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Abstract Ongoing market requirements and real-time

demands have led to intense competiveness in the manu-

facturing industry. Hence competitors are bound to employ

newer means of manufacturing systems that can handle the

ongoing market conditions in a flexible and efficient man-

ner. To tackle these problems manufacturing control sys-

tems have evolved to the distributed manufacturing control

system by exploiting their control architectures. These

distributed control architectures provide an efficient

mechanism that gives reactive and dynamically optimized

system performance. This paper studies the impact of

design and control factors on the performance of flexible

manufacturing system. The system is evaluated on the basis

of makespan, average machine utilization and the average

waiting time of parts at the queue. Discrete-event based

simulation models are developed to conduct simulation

experiments. The results obtained were subjected to multi-

response optimization as per Grey based Taguchi

methodology. The effect of control architecture was sta-

tistically significant on the performance of flexible manu-

facturing system.

Keywords Distributed control architectures �
Flexible manufacturing systems � Grey relational analysis �
Heterarchical control architectures � Multi-agent systems �
Taguchi experiment design

Introduction

The global competition and ever-changing market

requirements have led to throat cut competition in indus-

tries. There is a need for highly customized products,

products with high quality at lower costs, increased product

diversity in smaller lots and short makespan times (MST).

In the existing market scenario, competitors are bound to

employ newer means of manufacturing systems that can

handle the ongoing market conditions in a flexible and

efficient manner. The technologies like computer inte-

grated manufacturing (CIM), robotics and flexible manu-

facturing system (FMS) have been a center of attraction for

researchers to successfully employ and attain the compet-

itive edge over the others.

Flexibility enables a manufacturing system to respond to

changes in volume, product-mix, variety and quality at low

cost. The inherent flexibility in manufacturing system can

be attributed to its components, capabilities, interconnec-

tions, mode of operation and control. Today, flexibility is

an integrated element of the manufacturing systems, and

hence, the emergence of FMS is one of the important keys

to organizational success. FMS is designed to best suit the

batch production requirements with moderate variations of

product types in midvolumes. Browne et al. (1984) studied

eight different flexibilities namely routing, machine,

operation, production, expansion, process, product, and

volume. Later on Sethi and Sethi (1990) added three more

to this list namely material handling, program and market

flexibility.

Practically, manufacturing systems operate in dynamic

environments experiencing machine failure, order cancel-

lation, etc. In the presence of such real-time events, it

becomes very difficult to produce products on schedule.

The problem of scheduling involves provision of resources
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to process different types of jobs. Each job consists of a

sequence of operations performed by exactly one machine.

The sequence in which jobs are sequenced significantly

influences the system performance which is to be opti-

mized (Pezzellaa et al. 2008). Thus, scheduling has to be an

ongoing reactive process where there is continuous

schedule revision and updates taking place to tackle vari-

ous disturbances occurring at the shop floor. Such a prob-

lem which involves scheduling under dynamic

environments is known as dynamic scheduling. The

approach of dynamic scheduling is of great importance for

scheduling parts in a dynamic environment like FMS. An

effective scheduling process allows the firms to effectively

utilize the resources to fulfill the objectives as per pro-

duction plans (Girish and Jawahar 2009). Hence, the

quality of solution for the scheduling problems is of great

significance in the industry (Motaghedi-larijani et al.

2010). Several approaches have been proposed to solve the

scheduling problem. One such approach is distributed

scheduling (Cardin et al. 2017).

Recently, research is focused on finding better

scheduling solutions in the least possible times. The

scheduling approaches can be broadly categorized as tra-

ditional scheduling and distributed scheduling approaches.

The conventional scheduling methods are basically cen-

tralized, i.e., central decision-making is involved for all the

events taking place. These methods are essentially inflex-

ible, less responsive to machine failure, operator absence,

etc. (Shen and Norrie 1999). However, in distributed

scheduling approaches; based on heterarchical control

architectures, the decision-making is delegated to different

decision-making entities. One of the distributed approa-

ches, referred to as multi-agent based scheduling has

exhibited several potential advantages of better flexibility,

reactiveness and robustness than the traditional scheduling

systems (Ouelhadj and Petrovic 2009). Hence, multi-agent

based scheduling systems are considered as one of the most

important methods for solving dynamic scheduling issues.

In multi-agent systems, the decision-making entities are

known as agents. These agents are made autonomous to

take their decisions and work in cooperation and coordi-

nation with other agents to achieve their goals.

A simulation experiment is conducted to study the

effects of control architecture, sequencing flexibility, buf-

fer capacity and scheduling rules on the performance of

FMS. When operations on a part can be performed in any

order without any precedence between operations, there

exists sequencing flexibility. Sequencing flexibility is

product specific instead of process specific. The issue of

scheduling the parts in the presence of sequencing flexi-

bility is complicated by physical constraints like processing

of different parts at different machining stations with dif-

ferent priorities (Choi and James 2004). For this study, the

performance of the FMS domain is evaluated based on

control architecture along with sequencing flexibility,

buffer capacity, and scheduling rules as the motivating

factors. As the first step, FMS configuration and part data

regarding processing requirements have been established.

Four models of three control architecture types (CA), four

levels of sequencing flexibility (SFL), four buffer capacity

levels (BC) and four scheduling control rules are consid-

ered for the detailed study. The performance of the system

is evaluated in terms of performance measures: makespan

time (MST), average machine utilization (AMU) and the

average waiting time at the queue (AWQ). Taguchi’s (L4)

orthogonal array is used to design the simulation experi-

ments. Grey relational analysis is conducted for the opti-

mized system performance. The results obtained are

statistically analyzed to establish the significance of the

study. Hence, in this paper an attempt has been made to

develop a distributed scheduling framework. This frame-

work is used to investigate the effect of various design

factors (control architectures, sequencing flexibility, and

buffer capacity) and control factors (sequencing and dis-

patching rules) on the performance of FMS. Therefore, the

objectives of the present study are as follows:

• To study the effects of control architecture, sequencing

flexibility, buffer capacity; and sequencing and dis-

patching rules on the performance of FMS.

• To study the interaction among control architecture,

sequencing flexibility, buffer capacity; and sequencing

and dispatching rules in the selected FMS environment.

• To optimize the performance measures of FMS.

This paper is organized as follows. Introduction is given

in section one. This is followed by section two which deals

with relevant literature in the area of research. Sec-

tion three presents the problem formulation and assump-

tions. Section four discusses the operational logic for

simulation model. Section five underlines Grey based

Taguchi’s methodology for multiple performance charac-

teristics optimization while section six presents simulation

experiment results. Section seven encompasses the results

analysis and discussions. The findings of the present work

and conclusions are stated in section eight.

Literature Review

In view of ongoing industrialization and market require-

ments, it is becoming increasingly difficult to produce the

required product at the right time and cost. The ever-

changing market conditions, high variety of custom prod-

ucts, and uncertainties encountered during manufacturing

activities have made the existing manufacturing control

problems difficult to handle. Hence, there is a requirement
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of a control system architecture that exhibits flexibility as

well as provide optimal performance (Gunasekaran and

Ngai 2012).

Conventionally, the existing manufacturing control

architectures; based on hierarchical control architectures,

have the advantage of optimized system performance but

are not flexible and responsive enough to meet the market

requirements. However, the distributed manufacturing

control; based on heterarchical control architectures, have a

heterarchical relationship among the decisional entities or

agents. These control architectures are endowed with

responsiveness, flexibility, scalability, and fault-tolerance

against perturbations (Leitão 2009). The agents in dis-

tributed control architectures cooperate and coordinatewith

the other agents for the attainment of their objectives.

Maione and Naso (2003) proposed a heterarchical manu-

facturing control application in a flexible assembly system.

Leitão et al. (2012) presented an approach for dynamic task

allocation and dynamic routing of pallets based on heter-

archical control. Borangiu et al. (2014) considered a multi-

agent based control problem to solve operation scheduling,

product routing and resource allocation problems in an

FMS cell. Rajabinasab and Mansour (2011) studied the

heterarchical multi-agent scheduling for flexible job shop

having stochastic events. Xiong and Fu (2018) developed a

simulation model to exploit routing and process flexibilities

with constraints and to provide good quality solutions.

These heterarchical control studies have resulted in

better reactivity and robustness against disturbances.

