in GA optimization

XAl XCr Tp , K

min 0.03 0.00 973

max 0.24 0.30 1473

98%: once the binary label number of the top two samples
are 98% identical, the generation is claimed as converged
and the search is restarted by random selection for the next
generation. Repeating these steps, the GA directs the search
until the prescribed number of generations is reached. To
optimize the three variables in this work, 12 samples in each
generation of 30 generations were used for the search.

Results

Model Testing

Before using the GA to optimize the processing and com-
position variables, the properties of the two model alloys,
listed in Table 4, are selected for the investigation of the cor-
relation between alloy chemistry, processing conditions, and
yield stress. At the initial precipitation stage of sample YS1,
the high nucleation rate allows the transformation of a large
number of small mean radius (R̄γ ′

) γ ′ particles shown in
Fig. 10a. As a result of the high number density of particles
with a critical size that nucleate in a short time, the mean
radius of γ ′ particles decreases during the initial stage of the
transformation. After a certain processing time t , γ ′ grows
and begins to coarsen. As shown in Fig. 10b, during growth
and the early coarsening processes, the precipitation harden-
ing stress is dominated by weak dislocation coupling effect,
which increases with increasing γ ′ mean radius and volume
fraction. The solid solution stress decreases until thermo-
chemical equilibrium is reached as a result of partitioning
of the chemical composition from γ to γ ′. The decrease
of the solid solution stress and the increase of the weak-
dislocation-coupling stress result in a smaller increase of the
yield stress as seen in Fig. 10b. With the γ ′ precipitate size
increasing, the anti-phase boundary energy becomes more

Table 4 Predicted input parameters: Eint , EAPB , and V
γ ′
f for the

yield strength model for the two example alloys and the tempering
temperature, Tp

Sample XAl XCr Tp Eint EAPB V
γ ′
f

Kelvin mJ/m2 J/m2 percent

YS1 0.136 0.175 1230 25.5 0.118 44

YS2 0.141 0.102 1328 27.5 0.157 26

Fig. 10 The predicted process-structure-yield stress correlations of γ ′
transformation and σ of a, b YS1 and c, d YS2

important and the strong dislocation coupling effect domi-
nates. Orowan’s effect plays the key role for alloy YS1 after
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about 55 min of treatment at processing temperature, and
the yield stress decreases with increasing γ ′ mean radius
as given by Eq. 15. In contrast, alloy YS2 shows that the
microstructure has a large mean radius and low number den-
sity γ ′ precipitates (Fig. 10c). Orowan’s effect is the main
mechanism of precipitation hardening and the contribution
from precipitation hardening to the yield stress is relatively
low. Comparing YS1 and YS2, one finds that high nucle-
ation and low growth rates are preferred to improve the yield
stress.

Design Optimization Results

The GA is used to optimize the system for the highest
work-to-necking (Fig. 1b) within the defined composition
and processing space (XAl , XCr , and Tp). A GA search
(Fig. 3) was performed three times producing a total 214
effective samples. The predicted properties of the sam-
ples are presented in Figs. 11, 12, and 13. The weak to
strong dislocation coupling transition (Fig. 10b) is of inter-
est to determine the processing time for maximizing the
yield stress. For alloy YS1, the calculation shows that the
maximum yield stress occurs during the coarsening of γ ′.
As given by Eq. 10, the size effect competes against the
APB energy effect. This phenomenon is clearly seen in

Fig. 11a, b. In the V
γ ′
f -R̄γ ′

plot, the alloys with higher vol-
ume fraction and smaller mean radius of γ ′ posses higher
precipitation hardening stress. As mentioned in the previ-
ous section, higher anti-phase boundary energy means that
the γ ′ particle has higher resistance to dislocation shear-
ing which results in a higher precipitation hardening stress.
Figure 11c presents the calculated precipitation hardening
stress as function of the alloy composition and process-
ing temperature. Alloys with different XAl and XCr may
have similar phase transformation behavior and anti-phase
boundary energy and the trend of the precipitation harden-
ing stress is not as clear in these two diagrams. In principle,
as Fig. 5 shows, higher XAl causes higher anti-phase bound-
ary energy that results in higher precipitation hardening
stress.

Figure 12 summarizes the predicted yield stress in
the input domain while considering the other mechanis-
tic properties (13). After the same processing history of
the raw samples, the lattice friction, grain boundary, and
dislocation-dislocation hardening stresses are independent
from the alloy composition and processing temperature.
According to Eq. 14b, the addition of 0.01 to 0.2 mole frac-
tion Al and Cr increases solid solution stress by 22.5 to 100
MPa and 33.7 to 150 MPa, respectively.

