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Abstract: In the present study, Zn-doped CaTiO3 nanocrystalline was synthesized to study the 
thermistor behavior with temperature. The X-ray powder diffraction analysis showed the formation of 
a single-phase orthorhombic structure at room temperature. The electrical resistance of the Zn-doped 
CaTiO3 increased with increasing doping concentration and decreased at higher measuring temperature, 
showing a negative temperature coefficient of resistance (NTCR) behavior. Different thermistor 
parameters were calculated using Steinhart–Hart equations, whilst time domain analysis confirmed 
faster response towards applied voltage. 
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1  Introduction 

Calcium titanate (CaTiO3) is obtained as an orthorhombic 
crystal, more specifically the perovskite structure [1]. 
The Ti centers are octahedral and the Ca centers occupy 
a cage of 12 oxygen centers. The perovskite structure 
is versatile and robust, and can be cubic, tetrahedral, or 
orthorhombic at standard temperatures and pressures. 
The orthorhombic and tetrahedral geometries differ 
from the cubic geometry because the dimensions of the 
unit cells are not equal. Although referred to as the 
founding father of perovskite, CaTiO3 has not been 
widely studied, probably because other perovskite, 
such as BaTiO3 and SrTiO3, are more promising in 
terms of their technological applications.  

Nonetheless, CaTiO3 belongs to an important family 
of electrical materials, because such materials that 
have a perovskite structure with a general formula of 
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ABO3 exhibiting high dielectric constant are of enormous 
importance to the electronic industry. This is because 
of their wide applications in capacitor, sensor, actuator, 
power transmission device, memory device, high-energy 
storage device, and so forth [2,3].  

CaTiO3 is widely applied in specific fields of electronic 
ceramics including PTC-specific electronic ceramics 
and ferroelectric ceramic capacitor [4,5]. CaTiO3, an 
important lead-free perovskite material, has recently 
attracted great attention from researchers because of its 
various industrial applications and interesting properties, 
meaning that recent studies of CaTiO3 have increased. 
CaTiO3 is paraelectric at room temperature and its 
dielectric and electrical properties can be modified by 
various substitutions at the Ca or Ti sites either separately 
or simultaneously [6]. The applications of modified 
CaTiO3 are varied and include use in fluorescent lamp, 
cathode ray tube, plasma display panel (CaTiO3:Pr3+) 
[7], solid oxide fuel cell (CaFexTi1xO3) [8], solar energy 
conversion, rechargeable battery, nonlinear optical device 
(polyaniline–CaTiO3) [9], wireless communication E-mail: subhanarayan.sahoo@aiim.ac.in 
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application (CaTiO3–NdGaO3 [10], CaTiO3–LaGaO3 

[11], and CaTiO3–SmGaO3 [12]), dielectric barrier in 
barrier discharge plasma reactor (Ca0.9Sr0.1TiO3) [13], 
resonator (Ca1xMx(Ti1xLix)O33xF3x) [14], microwave 
device ((Zn0.65Mg0.35)TiO3–CaTiO3) [15], optics ((Ca, 
Nd)TiO3) [16], high-energy storage device, memory 
device (Ca0.5+xNd0.5x(Ti0.5Fe0.5)O3), fluorescent ((Ca, 
Zn)TiO3) [17], piezoelectric application ((Na0.5K0.5) 
NbO3–CaTiO3) [18], infrared pyroelectric detector 
(CaxPb1xTiO3) [19], and so forth. Chemical-based 
processing routes require several steps, including 
refluxing, distillation, drying, and high temperature 
calcination. All these processes require high-purity 
inorganic or organometallic chemicals as starting 
materials, which are not only expensive but also highly 
sensitive to moisture, and therefore require special 
precaution during handling [20]. These difficulties can 
be overcome by using mechanical alloying. The 
general preparation techniques of nanoceramics have 
been demonstrated widely in the literature [21–28]. 
The ease with which nanostructured materials can be 
synthesized is one reason why mechanical alloying has 
been extensively employed to produce nanocrystalline 
materials [21].  