However, they lack certainty, and minimum system per-

formance cannot be guaranteed (Jimenez et al. 2016). In

such situation it is found that semi-heterarchical control

architecture, combines the benefits of hierarchical and

heterarchical control architectures. The decisional entity at

the upper or global level (hierarchical position) can act as a

coordinator, mediator or facilitator to the lower or local

level (heterarchical) entities, depending upon their func-

tionality. The global control manages the overall system

performance while reactivity is maintained at the local

level (Monostori et al. 2006). Chou et al. (2013) studied a

flexible job shop scheduling problem based on semi-

heterarchical control. Barbosa et al. (2015) investigated a

semi-heterarchical based distributed control mechanism

that exhibits emergent behavior in the evolutionary and

reconfigurable systems. Wang et al. (2012) evaluated dis-

tributed control architecture based on semi-heterarchical

architecture to handle dynamicity and disturbances. This

approach exhibited the advantage of finding efficient

routing paths quickly. Sallez et al. (2010) presented a semi-

heterarchical control approach for dynamic allocation and

routing processes in an FMS. Rey et al. (2014) used dis-

tributed approach semi-heterarchical architecture to solve a

flexible assembly cell problem. Borangiu et al. (2014)

presented a semi-heterarchical control approach for plan-

ning and control in an FMS environment. During opera-

tional mode, the control switched between centralized and

decentralized controls. This switching enabled the control

architecture to maintain global optimality in the absence of

perturbation and robustness against disturbances in the case

of perturbation occurrence. Pach et al. (2014) solved the

problem of FMS by heterogeneous semi-heterarchical

control.

Erol et al. (2012) studied a multi-agent based scheduling

approach for simultaneous scheduling of machines and

automated guided vehicles (AGVs). They developed a

simulation model to test the proposed approach in real

time. The results showed close performance to optimiza-

tion results and outperformed the comparison criteria.

Sallez et al. (2009) investigated the potential of the routing

control problem approach based on semi-heterarchical

control. Chen and Chen (2010) presented a multi-agent

based multi-section FMS model. The authors developed

semi-heterarchical architecture simulation model and

studied the effect of dispatching rules on the system per-

formance. Recently successful results have been achieved

by using distributed approaches like multi-agent systems

(MAS) to solve complex and dynamic flexible job shop

scheduling problems including machine flexibility and

product flexibility (Nouiri et al. 2018).

An FMS is defined as computer-controlled complex,

integrated manufacturing system that consists of numeri-

cally controlled machine tools and connected by automated

material handling system that can process mid volumes and

mid variety of parts. The judicious use of the flexibility

types and their levels are always provide maximum bene-

fits from FMS (Ali and Wadhwa 2010; Ali and Mur-

shid 2016; Teich and Claus 2017). There are mainly eight

types of flexibilities namely machine flexibility, product

flexibility, process flexibility, operation flexibility, routing

flexibility, volume flexibility, expansion flexibility, and

production flexibility (Browne et al. 1984). Further, routing

flexibility has been identified as an important flexibility

type as it maintains a better balance between machine loads

and aids in preventing bottleneck (Sethi and Sethi 1990).

The effect of routing flexibility and pallet flexibility was

studied on the performance of FMS (Ali and Ahmad 2014).

Joseph and Sridharan (2011a, b) also investigated the

combined effect of routing and operations flexibilities to

evaluate the performance of an FMS. To respond to busi-

ness changes, He et al. (2014) studied machine flexibility

and system layout flexibility. Since flexibility incorporation

or expansion is capital intensive, the right type and level of

flexibility are to be known before implementation.

Sequencing flexibility is the ability to make jobs by

following different operations sequences. A new perfor-

mance-based approach was proposed by the authors to
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quantify sequencing flexibility. With mean flow time as a

performance measure, Chan (2004) explored the effects of

operation flexibility (sequencing flexibility) and different

scheduling rules on the performance of an FMS. A simu-

lation-based conceptual study to get better insight into the

concept of sequencing flexibility was conducted by Wad-

hwa et al. (2005). The proposed mechanism reduced the

manufacturing lead time considerably. The simultaneous

effects of routing flexibility and sequencing flexibility was

also studied by Joseph and Sridharan (2011b), on the per-

formance of an FMS. Likewise, with MST as a perfor-

mance measure, the effect of routing flexibility and pallet

flexibility together was explored by Ali (2012). These two

flexibility types simultaneously influenced the system

performance significantly. Ihsan and Omer (2003) devel-

oped a simulation model to study reactive scheduling

problems in a dynamic and stochastic manufacturing

environment.

Developing mathematical models for manufacturing

systems is a very complex problem. Hence, simulation

studies have gained much appreciation among the

researchers to evaluate the manufacturing systems at

planning, designing and control levels (Wadhwa et al.

2009; Ali and Saifi 2011, etc.). The discrete-event simu-

lation technique is widely accepted by the researchers to

study FMS performance (Ali 2012; El-Khalil 2013). For

the development of the computational model, mathematical

modeling techniques are commonly used. The limitations

related to mathematical modeling are the assumptions

made, as they may not be practically feasible. Moreover,

with the increase in problem size, the computational time

also increases. The simulation models are the best, for

different system performance metrics analysis of FMS and

their behavior in particular conditions. Simulation mod-

elling saves time, cost and resources efficiently (Yadav and

Jayswal 2018).

The performance of FMS has been evaluated from the

operational viewpoint (Aized et al. 2008; Baykasoglu and

Ozbakır 2008; Agarwal et al. 2018; Katic and Agar-

wal 2018; Solke and Singh 2018) and control viewpoint

(Chan et al. 2008; Ali and Wadhwa 2010). Wadhwa et al.

(2008) considered planning and control strategies to eval-

uate the performance FMS. The authors studied the system

performance in terms of MST, lead time and work-in-

process. Further Ali and Wadhwa (2010) considered min-

imum number parts in the buffer queue (MINQ) and

minimum waiting time of all the parts in the buffer queue

(MWTQ) as the dispatching rules to evaluate the perfor-

mance FMS. Singholi et al. (2013) also studied the com-

bined effect of the machine and routing flexibilities by

considering MINQ and MWTQ as control rules. The

sequencing rules used to select the part from a queue in an

FMS further complicate the decision making process.

It is evident that the existing scheduling approaches are

incapable of meeting the current market challenges due to

lack of reactivity and robustness. Many solutions have been

proposed by the researchers like FMS and reconfigurable

manufacturing system (RMS) etc. Of the proposed solu-

tions, the philosophy of FMS has widely been accepted by

the practitioners and research community. The inherent

trait of flexibility empowers the FMS to handle the ongoing

market disturbances. However, due to increased pressure to

perform in shorter time windows and ever-increasing cus-

tomization demands, the FMS scheduling has also suffered

from performance deterioration. Moreover, by virtue of

flexibility in FMS, many potential options are being eval-

uated before any decision is made. This severely limits the

real-time decision making and its implementation leading

to poor system responsiveness and robustness. However,

with the distributed scheduling approach, the issue of

degraded system performance can be tackled effectively.

As distributed scheduling systems are based on multi-agent

systems, the decision-making and implementation process

is very quick. This makes the distributed scheduling system

more flexible, reactive and robust; as compared to existing

scheduling systems, to meet the present market require-

ments. Thus, a distributed scheduling framework for FMS

is expected to overcome the existing limitations of the

present FMS scheduling systems. Practically, at the shop

floor, design and control decisions are of great importance;

from the optimal system performance viewpoint. More-

over, from the literature, it is seen that there are few studies

on the effect of design factors and control factors on the

performance of FMS by considering distributed scheduling

of parts. Hence, there is a need to study the combined effect

of the above-mentioned decision factors on the perfor-

mance of a FMS distributed scheduling of parts. Thus, the

main contribution of this research work is to assist deci-

sion-makers with a methodology for determining the effect

of design and control factors on the performance of the

FMS.

Problem Description and Assumptions

The FMS consists of six CNC machines; indexed as CM1,

CM2, CM3, CM4, CM5, and CM6. The FMS layout is

considered in the present study as it is the most frequent

configuration studied by the researchers (Chan et al. 2008;

Ali and Wadhwa 2010). All six CNC machines have ded-

icated input buffer. The capacity of the buffer is fixed. Six

different part types; indexed as P1, P2, P3, P4, P5, and P6

are considered. The number of operations required for

complete processing on a part type ranges from four to six.

The processing times are taken as deterministic and are
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shown in Table 1. The typical configuration of FMS is

shown in Fig. 1.

The following sub-sections describe the design and

control factors studied in the present study.

Design Factor 1: Control Architectures

Conventional Hierarchical Control Architecture

The conventional hierarchical control architecture, Fig. 2a,

involves a centralized decision-making process. The deci-

sion making entities lower in the hierarchy just implement

the instructions obtained from the top centralized decision

making entity. Moreover, many times this central decision-

making entity gets overloaded due to frequent information

exchange needed for the decision-making process. As a

result, for any decision to be made delay is always present.

This delay prevents the decision to be implemented in real

time, and hence system performance deteriorates.

Heterarchical Control Architecture

In heterarchical control architecture, Fig. 2b, the decision

making process is decentralized to decisional entities lower

in control architecture. Here decisions are taken by several

lower decisional entities instead of one centralized

decisional entity. Hence, the decision-making process is

quick and can be applied in real time. The heterarchical

control architecture enables a high local performance

against disturbances.

Semi-Heterarchical Control Architectures

In semi-heterarchical control architectures, Fig. 2c deci-

sional entity has a global view of the system in addition to

the local view of the local decisional entities. Semi-heter-

archical control architectures has the merits of hierarchical

and the heterarchical control architectures respectively.