The goal of the GA searches is to maximize the work-
to-necking. The results of the GA are shown in Fig. 13
and the red points mark the preferred alloys for this exam-
ple design. In this figure, work-to-necking ranges from 9.62

Fig. 11 The predicted precipitation stress σp a with the key

microstructure parameters b in 3 V
γ ′
f regions and the solid lines con-

nect the maximum and minimum values of each region c in the domain
of model input

to 41.25 MPa. In Figs. 12 and 13, it can be seen that the
more ductile alloy supports higher work-to-necking. Four
selected samples, labeled Opt-H, Opt-M1, Opt-M2, and
Opt-L in Fig. 13, of the examined alloys are listed in Table 5.
These alloys possess work-to-necking as high (41.25 MPa),
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Fig. 12 The predicted yield stress σys in the domain of model input

medium (∼25 MPa) and low (9.62 MPa) based on the dif-
ferent calculation input sets. Figure 14 shows the predicted
volume fraction and mean radius of γ ′ and yield stress as
functions of the processing time. Among these alloys, γ ′
fraction is lowest in Opt-H. It can also be seen that Opt-H
has highest growth rate of the mean γ ′ radius but low-
est volume fraction transformation rate. In this case, γ ′
transformation is controlled by the particle growth and the
microstructure contains low number density of larger radius
γ ′ particles. The yield stress of Opt-H is determined by
the transition from strong dislocation coupling to Orowan’s
effects that results in better ductility of the alloy.

The phase transformation behaviors of Opt-M1 Opt-M2
and Opt-L are very similar: high nucleation rate dominates
the precipitation process that results in high number den-
sity, small γ ′ particles and higher yield stress. Comparing
Opt-M1 to Opt-M2 shows that different alloy compositions
and processing conditions can also lead to similar work-
to-necking. Figure 14 shows that after different processing

Fig. 13 The predicted work-to-necking (EWT N ) in the domain of
model input

Table 5 The samples selected during the optimization: Opt-H as the
highest EWT N and Opt-L as the the lowest one among 214 samples

Sample XAl XCr Tp , K t , min EAPB , J/m2 σys , MPa EWT N , MPa

Opt-H 0.071 0.184 1051 8 0.141 465 41.25

Opt-M1 0.134 0.158 1238 12 0.131 766 25.28

Opt-M2 0.127 0.045 1067 412 0.167 762 25.44

Opt-L 0.192 0.005 977 13166 0.196 1117 9.62

times at different temperatures, the combinations of volume
fraction, mean precipitate radius, and anti-phase bound-
ary energy result in similar maximum yield stresses as the
peak values of Opt-M1 and Opt-M2 in Fig. 14c. Opt-L
possesses highest maximum yield stress among these four

Fig. 14 The calculated a volume fraction of γ ′ b mean radius of γ ′
and (3) yield stress variations as function of processing time of the
samples in Table 5
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alloys because it has the highest volume fraction, highest
anti-phase boundary energy and smallest mean precipitate
radius.

Using the microstructure information at the yield point
as input to the mechanistic models, the stress-strain curves
are calculated and presented in Fig. 15. The dotted lines
are the strain hardening rate ( dσ

dε
) and where they intersect

the stress-strain curves (solid) are the necking points of the
different alloys. The area beneath the stress-strain curve is
the objective of the search, the work-to-necking. Fig. 15
also shows that the Young’s moduli are almost identical.
The Young’s modulus is calculated using PyMKS with the
input of γ ′ volume fraction and the results indicate that the
volume fraction of γ ′ has a minor effect to the elastic defor-
mation. To summarize the results in Fig. 11c, 12, and 13, a
low yield stress, ductile alloy (OPT-H) is preferred for high
work-to-necking alloy according to the models used in the
present work.

Discussion of Model Assessment and Parameters

The four modules described above consist of general
phase-based models which require composition-dependent,
microstructure-dependent and adjustable parameters for this
specific application. The employed parameters for each
module are listed in Fig. 16. To adopt this framework, the
sensitivity of the individual model to each parameter and
error propagation through the workflow should be noted.
Ideally, the model sensitivity is proposed to be examined
and validated during the model development process using
the data under broad conditions and focusing on a spe-
cific physical quantity. At a preliminary design stage, the
piecewise information in the processing-structure-property
relation is insufficient to validate the model sensitivity in
a wide composition space. In this work, we assess the
microstructure-dependent and adjustable parameters based
on the literature data to suggest the potential alloy and

Fig. 15 The predicted stress-strain curves of the four selected sam-
ples, as Table 5, from the optimization process; dash lines represent
the strain hardening rates (dσ/dε)

processing temperature for next design iteration. In a real
design effort, it can be expected that some of the model
parameters will be updated using the results from valida-
tion experiments that need to be carried out after promising
candidate designs are identified using the GA search. The
successful model-validation processes can be used for the
next design iteration [44, 64].