High-energy ball milling has been used for many 
years in producing ultra fine powders of nano and 
submicron sizes. The severe and intense mechanical 
action on the solid surfaces leads to physical and 
chemical changes in the near surface region where the 
solids come into contact under mechanical force. These 
mechanically initiated chemical and physicochemical 
effects in solids are generally termed as the mechano-
chemical effect. This route is currently being used to 
synthesize inorganic materials as it exhibits some 
advantages, such as the reduction in sintering temperature 
[28,38]. The study of the mechanochemical effect on 
fine particles has created much interest among researchers 
because of its several advantages for downstream process 
like reducing annealing and sintering temperature, 
reducing phase transformation temperature, enhancing 
leaching process, decreasing thermal decomposition 
temperature, and increasing particle reactivity [28,38]. 
The mechanochemical synthesis process is carried out 
in high-intensity grinding mills such as vibro mills, 
planetary mills, and oscillating mills. 

The time response is very important for design and 
analysis of control system. The variation of output with 
respect to time is known as time response behavior. In 
time domain system, time is the independent variable.  

For obtaining satisfactory performance of the system, 
the behavior of the output with respect to time must be 
within the specified limit. With the help of time response 
analysis and corresponding results, the stability, accuracy, 
and complete evaluation of the system can be easily 
studied [1–7]. 

As per literature survey, the picture comes in front 
that a lot of research is goining on ZnO to establish its 
potential in electronic industry in terms of different 
applications. Zn-doped CaTiO3 is reported as bioceramic 
in medical and fluorescent fields [17]. This leads to do 
some experiments and to find out its potential in the 
field of electrical and electronic applications. The present 
study reports on the enhanced time response behavior 
of thermistor using Zn-doped CaTiO3 nanoparticles. 

2  Experimental procedure 

The nanoceramic compounds with the general formula 
Ca1xZnxTiO3 (x = 0.01, 0.03, 0.05, 0.07) were prepared 
using corresponding oxides of Ca2O3, ZnO, and TiO2 

(purity > 99%; all procured from M/S Loba Chemicals). 
The nanoparticles of the above materials were prepared 
using a high-energy ball milling technique. The formation 
of pure-phase compounds and the basic crystal structure 
of the samples were checked using the X-ray powder 
diffraction (XRD) technique. The diffraction data and 
profile were recorded by a Philips X-ray diffractometer 
using Cu Kα radiation (wavelength (λ) = 1.5405 Å) in 
a wide range of Bragg angle 2θ lying between 20 and 
80 at a scanning rate of 3 ()/min at room temperature.  

The powders of different samples were cold-pressed 
separately into small circular pellets with diameter of  
1 cm and thickness of 1–2 mm at a pressure of 5×  
106 N/m2 using a hydraulic press. Polyvinyl alcohol 
(PVA) was used as the binder to fabricate the pellets. 
The pellets were sintered at an optimized temperature 
1200 ℃ for 4 h.  

The parallel surfaces of each circular pellet of the 
different samples were polished and electroded using 
air-drying silver paint for the electrical measurements. 
Electrical parameters including impedance and resistance 
of the materials were measured as a function of frequency 
(1 kHz–1 MHz) at different measuring temperatures 
(300–500 ℃) with an interval of 2.5 ℃ using a phase 
sensitive LCR/impedance meter (PSM1735, N4L). 

www.springer.com/journal/40145 
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3  Results and discussion 

 

Figure 1 shows the XRD analysis of the 15 h milled 
samples without any external heat treatment at room 
temperature. The structures remain invariant (orthorh-
ombic) in spite of Zn doping in the x range of 0.01 to 
0.07. The XRD patterns confirm the formation of 
Zn-doped CaTiO3 (ZCT) after 5 h milling and the pure 
phase is observed above 7 h milling. The peaks are 
shown to shift to lower angles with increasing Zn 
content which means peak broadening is occurring as 
the increasing content of Zn. The lattice parameters 
were calculated and found to be well matched with the 
standard values (JCPDS Card No. 42-0423). The XRD 
of Zn-doped CaTiO3 can be compared to pure un-doped 
CaTiO3 [38]. Table 1 shows the different values of 
lattice parameters and crystallite size of ZCT nanoc-
eramics. However, the crystallite sizes remain below 
30 nm and the lattice parameters remain unchanged.  

 

Fig. 1  XRD patterns of Ca1xZnxTiO3 (x = 0.01, 0.03, 
0.05, 0.07) at room temperature. 