The semi-heterarchical control architecture tends to pro-

vide better the response against the disturbances, main-

taining the overall system performance as well the system

reactivity, flexibility, modularity and robustness at the

same time.

In this paper, for distributed control architectures

machines are modeled as agents that can take their own

decisions; cooperate and collaborate with other fellow

machines in the existing layout to achieve their pre-defined

goals. In case of any disturbance like machine failure, these

machine agents in view of the current system state and

available information take their decisions.

One conventional control architecture, namely hierar-

chical (Hi); and three distributed control architectures,

Table 1 Processing times of all parts

Part type O1 O2 O3 O4 O5 O6

P1 M1(40) M3(24) M4(12) M6(18) # #

P2 M4(08) M2(39) M3(11) M5(11) M1(17) #

P3 M5(39) M1(68) M3(16) M2(49) M4(94) M6(70)

P4 M2(25) M5(38) M6(92) M3(92) # #

P5 M6(15) M4(05) M2(20) M5(94) M1(67) #

P6 M3(03) M5(63) M4(26) M1(64) M6(49) M2(52)

Machine1

Input 
Buffer

Machine2

Input 
Buffer

Machine3

Input 
Buffer

Machine4

Input 
Buffer

Machine5

Input 
Buffer

Machine6

Input 
Buffer

Load/Unload

Fig. 1 Layout of the flexible

manufacturing system (FMS)
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namely heterarchical (He), semi-heterarchical I (SHe I) and

semi-heterarchical II (SHe II) are considered in this study.

These are shown in Fig. 2. The SHe I control architecture

differs from SHe II based on the supervisory mechanism

employed. In SHe I, the supervisory mechanism maintains

system performance by re-routing the parts as and when

required while in SHe II the supervisory mechanism

manipulates the production rates of the parts being pro-

duced to balance the system performance.

Design Factor 2: Sequencing Flexibility

For the present FMS layout, sequencing flexibility has been

evaluated in terms of sequencing flexibility measure. The

sequencing flexibility takes into account the total number

of operations required on a part and the precedence existing

between these operations (Rachamadugu et al. 1993).

When there is no option available for an operation then

sequencing flexibility is zero. As the number of options for

an operation increases, sequencing flexibility also increa-

ses. And sequencing flexibility is maximum; when no

operation on a part has any precedence or any operation

can be performed on a part in any sequence. The four levels

of sequencing flexibility have been studied from SF = 0 to

SF = 1. The part types with four to six operations are

studied in this study. Rachamadugu et al. (1993), defines

the measure of sequencing flexibility as:

SFMi ¼ 1� 2Ti

mi mi � 1ð Þ ð1Þ

where mi is the total number of required operations for part

type i, Ti is the number of transitive arcs in the operations

graph for part type i. The total number of precedence

relationships between all operation pairs of a part type,

both implicit and explicit, is given by the number of

transitive arcs (Ti). Consider a part type with operations

graph as shown in Fig. 3.

The Fig. 3 shows that there are four explicit precedence

arcs (1, 2), (2, 4), (3, 4) and (3, 5); and one precedence

implicit arc (1, 2, 4). So, the total number of transitive

precedence relations (Ti) is equal to 5. Using Eq. 1, the

calculated SFM value for the part type with operations

graph shown in Fig. 3 is 0.5. From Eq. 1, it can be inferred

that when SFM = 0; there exists no sequencing flexibility

and when SFM = 1; there exists full sequencing flexibility.

In this study, the operations graph for each part type is

generated, and corresponding sequencing flexibility levels

value are calculated using Eq. 1. To illustrate, the opera-

tions graphs for a part type with five total required number

of operations have been presented at different sequencing

flexibility in Fig. 4a–d. The part types and the corre-

sponding sequencing flexibility levels for which the study

has been conducted are tabulated in Table 2.

Design Factor 3: Buffer Capacity

The buffer capacity is modelled in terms of the capacity of

each input dedicated buffer of a machine. In this study, four

buffer capacity levels are studied based on the input buffer

(b) (c)

Decisional Entity or Agent

Operating system/sub-system

Hierarchical relationship

Heterarchical relationship

(a) 

Fig. 2 a Hierarchical control

architecture; b heterarchical

control architecture; c semi-

heterarchical control

architecture

1 2

3

4

5

Fig. 3 Operations graph
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size. The buffer capacity level varies from 6 to 24 in steps

of 6.

Control Factor 1: Sequencing Rules

In the manufacturing control problem, sequencing rules are

of great importance for effective manufacturing control.

Sequencing rule forms the basis for the selection of a part

from a queue, to get processed at a machine. Sequencing

decisions are made just before the processing of a part. The

sequencing rules studied in this work are discussed below.

a. Among all the parts in the buffer, the one that enters

first is processed first (FCFS).

b. Among all the parts in the buffer, the one that enters

last is processed first (LCFS).

c. Among all the parts in the buffer, the one that is having

the shortest processing time is processed first (SPT).

d. Among all the parts in the buffer, the one that is having

the highest processing time is processed first (HPT).

Control Factor 2: Dispatching Rules

Dispatching rules are control decisions made to route a part

to a machine from the buffer of the available potential

machines; depending upon the routing flexibility level.

These control decisions are made just after the completion

of the processing of part at a machine. The dispatching rule

studied in this work is discussed below.

a. Minimum number of parts in the queue (MINQ): A

part is routed to a queue at a machine with the

minimum number of parts in its input buffer, among all

the available queues of the machines; depending upon

the routing flexibility level.

Moreover, some assumptions are considered as follows:

• The processing times are known in advance and

deterministic.

• Machines can fail before, during or after an operation.

• Machine failure and machine repair have been assumed

as exponentially distributed.

• Pre-emption is allowed, i.e., an operation on a part may

get completed on one or more machines.

• One operation at a time is allowed to be executed on

one machine.

• All the transfer time of parts within the system is

assumed to be unity.

• Due dates are not considered.

• Order cancellations are not considered.

• Rework is not allowed.

• The availability of parts in the system is limited.

Performance Measures

The following performance measures are considered to

evaluate the performance of FMS.

1. Makespan Time (MST).

(a) Operation graph with SFM=0

(b) Operation graph with SFM=0.2

(c) Operation graph with SFM=0.5

(d) Operation graph with SFM=1.0

1 2 3 4 5

1 2

3

4 5

1 2

3

4

5

1
2

3
4

5

Fig. 4 a Operation graph with SFM = 0. b Operation graph with

SFM = 0.2. c Operation graph with SFM = 0.5. d Operation graph

with SFM = 1.0

Table 2 Sequencing flexibility levels of part types

Part types Number of operations SFM values of part types from operations graph

SF = 0 SF = 1 SF = 3 SF = 4

P1, P4 4 0.0 0.16 0.50 1.0

P2, P5 5 0.0 0.20 0.50 1.0

P3, P6 6 0.0 0.27 0.47 1.0
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The time of completion for a batch of products is known

as makespan time (MST). It is an important measure of

system performance to implement FMS. Lower the MST

value better is the system performance.

For MST:

Let

Set j = (1, 2,…, J) represents the number of parts in a

system.

k = (1, 2,…, K) represents The operation of each job.

If PTjk is the processing time and CTjk is the completion

time, then the MST is the time of completion of processing

J number of parts in a batch. It is defined as:

Cmax ¼ max CTjk

� �
ð2Þ

where Cmax = maximum time of completion of all the

k operations on j number of parts (MST).

2. Average Machine Utilization (AMU)

The AMU is the average machines or resources uti-

lization. It is the ratio of the time for which machines or

resources are available for processing and not idle to total

available time. A high value of resource utilization is

always desired for better system performance. It can be

computed as:

AMU ¼
Xn

i¼1

SiUi=
Xn

i¼1

Si ð3Þ

where

AMU = Average machine utilization

Si = Number of resources at station i

Ui = Utilization of station i

3. Average waiting time in Queue (AWQ)

The AWQ is the average time spent by parts in the

queue waiting to get processed at different machines. For a

manufacturing system to perform well, a lower AWQ is

desired. It can be expressed as

AWQ ¼
Xn

i¼1

SiTi=
Xn

i¼1

Si ð4Þ

where

AWQ = Average waiting time in queue

Si = Number of resources at station i

Ti = Waiting time in queue of station i

Operational Logic for Simulation Model

Discrete event simulation based models have been devel-

oped in MATLAB general purpose programming envi-

ronment in this paper. These models are used to evaluate

the effect of various design factors and control factors on

the performance of the FMS. The FMS models developed

consists of various entities like parts, machines and their

associated attributes. Various events are appropriately

generated to capture the dynamics of the problem envi-

ronment. The simulation model is developed in a modular

way, as shown in Fig. 5. A multilevel verification has been

done to validate the simulation model. In the present

problem, the machine has been modeled as an agent in the

distributed control architectures only, i.e., heterarchical and

semi-heterarchical control. The simulation model consists

of modules with each module having its specific task to

perform. At the start, as the simulation model runs, the

initialization module sets the simulation clock to zero. It

also initializes the variables and statistics counter. After

initialization, the control architecture module is called into

the main program. This module defines the inter-relation-

ships between different decision-making entities. And

hence, it lays down the type of control architecture being

exercised by the simulation model. There are three control

architectures evaluated in this study, i.e., hierarchical,

heterarchical and semi-heterarchical. Once a particular

type of control architecture is defined, event function

schedules various deterministic as well as non-determin-

istic events to take place. Various events like part pro-

cessing, machine failure, part sequencing, part re-routing,

etc., take place during the execution of the simulation

model. Since all the operations are centered on parts being

processed in the manufacturing system, part specific factors

and rules are defined in the problem. These sequencing and

dispatching rules and factors like sequencing flexibility

function, etc., are called into the main program with the

help of function files. After the occurrence of each event in

the main program of the simulation model, the system state

is advanced to the current state. The simulation clock and

various statistical counters and variables are also updated

accordingly. Each time as the simulation model runs, and

command flow executes from top to bottom; the simulation

termination condition is checked to stop or terminate the

simulation code. If the simulation model termination con-

dition is met, the program stops. Computation of various

performance measures and statistics is done, and a report is

generated. However, if the simulation termination condi-

tion is not met, the simulation model goes on running. The

cycle of various events goes on repeating until the termi-

nation condition is met.

Once the simulation model is executed, material flow as

well as information flow takes place, as shown in Fig. 6.

Initially, one part of each part type is created and sent the

loading area for the model to run. At the loading station,

parts wait for a signal to enter the manufacturing system.

As the signal is received at the loading station a part is

released into the manufacturing system. Once a part enters

the manufacturing system, it is sent to a decision area to
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identify its part type. After a decision regarding the part

identity is made, based on the part type attributes are

assigned to the part. The part is routed to the respective

machine depending upon its machining requirements, after

attributes assignment. A decision is then made for the

distributed control or type of control architecture for the

decision-making process. If distributed control is present,

the decision making is delegated and taken by the heter-

archical decision making entities or machine agents. In the

case of semi-heterarchical control, there is a regular flow of

information from heterarchically modelled machine agents

to the hierarchically modelled supervisor, as shown in

Fig. 6.

This information flow helps the supervisor in semi-

heterarchical control to tune the system parameters for

manufacturing system performance improvement. How-

ever, if the distributed control is not present, the decision-

making process is not delegated, and the decision is taken

by a hierarchical decision making entity. The part is then

sent to a decision-making point where machine input buffer

status is checked for available capacity. If the buffer

capacity is less than its full capacity, the part is accom-

modated into the buffer and waits for its turn to get pro-

cessed. However, if the machine input buffer is full, the

system blocks. The part waits in the input buffer of each

machine till the machine is available. Parts are processed

on each machine depending upon its operational require-

ments; based on sequencing rule. However, during opera-

tion, a machine can fail leading to manufacturing system

blockage. At this point, if decision-making is based on

distributed control architecture, real-time corrective action

is taken. However, if the distributed control is not present,

the system waits for instructions to take action. After

successful completion of an operation on a part at a

machine, a part among the parts waiting in queue/buffer is

engaged at the machine; based on sequencing rule. The

processed part is then checked for its operation sequence. If

all the operations on the part are completed, the part exits

the manufacturing system and is moved to the store. The

part while exiting the manufacturing system signals the

loading area to launch a raw part of the same type into the

manufacturing system. However, if the operation sequence

is not completed, the part is routed to the respective

potential machine based on the dispatching rule for further

processing. In this way, consistent work in the process is

maintained in the manufacturing system. This events’ cycle

is repeated again and again till all the required number of

parts are processed and completed.

START
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module
Call simulation clock 

d l

STOP

ARCHITECTURE 
MODULE
Control architecture 
type: Hierarchical, 
Heterarchical, Semi-
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Advance simulation 
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Update system state, 
Update statistical 
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YE

Fig. 5 Structure of the

simulation model
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Design for Experiments and Methodology

In the present study, four factors with four levels of each

are studied. If simulation experiments are being conducted

with four factors and each having its four levels, the

number of experiments to be conducted comes out to be 44,

i.e., 256 experiments. However, with Taguchi’s experi-

mental design the number of experiments is reduced to 16

only. Taguchi’s design experiments give optimal factor

levels with a reduced number of experiments to be

performed.

Taguchi’s Design for Experiments

Taguchi’s design of experiments is a technique based on

matrix experiments (Phadke 1989). In this technique, a set

of experiments is performed by varying the levels of

assumed factors. The effect of various factors is efficiently

determined by matrix experiments based on special

matrices known as orthogonal arrays. The rows in the

orthogonal array indicates the number of experiments to be

performed. The orthogonal arrays give the best combina-

tion between different factors and their levels that influence

the system performance. Table 3 presents the Taguchi’s

standard L16 (4
4) orthogonal array which is the basis of the

present study’s experimental design. The combinations of

different factor levels in matrix experiments and the pre-

sent study are presented in Tables 4 and 5 respectively.

The S/N ratio can be expressed as the ratio of the mean

to the standard deviation or signal to noise. Thus to mini-

mize the sensitivity to noise, S/N ratio for MST can be

expressed as:

N
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Fig. 6 Flow chart of the

existing FMS layout for

material and information flow
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a ¼ �10 log MSTð Þ2 ð5Þ

Taguchi defined three categories of S/N ratios i.e., the

smaller-the-best, the larger-the-best, and the nominal-the-

best. For MST and AUQ, smaller-the-best and for AMU,

larger-the-best is considered for the analysis.

In Taguchi’s matrix experiment design, highest value

for the S/N ratio indicates the optimal setting. This is true

only for the single performance characteristic optimization.

However, for the optimization of multiple performance

characteristics, Taguchi’s approach is inadequate. In mul-

tiple performance characteristics optimization, the S/N ra-

tio evaluation of all the performance characteristics is

needed. To solve this problem grey relational analysis

(GRA) has been adopted. This technique converts a multi-

characteristics performance optimization problem into a

single characteristic performance problem.

Grey Relational Analysis (GRA)

Deng (1989) proposed the grey system theory is used to

solve the complex interrelationship between various cho-

sen performances measures. The major advantage of grey

relational analysis is that it is based on the original data and

calculations are simple. This single performance charac-

teristic is known as grey relational grade, used to evaluate

multiple performance characteristics. The grey relational

analysis consists of three basic steps:

1. Data pre-processing

2. Calculate grey relational coefficients

3. Calculate grey relational grade

In GRA data pre-processing is the first step. It involves

the conversion of the original sequence into a comparable

sequence. This is done by normalizing the data in the range

between 0 and 1. This conversion is also known as the grey

relational generation. The next step is the calculation of the

Table 3 Taguchi’s standard L16 (4
4) orthogonal array

Factors

Factors levels

1 1 1 1

1 2 2 2

1 3 3 3

1 4 4 4

2 1 2 3

2 2 1 4

2 3 4 1

2 4 3 2

3 1 3 4

3 2 4 3

3 3 1 2

3 4 2 1

4 1 4 2

4 2 3 1

4 3 2 4

4 4 1 3

Table 4 System factor and their levels

Factor Factor level Level id

Control architectures (CA) Hi 1

He 2

SHe I 3

SHe II 4

Sequencing flexibility (SF) 0 1

1 2

2 3

3 4

Buffer capacity (BC) 6 1

12 2

18 3

24 4

Sequencing rule (SR) FCFS 1

LCFS 2

SPT 3

LPT 4

Table 5 Taguchi based matrix experiment details

Experiment no CA SF BC SR

1 Hi 0 6 FCFS

2 Hi 1 12 LCFS

3 Hi 2 18 SPT

4 Hi 3 24 LPT

5 He 0 12 SPT

6 He 1 6 LPT

7 He 2 24 FCFS

8 He 3 18 LCFS

9 SHe I 0 18 LPT

10 SHe I 1 24 SPT

11 SHe I 2 6 LCFS

12 SHe I 3 12 FCFS

13 SHe II 0 24 LCFS

14 SHe II 1 18 FCFS

15 SHe II 2 12 LPT

16 SHe II 3 6 SPT
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grey relational coefficient from the normalized experi-

mental data. In the next step, the grey relational grade is

calculated by averaging the grey relational coefficients.

The grey relational grade converts the complex multiple

process responses into an optimized single grey relational

grade. The optimum level of the process parameters is the

level with the highest grey relational grade.

Simulation Experiment Results

In this study the effect of design factors namely control

architectures (CA), sequencing flexibility (SF), buffer

capacity (BC) and control factor namely part-sequencing

rule (SR) is studied on the performance of FMS. It has been

observed that 30 simulation replications are sufficient to

filter out the stochastic effects in the results. Hence, each

simulation run consists of 30 replications for each of the 16

simulation experiments. The simulation results are statis-

tically analyzed. A multi-factor ANOVA is conducted to

study the effect of the design and control factors on the

performance of FMS. A 5% level of significance is con-

sidered for all the statistical treatment of the problem. The

simulation results and their analysis are presented in the

following sub-sections.