During the optimization process, the composition-
dependent parameters such as phase transition temperature,
equilibrium phase composition, lattice parameters, diffusion
coefficients, etc. are obtained using Thermo-Calc TC-API
with TCNI6 and NIST Ni-mobility databases. These quanti-
ties can also be calculated using other databases. Figure 17a
shows the equilibrium γ ′ mole fractions of the Kt1 alloy in
Table 1 which are calculated using different thermodynamic
databases [25, 88]. It can be seen that the solvus temperature
is 20 K lower using the database by Dupin et al. [25] and,
therefore, the predicted processing window will be differ-
ent as well. Figure 17b compares the equilibrium chemical
compositions in γ ′ calculated using these two databases.
The errors are 2 to 5% which causes the uncertainties from
lattice parameters to elastic energy, chemical driving force
and phase transformation kinetics. The CALPHAD method
uses a thermodynamic and a mobility database to calculate
the diffusion matrix and it can be expected that the diffusion
matrix will be different at the same processing temperature
and re-assessment of the adjustable parameters may be nec-
essary. However, Campbell et al. found that the effect from
using different high-quality thermodynamics databases on
the diffusion matrix is within the experimental error cite-
campbell2002development. Olson et al. found that the effect
of uncertainties in the molar volume are acceptable within
current model uncertainties [64].

To test the sensitivity of the framework, the diffusion
coefficients are manually changed by ± 20% to repeat the
calculation for the Kt1 alloy in Fig. 4. The changes in the
phase transformation rates have minor effect on the estimate
of the γ ′ volume fraction compared to the experimental
uncertainty in Fig. 18a but result in a ±105 min processing
time to maximize the yield stress. Because the maximum
yield stresses are identical (as Fig. 18b), the stress-strain
curves for all three cases completely overlap in Fig. 18c.
This indicates, as one would expect, that the uncertainty in
diffusion coefficients has an effect on the selection of the
processing time but not the predicted alloy properties.

Other composition-dependent parameters are the energy
barrier for dislocation annihilation, ΔGρ , and the temper-
ature dependent factor, θ , which are determined for the
conditions given by the base element, strain rate and ser-
vice temperature [38, 72]. For Ni-based alloys, undergoing
the same strain rate testing, these two can be treated as
service temperature dependent parameters as recommended
in the previous section. The microstructure-dependent
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Fig. 16 a Parameter value
origin and data flow in this
framework: the physics-based
parameters are calculated using
CALPHAD method and
physics-based models; empirical
parameters are obtained from
references; b the values of the
adjustable parameters

parameters are determined by the processing history (ther-
mal and mechanical processes). For example, the initial
number density of nucleation sites is highly related to the
morphology, grain size and shape. This parameter needs
to be adjusted for different processing histories, however,
as the alloys in the present work are treated by similar
pre-processing steps, it is acceptable to use the same value
of N0 in all the calculations. The atomic bond ratio, αint ,

is an indirect but important parameter for extropolating the
interfacial energy, Eint , into a broader composition domain.
αint is determined by Eint and ΔHγ−γ ′

which are obtained
by the best fit to the experimental number density and CAL-
PHAD calculation. The αint may need to be re-assessed
if different pre-processing steps are used that result in dif-
ferent initial microstructures, dislocation density, etc. or a
different thermodynamic databases is used. Since the same
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Fig. 17 Comparison of results from calculations using the TCNI6 and
Dupin [25] thermodynamic databases: a the mole fraction of γ ′ b the
chemical composition in γ ′

thermodynamic database and the same initial conditions are
used in the present work, αint needs to be assessed only
once. The remaining model parameters, grain diameter, dγ ,
and initial dislocation density, ρ

γ

0 , are assigned as physi-
cally reasonable constants, 10 μm and 1013 1/m2, because
of the lack of data or models for predicting these quanti-
ties. To validate these models with the assessed parameters
requires extensive processing-structure-property data from
a consistent experimental environment. As mentioned in
the previous paragraph, the model refinements are expected
to be carried out in the next design iteration while this
framework narrows the composition space by decreasing the
γ + γ ′ phase region.

Summary

A modular python-based framework has been devel-
oped that integrates the computational models for desired
processing-structure-property correlations as an initial step
of the material design process. The goal of the present work
is to demonstrate that a modeling chain can be developed
and implemented with a GA to identify the potential region
in a composition space that satisfies the design requirements
based on the selected models and data. The present frame-
work is developed to accommodate the modularized codes

Fig. 18 Effect of diffusion coefficients changed by ± 20% on a
average γ ′ radius, b yield stress, and c stress-strain curve

that are programmed in various languages. The smooth data
flow within this framework supports a plug and play fea-
ture that allows switching of individual models for different
design objectives.