Matrix Experiment Results

The simulation experiment is carried out based on Tagu-

chi’s L16 orthogonal array as tabulated in Table 3. A

product-mix of 6 different parts with 100 parts of each type

is considered. The framework of simulation experiments

according to the L16 orthogonal array as shown in Table 5.

The results obtained after performing simulation experi-

ments for the system performance measures for machine

failure and without machine failure modes are shown in

Tables 6, 7 and 8.

The next step in Taguchi’s experimental framework

involves data analysis by employing the analysis of means

(ANOM) and the analysis of variance (ANOVA). To

determine a system factor combination that gives us opti-

mal system performance, ANOM is used whereas the rel-

ative significance of the system factors towards the system

performance is determined by ANOVA.

Analysis of Means (ANOM) for Optimal System

Factors Combination

The main objective to follow matrix design framework

experiments is the identification of an optimal combination

of system factors which gives the best system performance

with the reduced number of simulation experiments. The

effect of a system factor level that causes deviation from

the overall mean is known as the main effect. The main

effect of each factor is determined by ANOM. The main

factor effects, calculated by using the Eq. 6 (Phadke 1989),

are tabulated in Tables 9, 10 and 11 respectively.

mij ¼
Xl

t¼1

aijk

" #

=l ð6Þ

Table 6 Simulation experiment results for makespan time (MST)

Experiment

no

Observed MST without m/c

failure (min)

Observed MST without m/c

failure, a (dB)

Observed MST with m/c

failure (min)

Observed MST with m/c

failure, a (dB)

1 39,912 - 92.0221 53,668.66 - 94.5944

2 45,753 - 93.2084 49,814.04 - 93.947

3 44,969 - 93.0583 61,440.62 - 95.7691

4 40,746 - 92.2017 54,842.68 - 94.7824

5 31,010 - 89.83 35,300.53 - 90.9556

6 30,342 - 89.6409 36,043.95 - 91.1366

7 29,742 - 89.4674 34,341.19 - 90.7163

8 32,957 - 90.359 37,547.59 - 91.4916

9 29,665 - 89.4449 32,076.51 - 90.1237

10 29,893 - 89.5114 34,279.76 - 90.7008

11 29,088 - 89.2743 32,574.03 - 90.2574

12 35,943 - 91.1123 40,727.21 - 92.1977

13 22,204 - 86.9286 27,470.92 - 88.7775

14 21,837 - 86.7839 26,291.77 - 88.3964

15 24,206 - 87.6785 27,182.53 - 88.6858

16 23,224 - 87.3187 27,481.44 - 88.7808
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where,

mij= main factor effect for the jth level of factor i

i = the factor (i.e., machine flexibility, sequencing

flexibility, control rules, no. of parts)

j = the factor level (i.e., 1, 2, 3, or 4)

aijk= the S/N ratio of factor i with level j

l = occurrence of factor i with level j (i.e., 4)

S/N ratios are used to represent the optimum level of

each factor by the maximum number of points in the main

effect plots as shown in Figs. 7, 8, 9, 10, 11 and 12. It can

be inferred from the main effects plot for each factor level,

Fig. 7, the best factor level combination for the MST is

CA4, SF1, BC4 and SR4 for without machine failure case.

This best factor level combination for MST can easily be

Table 7 Simulation experiment results for average machine utilization (AMU)

Experiment

no

Observed AMU without m/c

failure (%)

Observed AMU without m/c

failure, a (dB)

Observed AMU with m/c

failure (%)

Observed AMU with m/c

failure, a (dB)

1 50.99 34.1497 42.60 32.5882

2 44.48 32.9633 45.88 33.2325

3 45.25 33.1124 36.84 31.3264

4 49.94 33.9690 41.90 32.4443

5 65.62 36.3407 64.05 36.1304

6 67.07 36.5306 62.38 35.9009

7 68.42 36.7037 65.59 36.3368

8 61.75 35.8127 59.61 35.5064

9 68.60 36.7265 71.79 37.1213

10 68.08 36.6604 66.43 36.4473

11 69.96 36.8970 70.23 36.9305

12 56.62 35.0594 56.10 34.9793

13 91.91 39.2673 84.56 38.5433

14 93.46 39.4125 88.98 38.9858

15 84.09 38.4949 85.67 38.6566

16 87.86 38.8758 84.39 38.5258

Table 8 Simulation experiment results for average waiting time in queue (AWQ)

Experiment

no

Observed AWQ without failure

(min)

Observed AWQ without failure,

a (dB)

Observed AWQ with failure

(min)

Observed AWQ with failure, a
(dB)

1 35.89 - 31.0995 36.59 - 31.2672

2 33.66 - 30.5423 34.13 - 30.6627

3 30.51 - 29.6888 33.41 - 30.4775

4 33.15 - 30.4097 31.64 - 30.0047

5 33.21 - 30.4254 35.48 - 30.9997

6 31.66 - 30.0102 32.20 - 30.1571

7 38.25 - 31.6526 37.73 - 31.5337

8 31.59 - 29.9910 24.30 - 27.7121

9 32.99 - 30.3676 32.21 - 30.1598

10 39.93 - 32.0260 34.53 - 30.7639

11 27.71 - 28.8527 33.55 - 30.5139

12 22.56 - 27.0668 35.27 - 30.9481

13 40.82 - 32.2175 40.82 - 32.2175

14 37.22 - 31.4155 39.85 - 32.0086

15 39.75 - 31.9867 40.63 - 32.1769

16 41.80 - 32.4235 41.92 - 32.4484
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interpreted as control architecture = 4 (Semi-heterarchical

II), sequencing flexibility level = 1 (sequencing flexibil-

ity = 0), buffer capacity = 6 and part sequencing rule is

LPT. Similarly, for the machine failure case as shown in

Fig. 8, the best factor combination for the MST is CA4,

SF2, BC1, and SR2. The best factor combinations for the

AMU and AWQ can be easily interpreted from Figs. 9, 10,

11 and 12, for without machine failure and machine failure

Table 9 Main effects of matrix experiments for makespan (MST)

Factor level main effect Formula Main effect value for MST without m/

c failure

Main effect value for MST with m/

c failure

mHi (a1 ? a2 ? a3 ? a4)/4 - 92.62 - 94.77

mHe (a5 ? a6 ? a7 ? a8)/4 - 89.82 - 91.08

mSHeI (a9 ? a10 ? a11 ? a12)/
4

- 89.84 - 90.82

mSHeII (a13 ? a4 ? a15 ? a16)/
4

- 87.18 - 88.66

m0 (a1 ? a5 ? a9 ? a13)/4 - 89.56 - 91.11

m1 (a2 ? a6 ? a10 ? a14)/4 - 89.79 - 91.05

m2 (a3 ? a7 ? a11 ? a15)/4 - 89.87 - 91.36

m3 (a4 ? a8 ? a12 ? a16)/4 - 90.25 - 91.81

m6 (a1 ? a6 ? a11 ? a16)/4 - 89.56 - 91.19

m12 (a2 ? a5 ? a12 ? a15)/4 - 90.46 - 91.45

m18 (a3 ? a8 ? a9 ? a14)/4 - 89.91 - 91.45

m24 (a4 ? a7 ? a10 ? a13)/4 - 89.53 - 91.24

mFCFS (a1 ? a7 ? a12 ? a14)/4 - 89.85 - 91.48

mLCFS (a2 ? a8 ? a11 ? a13)/4 - 89.94 - 91.12

mSPT (a3 ? a5 ? a10 ? a16)/4 - 89.93 - 91.55

mLPT (a4 ? a6 ? a9 ? a15)/4 - 89.74 - 91.18

Table 10 Main effects of matrix experiments for average machine utilization (AMU)

Factor level main

effect

Formula Main effect value for AMU without m/c

failure

Main effect value for AMU with m/c

failure

mHi (a1 ? a2 ? a3 ? a4)/4 33.55 32.40

mHe (a5 ? a6 ? a7 ? a8)/4 36.35 35.97

mSHeI (a9 ? a10 ? a11 ? a12)/
4

36.34 36.37

mSHeII (a13 ? a4 ? a15 ? a16)/
4

39.01 38.68

m0 (a1 ? a5 ? a9 ? a13)/4 36.62 36.10

m1 (a2 ? a6 ? a10 ? a14)/4 36.39 36.14

m2 (a3 ? a7 ? a11 ? a15)/4 36.30 35.81

m3 (a4 ? a8 ? a12 ? a16)/4 35.93 35.36

m6 (a1 ? a6 ? a11 ? a16)/4 36.61 35.99

m12 (a2 ? a5 ? a12 ? a15)/4 35.71 35.75

m18 (a3 ? a8 ? a9 ? a14)/4 36.27 35.73

m24 (a4 ? a7 ? a10 ? a13)/4 36.65 35.94

mFCFS (a1 ? a7 ? a12 ? a14)/4 36.33 35.72

mLCFS (a2 ? a8 ? a11 ? a13)/4 36.24 36.05

mSPT (a3 ? a5 ? a10 ? a16)/4 36.25 35.61

mLPT (a4 ? a6 ? a9 ? a15)/4 36.43 36.03
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Table 11 Main effects of matrix experiments for average waiting time in queue (AWQ)

Factor level main effect Formula Main effect value for AWQ without failure Main effect value for AWQ with failure

mHi (a1 ? a2 ? a3 ? a4)/4 - 30.44 - 30.60

mHe (a5 ? a6 ? a7 ? a8)/4 - 30.52 - 30.10

mSHeI (a9 ? a10 ? a11 ? a12)/4 - 29.58 - 30.60

mSHeII (a13 ? a4 ? a15 ? a16)/4 - 32.01 - 32.21

m0 (a1 ? a5 ? a9 ? a13)/4 - 31.03 - 31.16

m1 (a2 ? a6 ? a10 ? a14)/4 - 31.00 - 30.90

m2 (a3 ? a7 ? a11 ? a15)/4 - 30.55 - 31.18

m3 (a4 ? a8 ? a12 ? a16)/4 - 29.97 - 30.28

m6 (a1 ? a6 ? a11 ? a16)/4 - 30.60 - 31.10

m12 (a2 ? a5 ? a12 ? a15)/4 - 30.01 - 31.20

m18 (a3 ? a8 ? a9 ? a14)/4 - 30.37 - 30.09

m24 (a4 ? a7 ? a10 ? a13)/4 - 31.58 - 31.13

mFCFS (a1 ? a7 ? a12 ? a14)/4 - 30.31 - 31.44

mLCFS (a2 ? a8 ? a11 ? a13)/4 - 30.40 - 30.28

mSPT (a3 ? a5 ? a10 ? a16)/4 - 31.14 - 31.17

mLPT (a4 ? a6 ? a9 ? a15)/4 - 30.69 - 30.62
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cases respectively. The best factor combinations for dif-

ferent performance measures are presented in Table 12.

It is evident from the above figures and tables that

control architecture (SHe II) is found to influence the

performance measures the most. The effects of other fac-

tors are seen to be relatively less prominent. The factors

contributing to the system performance are identified by

the statistical treatment of the results through ANOVA.

Analysis of Variance (ANOVA) for Matrix

Experiments Results

The calculations for ANOVA analysis are done using

MINITAB at a 95% confidence interval and are presented

in Tables 13 and 14, for without machine failure and

machine failure cases respectively. The simulation results

from the matrix experiments are used to carry out the

ANOVA analysis. The F-value indicates how significantly

a factor affects system performance (Phadke 1989).

From Table 13, for without machine failure case, the

F value for the control architecture is the highest (54.76).

Hence, the change in the control architecture level signif-

icantly affects system performance. The other factors

appear to affect the system performance relatively less

significant than control architecture. The relative signifi-

cance of factors for makespan after ANOVA analysis is in

complete agreement with that obtained by ANOMA as

shown in Fig. 7. In Fig. 7, the curve under the control

architecture (CA) varies the most, implying that control

architecture affects the system significantly as compared to

other factors. Similarly, for other system factors, relative

factor significance can be evaluated. For the case of AMU,

control architecture again has the highest F value (76.97)

inferring that CA is the significant factor for AMU also. As

far as AWQ is concerned, the F value of CA is highest

(2.00); which implies that CA is the most significant factor.

To summarize the ANOVA results, it can be concluded that

control architecture (CA) is the most significant factor for

contribution towards system performance. On the same

lines for machine failure case; Table 14, it can be stated

that control architecture (CA) is also the most significant

factor contributing to system performance.

Multiple Response Optimization Using Grey

Relational Analysis (GRA)

For converting multiple performance measures namely

simultaneous optimization of MST, AMU, and AWQ into

one performance measure, grey relational analysis (GRA)

has been utilized. To perform the GRA on the data

obtained from Taguchi’s orthogonal arrays, the following

steps have been suggested for multi-characteristics opti-

mization (Kuo et al. 2008). The S/N values for MST, AMU,

and AWQ for all 16 sequences or matrix experiments are

tabulated in Table 15. In the present study, S/N ratios

obtained from Taguchi’s matrix experiments are normal-

ized using a linear data pre-processing method for MST

and AWQ which is stated:
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Fig. 12 Main effects plot for SN ratios with failure (AWQ)

Table 12 Summary for best factor level combination

Factors Makespan time (MST) Average machine utilization (AMU) Average waiting time in queue (AWQ)

With failure Without failure With failure Without failure With failure Without failure

Control architecture (CA) SHe II SHe II SHe II SHe II SHe I He

Sequencing flexibility (SF) 1 2 1 3 4 4

Buffer capacity (BC) 24 6 24 24 12 18

Part-sequencing rule (SR) LPT LCFS LPT FCFS FCFS LCFS

282 Global Journal of Flexible Systems Management (September 2019) 20(3):267–290

123



x�i ðkÞ ¼
max x�i kð Þ � xoi kð Þ

max xoi kð Þ �min xoi kð Þ ð7Þ

and, the AMU can be expressed as:

x�i kð Þ ¼ xoi kð Þ �min xoi kð Þ
max xoi kð Þ �min xoi kð Þ ð8Þ

where x�i (k) is the sequence after pre-processing; xoi (k) is

the original sequence of S/N ratios;

i = 1, 2, 3…., m and k = 1, 2,…., n with m = 18 and

n = 4;

max_ xoi (k) is the largest value of xoi (k);

min_ xoi (k) is the minimum value of xoi (k).

Using Eqs. 7 and 8 the S/N ratios have been normalized

and tabulated in Table 16. The larger normalized S/N ratio

corresponds to the better performance, and the best-nor-

malized S/N ratio is equal to unity.

The grey relational coefficient gives the relationship

between the best (reference) and the actual normalized S/N

ratio. To calculate the grey relational coefficient following

formula can be used:

co;iðkÞ ¼
Dmin þ f:Dmax

Doi kð Þ þ f:Dmax

ð9Þ

where Doi kð Þ is the deviation sequence of the reference

sequence x�o(k) and comparability sequence x�i (k), i.e.,

Doi kð Þ = |x�o(k) - x�i (k)| is the absolute value of the

difference between x�o(k) and x�i (k), f is the distinguishing

factor and is taken as 0.5 in this study.

Dmin ¼ minminDoi kð Þ
Dmax ¼ maxmaxDoi kð Þ

Using Table 16, deviation sequences for all the 16

sequences are calculated and presented in Table 17. From

the deviation sequences in Table 17 and Eq. 9, the grey

relational coefficients are calculated and presented in

Table 18. The grey relational grade obtained from grey

relational analysis shows the relational degree between the

reference sequence, x�o(k) = 1; and the 16 comparability

sequences, x�i (k); where i = 1,2,…,m and k = 1,2,…n with

m = 16 and n = 3 in this study. The grey relational grade is

a weighting-sum of the grey relational coefficients and can

be expressed as:

Wo;i ¼
Xn

k¼1

wkco;i kð Þ; i ¼ 1; 2; . . .;m ð10Þ

where wk is the weight of the kth machining characteristics,

and
Pn

k¼1 wk ¼ 1.

The grey relational grade shows the influence of which

comparability sequence can have over the reference

sequence. In this paper, both the comparability and the

reference sequence are treated as equal. Hence, wk is equal

for coefficients of all the performance characteristics.

Table 13 Analysis of variance (ANOVA) for matrix experiments results (without m/c failure)

Source df Seq SS Adj SS Adj MS F P

ANOVA for means of makespan time (MST)

CA 3 810839248 810839248 270279749 54.76 0.004

SF 3 12704115 12704115 4234705 0.86 0.549

BC 3 35062185 35062185 11687395 2.37 0.249

SR 3 3678122 3678122 1226041 0.25 0.859

Residual error 3 14807309 14807309 4935770

Total 15 877090978

ANOVA for means of average machine utilization (AMU)

CA 3 3501.83 3501.83 1167.28 76.97 0.002

SF 3 62 62 20.67 1.36 0.403

BC 3 116.18 116.18 38.73 2.55 0.231

SR 3 1.36 1.36 0.45 0.03 0.992

Residual error 3 45.49 45.49 15.16

Total 15 3726.87

ANOVA for means of average waiting time in queue (AWQ)

CA 3 179.7 179.7 59.901 2.00 0.292

SF 3 31.51 31.51 10.504 0.35 0.794

BC 3 77.71 77.71 25.904 0.87 0.546

SR 3 22.43 22.43 7.478 0.25 0.858

Residual error 3 89.8 89.8 29.933

Total 15 401.16
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From Table 18 it is seen that experiment No. 13 for

without machine failure, and experiment No. 16 for

machine failure has the highest grey relational grade, i.e.,

0.7413 and 0.7460, respectively. Thus, experiment No. 13

and experiment No. 16 give the best multiple-attributes

performance out of 16 experiments for without failure and

with failure cases, respectively. Normally, the larger grey

relational grade corresponds to a better performance.