We selected the Ni-Al-Cr ternary system and work-to-
necking as the only design target to demonstrate the design
process using this framework. In the present work, the
computational models are used to identify the chemical
composition and processing conditions in a domain with
three variables. The training of these models is conducted
individually using published results to avoid error propaga-
tion through the simulation process. The simulation process
is started using pre-selected compositions and processing
temperature regime. A GA performs a search for better
performance alloys using the results from the integrated
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models. The reliability of the search results depends on the
generality of the models for a wider input domain and the
quality of the data used for model training.

The approach presented here can be expanded to mul-
ticomponent systems by including the additional elements
from databases and re-assessing the model parameters fol-
lowing the “Discussion of Model Assessment and Param-
eters” section. The objective/utility function for the GA
to evaluate the samples could also be revised for differ-
ent target performance. Based on similar PSP relations, this
framework could also be applied to precipitation hardened
alloys such as Co-based superalloys or stainless steels. Also,
other design objectives such as the castability, alloy den-
sity, and grain coarsening, could be considered by adding
additional models to the framework. Therefore, a full alloy
design project may require a more sophisticated design
optimization strategy to complete the PSP relations. As
mentioned, this Python environment easily accommodates
user implemented modules and the data can be transmit-
ted straightforwardly through the MDCS. This data-enabled
design framework can also be applied to other material
systems by switching to other user selected PSP relations.
Programming-language friendly features and the poten-
tial for automatic parameter assessment, support the future
expansion of the design framework. The general concept
of the present framework can be extended for the design
of novel commercial alloys by employing models with
predictive capabilities.
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52. Li S, Honarmandi P, Arróyave R, Rivera-Dı́az-del-Castillo P
(2015) Describing the deformation behaviour of trip and dual
phase steels employing an irreversible thermodynamics formula-
tion. Mater Sci Technol 31(13):1658–1663

53. Li X, Saunders N, Miodownik A (2002) The coarsening kinet-
ics of γ particles in nickel-based alloys. Metall Mater Trans A
33(11):3367–3373

54. Lv X, Sun F, Tong J, Feng Q, Zhang J (2015) Paired disloca-
tions and their interactions with γ particles in polycrystalline
superalloy gh4037. J Mater Eng Perform 24(1):143–148

55. Mahfouf M, Jamei M, Linkens D (2005) Optimal design of alloy
steels using multiobjective genetic algorithms. Mater Manuf
Process 20(3):553–567

56. McQueen H, Ryan N (2002) Constitutive analysis in hot work-
ing. Mater Sci Eng A 322(1):43–63

57. Mecking H, Kocks U (1981) Kinetics of flow and strain-
hardening. Acta Metall 29(11):1865–1875

58. Menou E, Ramstein G, Bertrand E, Tancret F (2016) Multi-
objective constrained design of nickel-base superalloys using
data mining-and thermodynamics-driven genetic algorithms.
Model Simul Mater Sci Eng 24(5):055,001

59. Miodownik AP, Saunders N (1995) Applications of thermody-
namics in the synthesis and processing of materials. TMS

60. Mishima Y, Ochiai S, Hamao N, Yodogawa M, Suzuki T (1986)
Solid solution hardening of nickel: role of transition metal and
b-subgroup solutes. Trans Jpn Inst Metals 27(9):656–664

61. Musinski WD, McDowell DL (2015) On the eigenstrain appli-
cation of shot-peened residual stresses within a crystal plasticity
framework: application to Ni-base superalloy specimens. Int J
Mech Sci 100:195–208

62. Nishizawa T, Ohnuma I, Ishida K (2001) Correlation between
interfacial energy and phase diagram in ceramic-metal systems.
J Phase Equilib 22(3):269–275

63. Olson G (2013) Genomic materials design: the ferrous frontier.
Acta Mater 61(3):771–781

64. Olson GB, Jou H-J, Jung J, Sebastian JT, Misra A, Locci I,
Hull D (2008) Precipitation model validation in 3rd generation
aeroturbine disc alloys. In: Superalloys, 2008. TMS, pp 923–932

65. Olson GB (1997) Computational design of hierarchically struc-
tured materials. Science 277(5330):1237–1242

66. Perez M, Dumont M, Acevedo-Reyes D (2008) Implementation
of classical nucleation and growth theories for precipitation. Acta
Mater 56(9):2119–2132

https://doi.org/10.6084/m9.figshare.1015761
https://doi.org/10.6084/m9.figshare.1015761


248 Integr Mater Manuf Innov (2017) 6:229–248

67. Philippe T, Voorhees P (2013) Ostwald ripening in multicompo-
nent alloys. Acta Mater 61(11):4237–4244

68. Radis R, Schaffer M, Albu M, Kothleitner G, Pölt P, Kozeschnik
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