Table 14 Analysis of variance (ANOVA) for matrix experiments results (with failure)

Source df Seq SS Adj SS Adj MS F P

ANOVA for means of makespan time (MST)

CA 3 1679420655 1679420655 559806885 25.55 0.012

SF 3 31812196 31812196 10604065 0.48 0.717

BC 3 8370240 8370240 2790080 0.13 0.938

SR 3 18403882 18403882 6134627 0.28 0.838

Residual error 3 65729304 65729304 21909768

Total 15 1803736278

ANOVA for means of average machine utilization (AMU)

CA 3 3911.4 3911.40 1303.80 32.59 0.009

SF 3 76.75 76.75 25.58 0.64 0.639

BC 3 9.21 9.21 3.07 0.08 0.968

SR 3 18.72 18.72 6.24 0.16 0.919

Residual error 3 120.02 120.02 40.01

Total 15 4136.1

ANOVA for means of average waiting time in queue (AWQ)

CA 3 169.53 169.53 56.51 13.53 0.030

SF 3 24.37 24.37 8.123 1.95 0.299

BC 3 42.73 42.73 14.242 3.41 0.170

SR 3 43.99 43.99 14.663 3.51 0.165

Residual error 3 12.53 12.53 4.176

Total 15 293.14

Table 15 Table for sequence of S/N ratio

Experiment no MST AMU AWQ MST AMU AWQ

Without failure With failure

1 - 92.0221 34.1497 - 31.0995 - 94.5944 32.5882 - 31.2672

2 - 93.2084 32.9633 - 30.5423 - 93.947 33.2325 - 30.6627

3 - 93.0583 33.1124 - 29.6888 - 95.7691 31.3264 - 30.4775

4 - 92.2017 33.9690 - 30.4097 - 94.7824 32.4443 - 30.0047

5 - 89.83 36.3407 - 30.4254 - 90.9556 36.1304 - 30.9997

6 - 89.6409 36.5306 - 30.0102 - 91.1366 35.9009 - 30.1571

7 - 89.4674 36.7037 - 31.6526 - 90.7163 36.3368 - 31.5337

8 - 90.359 35.8127 - 29.9910 - 91.4916 35.5064 - 27.7121

9 - 89.4449 36.7265 - 30.3676 - 90.1237 37.1213 - 30.1598

10 - 89.5114 36.6604 - 32.0260 - 90.7008 36.4473 - 30.7639

11 - 89.2743 36.8970 - 28.8527 - 90.2574 36.9305 - 30.5139

12 - 91.1123 35.0594 - 27.0668 - 92.1977 34.9793 - 30.9481

13 - 86.9286 39.2673 - 32.2175 - 88.7775 38.5433 - 32.2175

14 - 86.7839 39.4125 - 31.4155 - 88.3964 38.9858 - 32.0086

15 - 87.6785 38.4949 - 31.9867 - 88.6858 38.6566 - 32.1769

16 - 87.3187 38.8758 - 32.4235 - 88.7808 38.5258 - 32.4484

284 Global Journal of Flexible Systems Management (September 2019) 20(3):267–290

123



To evaluate the effect of system factors on multi-per-

formance attributes, ANOVA is performed on grey rela-

tional grade values for without failure and failure cases as

shown in Table 19. Taguchi’s approach is used to generate

response Table 20 that is been used for studying the effect

of each level of system factor on grey relational grade. It

can be seen from Table 20, that the best combination of the

system factor levels is CA4 (CA = SHe II), SFL2 (SF = 1),

BC4 (BC = 24), SR3 (SR = SPT) and CA4 (CA = SHe II),

SFL3 (SF = 2), BC1 (BC = 6), SR3 (SR = SPT) for

without machine failure and machine failure cases

respectively.

Finally, a confirmatory experiment is performed based

on the optimal system factors level, CA4 (CA = SHe II),

Table 16 Sequence after data pre-processing

MST AMU AWQ MST AMU AWQ

Without failure With failure

Reference sequence 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Comparability sequence

1 0.8153 0.1840 0.7528 0.8407 0.1647 0.7506

2 1.0000 0.0000 0.6488 0.7529 0.2489 0.6230

3 0.9766 0.0232 0.4895 1.0000 0.0000 0.5839

4 0.8433 0.1560 0.6241 0.8662 0.1459 0.4841

5 0.4741 0.5237 0.6270 0.3471 0.6272 0.6941

6 0.4447 0.5532 0.5495 0.3717 0.5972 0.5162

7 0.4177 0.5800 0.8561 0.3147 0.6541 0.8069

8 0.5565 0.4419 0.5459 0.4198 0.5457 0.0000

9 0.4142 0.5836 0.6162 0.2343 0.7566 0.5168

10 0.4245 0.5733 0.9258 0.3126 0.6686 0.6443

11 0.3876 0.6100 0.3334 0.2524 0.7316 0.5915

12 0.6737 0.3251 0.0000 0.5156 0.4769 0.6832

13 0.0225 0.9775 0.9615 0.0517 0.9422 0.9512

14 0.0000 1.0000 0.8118 0.0000 1.0000 0.9071

15 0.1392 0.8578 0.9185 0.0393 0.9570 0.9427

16 0.0832 0.9168 1.0000 0.0521 0.9399 1.0000

Table 17 Table for deviation sequences

Deviation sequence (i) D01(1) D01(2) D01(3) D01(1) D01(2) D01(3)

Without failure With failure

1 0.1847 0.8160 0.2472 0.1593 0.8353 0.2494

2 0.0000 1.0000 0.3512 0.2471 0.7511 0.3770

3 0.0234 0.9768 0.5105 0.0000 1.0000 0.4161

4 0.1567 0.8440 0.3759 0.1338 0.8541 0.5159

5 0.5259 0.4763 0.3730 0.6529 0.3728 0.3059

6 0.5553 0.4468 0.4505 0.6283 0.4028 0.4838

7 0.5823 0.4200 0.1439 0.6853 0.3459 0.1931

8 0.4435 0.5581 0.4541 0.5802 0.4543 1.0000

9 0.5858 0.4164 0.3838 0.7657 0.2434 0.4832

10 0.5755 0.4267 0.0742 0.6874 0.3314 0.3557

11 0.6124 0.3900 0.6666 0.7476 0.2684 0.4085

12 0.3263 0.6749 1.0000 0.4844 0.5231 0.3168

13 0.9775 0.0225 0.0385 0.9483 0.0578 0.0488

14 1.0000 0.0000 0.1882 1.0000 0.0000 0.0929

15 0.8608 0.1422 0.0815 0.9607 0.0430 0.0573

16 0.9168 0.0832 0.0000 0.9479 0.0601 0.0000
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SFL2 (SF = 1), BC4 (BC = 24), SR3 (SR = SPT) and CA4

(CA = SHe II), SFL3 (SF = 2), BC1 (BC = 6), SR3

(SR = SPT) for without machine failure and machine

failure cases respectively. The grey relational grade cal-

culated on this optimal system-level combinations for

without machine failure and with machine failure cases,

respectively. The predicted and experimental values of

grey relational grades for without machine failure and with

machine failure cases are summarized in Table 21. The

optimum combination of input parameters are verified with

the results predicted by the Taguchi approach. The opti-

mum S/N ratio (gopt) under the optimum conditions is

calculated using Eq. (11).

Table 18 Grey relational coefficients and grade values

Comparability sequence no MST AMU AWQ Grade value MST AMU AWQ Grade value

Without m/c failure With m/c failure

1 0.7303 0.3799 0.6692 0.5931 0.7583 0.3745 0.6672 0.6000

2 1.0000 0.3333 0.5874 0.6402 0.6692 0.3996 0.5701 0.5463

3 0.9553 0.3386 0.4948 0.5962 1.0000 0.3333 0.5458 0.6264

4 0.7614 0.3720 0.5708 0.5681 0.7888 0.3693 0.4922 0.5501

5 0.4874 0.5122 0.5727 0.5241 0.4337 0.5729 0.6204 0.5423

6 0.4738 0.5281 0.5260 0.5093 0.4431 0.5539 0.5082 0.5017

7 0.4620 0.5435 0.7765 0.5940 0.4218 0.5911 0.7214 0.5781

8 0.5299 0.4725 0.5241 0.5088 0.4629 0.5240 0.3333 0.4401

9 0.4605 0.5456 0.5657 0.5239 0.3950 0.6726 0.5085 0.5254

10 0.4649 0.5396 0.8708 0.6251 0.4211 0.6014 0.5844 0.5356

11 0.4495 0.5618 0.4286 0.4800 0.4008 0.6507 0.5504 0.5340

12 0.6051 0.4256 0.3333 0.4547 0.5079 0.4887 0.6122 0.5363

13 0.3384 0.9570 0.9286 0.7413 0.3452 0.8964 0.9111 0.7176

14 0.3333 1.0001 0.7266 0.6867 0.3333 1.0000 0.8434 0.7256

15 0.3674 0.7785 0.8598 0.6686 0.3423 0.9208 0.8972 0.7201

16 0.3529 0.8574 1.0000 0.7368 0.3453 0.8928 1.0000 0.7460

Table 19 Analysis of variance (ANOVA) for grey relational grade

Source Without failure With failure

df Adj SS Adj MS F value P value Adj SS Adj MS F value P value

CA 3 0.0880 0.0880 0.0293 10.64 0.1110 0.1110 0.0370 75.27

SF 3 0.0049 0.0049 0.0016 0.59 0.0051 0.0051 0.0017 3.48

BC 3 0.0093 0.0093 0.0031 1.13 0.0007 0.0007 0.0002 0.49

SR 3 0.0060 0.0060 0.0020 0.73 0.0083 0.0083 0.0028 5.65

Error 15 0.0083 0.0083 0.0028 0.0015 0.0015 0.0005

Total 0.1165 0.1267

Table 20 Response table for grey relational grade

Level Without failure With failure

CA SF BC SR CA SF BC SR

1 0.5994 0.5956 0.5798 0.5821 0.5807 0.5963 0.5954 0.6100

2 0.5340 0.6153 0.5719 0.5926 0.5156 0.5773 0.5862 0.5595

3 0.5209 0.5847 0.5789 0.6205 0.5328 0.6146 0.5794 0.6126

4 0.7084 0.5671 0.6321 0.5675 0.7273 0.5681 0.5954 0.5743
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gopt ¼ gm þ
Xq

i¼1

gi � gmð Þ ð11Þ

where gm is the overall mean of S/N ratios of grey rela-

tional grades, gi is the mean of the S/N ratio for optimum

levels, and ‘‘q’’: is the number of input parameters.

Discussion

In the present research, an FMS scheduling problem with

six parts and six machines has been studied. To evaluate

the FMS, various design and control factors are considered.

The design factors considered are control architecture

(CA), sequencing flexibility (SF) and buffer capacity (BC)

while control factors include sequencing rules and dis-

patching rules (SR). The machines in the FMS exercise

autonomy by taking the decisions on their own while

coordinating and cooperating with other machines to attain

their goals as agents. One hierarchical control architecture,

and three distributed control architectures referred to as Hi

and He, SHe I, SHe II respectively; are considered in this

study. To highlight the advantage of employing multi-agent

based FMS control, two operational modes, namely with

machine failure and without machine failure are also

studied. The performance is evaluated in terms of three

performance measures, namely MST, AMU and AWQ. To

carry out the research, the problem is simulated for dif-

ferent system configurations, and the required results are

obtained. Taguchi’s orthogonal array technique is followed

to conduct simulation experiments and to obtain optimal

results, and Grey relational analysis is used for system

performance optimization. The following sub-sections

discuss the results obtained and highlight the observations

made.

Effect of Design Factors (Control Architecture,

Sequencing Flexibility, and Buffer Capacity)

The control architecture lays down a structure through

which all information is shared by various decision-making

entities. At the shop floor, various activities are carried out

in synchronization with each other with the exchange of

information between different decision points. In the

absence of the right information, the right decision cannot

be taken. The control architecture helps in information

exchange and decision making effectively. It can be said

that all shop-floor activities are dependent on the control

architecture or in other words, control architecture is the

most important factor than the planning, design and control

activities at the shop floor. It is observed that the design

factor namely control architecture has a statistically major

contribution in the system performance. The effect is vis-

ible under the with machine failure and without machine

failure cases, respectively. With hierarchical control

architecture (Hi), the decision-making entities are not

autonomous; there occurs a delay in receiving and imple-

menting instructions from the central decision-making

entity. This results in delay leading to system performance

deterioration due to the inability of real-time decision-

making and implementation. Therefore, Hi control archi-

tecture always performs poorly, compared to distributed

control architectures. However, as we move from hierar-

chical control architecture to distributed control architec-

ture (i.e., from Hi to He and SHe I/II), there is an

improvement in the system performance. It can be attrib-

uted to the delegation or distribution of decision-making

ability to lower decisional entities, i.e., machine agents in

this case. This results in real-time decision making, irre-

spective of any disturbance (machine failure) taking place

or not. Thus, improved system performance is attained. It is

further seen that among the distributed control architec-

tures, SHe II (semi-heterarchical) exhibits better system

performance than all the control architectures. Hence,

distributed control architecture; specifically, SHe II exhi-

bits better system responsiveness against disturbances

(with or without machine failure) with improved system

performance. This observation is in agreement with the

other researchers (Barbosa et al. 2015; Rey et al. 2014;

Borangiu et al. 2014; Pach et al. 2014; Sallez et al.

2009, 2010; Trentesaux 2009).

As sequencing flexibility (SF) is increased, more options

of alternative sequences are available to process a job, and

the best decision (smallest operation time) is selected

which yields better system performance, as compared to

SF = 0 (fixed sequence). As discussed above, in the dis-

tributed control architectures, i.e., He, SHe I and SHe II; a

better decision is always taken. It is because in these

Table 21 Predicted and experimental values

Performance attributes Predicted Taguchi value Confirmatory experiment value Predicted Taguchi value Confirmatory experiment value

Without m/c failure With m/c failure

Optimal parameters CA4SF2BC4SR1 CA4SF2BC4SR3

Grey relational grade 0.5907 0.6672 0.5828 0.6538
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control architectures machine agents interact with each

other to gather information within the least possible time.

As all the required information is available in no-time, in

all SF[ 0 cases; the instant decision regarding part

sequencing is made. Hence, this quick decision making

makes these distributed control architectures to outperform

hierarchical control architecture (Hi). The sequencing

flexibility level[ 0 (SF = 1, 2) is often beneficial while no

sequencing flexibility level (SF = 0) produces poor results

due to long queues leading to system blockage. Moreover,

at SF = 0 parts are assigned to machines and get processed

in fixed sequences. If the machine is busy, parts have to

wait to get processed leading to queue formation at the

machine. As sequencing flexibility is increased from 0 to 1,

maximum performance benefit or improvement is

achieved. Hence, for our problem SF = 1 is best suited as

maximum performance is achieved here. It is because, for

SF = 1, the system provides a better balance between long

operation times and long queues than SF[ 1. This finding

is in coherence with the research studies existing in the

literature (Khan and Ali 2015; Joseph and Sridharan

2011b).

The design decision of buffer capacity (BC) signifies the

number of parts being processed at a time in the system. It

regulates the work-in-process being present in the system.

Generally, the higher the BC, the better is the system

performance. It is because the high number of parts absorb

machine idle time, resulting in better makespan time and

high average machine utilization. In our case, for BC = 24

system performance is highest for all the three performance

measures. However, it is seen that the effect BC is not

statistically significant on system performance for both

machine failure and without machine failure cases. It is

because, in the presence of control architecture as a factor,

the effect of BC has become insignificant. Some observa-

tions related to BC are presented in the literature (Francas

et al. 2011).

Effect of Control Factors (Sequencing

and Dispatching Rules)

It is further observed that the SPT/MINQ scheduling rule

combination is yielding better performance for all the three

system performance metrics. In this study, SPT/MINQ

combination of sequencing and dispatching rule is per-

forming best as compared to other combinations of rules. It

is in complete agreement with the other researchers also,

e.g., Ali and Wadhwa (2010) for an FMS problem, con-

cluded MINQ/SPT as the best rule; similar results were

also found by Joseph and Sridharan (2011a). However,

depending upon the conditions considered by researchers

for their studies, different control rule combinations have

been concluded best.

Conclusions

In this work, a simulation study of a distributed scheduling

approach is undertaken to perform multi-response opti-

mization for FMS. It is observed that among the design

factors, only control architecture is the statistically signif-

icant factor that contributes to the system performance. It is

found that distributed control architectures outperform the

hierarchical control architecture. As evident from the

results obtained, it can be stated that sequencing flexibility

does not produce any significant effect. The developed

multi-agent based semi-heterarchical control architecture

(SHe II) exhibits better global as well as local system

performance than other control architectures. Hence, SHe

II control architecture is best suited to the industrial sce-

narios that evolve to the dynamicity and perturbations.

Despite all diligent efforts done in this study, some limi-

tations still exist and to be overcome in future research.

The main limitation of this research work is that this

simulation model applies to a limited realm of shop floor

control of FMS. This model can further be extended by

considering more system factors, physical constraints,

more operational and control strategies for the shop floor

control. The simulation experiment results must be vali-

dated with practical experiments. To overcome the limi-

tations, future research can focus on considering more

flexibility types, e.g., routing flexibility, external distur-

bances like order cancellation, operation types, re-

scheduling, etc.
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