 
Table 1  Comparison of unit cell parameters and 
crystallite size of Ca1xZnxTiO3 (x = 0.01, 0.03, 0.05, 
0.07) 

Lattice parameter (Å) 
Composition

a b c 
Crystallite size (nm)

x = 0.01 5.45 5.40 7.65 25.3 

x = 0.03 5.45 5.39 7.63 24.1 

x = 0.05 5.41 5.40 7.66 22.3 

x = 0.07 5.45 5.40 7.63 25.9 

The results presented below can be compared to 
un-doped CaTiO3 nanoceramic [38] which shows 
similar nature of graph with the variations of data 
points. CaTiO3 nanoceramic is already proven for a 
potential candidate as thermistor and temperature 
sensing component [38]. Due to the same nature of 
electrical and electronic properties, ZCT also can be 
reported as a potential candidate as thermistor and 
temperature sensing component in electronic industry. 

 
insulating state. At x = 0.01, the resistance value is 
~0.9 MΩ at 300 ℃, being 100 times greater than that 
of the un-doped CaTiO3 sintered at 1200 ℃, which 
shows that at this condition, the sample property moves 
from a conductive to an insulating state. However, at  
x = 0.03, the resistance value increases twice that of 
the resistance value at x = 0.01, and at x = 0.05 and 
0.07, resistance value increases around 2.5 times the 
resistance of the sample of x = 0.01. Lower electrical 
variation also occurs between samples of x = 0.05 and 
x = 0.07 at all temperature range (300500 ℃). The 
above discussion suggests that electrical tailoring 
occurs at all doping concentrations of ZCT. 

3. 1  Electrical resistance of ZCT 

We have measured the electrical resistance for calculation 
of different thermistor parameter in ZCT. Figure 2 
shows temperature dependence of electrical resistivity 
curve for ZCT. By increasing the Zn concentration, the 
resistance value of the bulk sample gradually increases, 
showing a clear movement from conductive state to  
 

 
 

Fig. 2  (a) Temperature dependence of resistance of Ca1xZnxTiO3 (x = 0.01, 0.03, 0.05, 0.07). (b) Natural logarithmic scale of 
resistance at different Zn concentrations (x = 0.01, 0.03, 0.05, 0.07) with inverse of temperature. (c) Temperature dependence of 
β at different Zn concentrations (x = 0.01, 0.03, 0.05, 0.07). 
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It is found that NTCR thermistors follow the Arrhenius 
equation in the measuring temperature range between 
300 and 500 ℃. Figure 2(b) shows that a good linear 
relationship, indicating excellent NTCR characteristics, 
is obtained for ZCT [30–32]. As we know, for NTCR 
thermistors, resistance as a function of temperature can 
be stated as 

 
 (1) exp(1 / )TR  T

where TR  denotes resistance at respective temperature. 
By taking natural log of both sides of the equation, the 
relationship becomes: 

  (2) ln( ) 1 /TR C  T

The above equation satisfies the behavior of a 
straight line. From this, we can conclude that the 
graphs shown in Fig. 2(b) are following the above 
equation as they are showing a straight line behavior 
[33,34], indicating that all the samples show suitability 
for use in the thermistor industry as they follow an 
Arrhenius relationship which is a key factor regarded 
by many researchers [35]. The variations in graphs of 
different samples of ZCT due to variations in 
processing parameter, sintering effect, and doping 
concentration are similar to the variations found in the 
analyzed data of Fig. 2(b). 

3. 2  Thermistor constant β or sensitivity 

Figure 2(c) shows the temperature dependence of   
value for all compositions of ZCT. It signifies that the 
prepared ceramic samples are preferred for thermistor 
due to their gentle slope in   factor. The   values 
of samples in processing temperature range from 300 
to 500 ℃ are shown at different synthesis parameters 
such as high-energy ball milling effect, sintering effect, 
and doping concentration variation [23]. The temperature 

dependent   value is indicated in Fig. 2(c). The   
value is also used to calculate the temperature coefficient 
of resistance or the   value. 

The equation for thermistor constant   using 
Steinhart–Hart coefficient [4] is 

 

3 2

3 4

b

c

   
 

  (3) 

The sensitivity of a thermistor for temperature sensing 
is described by its activation energy. All four samples 
from this study exhibit different slopes and activation 
energies, which are shown in Table 2. 

The values of activation energy were calculated by 
the following formula [33,36–38]: 

 a BE k    (4) 

where  is the activation energy,  is the 
Boltzmann constant, and 

aE Bk
  is the thermistor constant. 

These observed values for the activation energy of 
the prepared ceramic samples may be due to the 
presence of charge carriers inside the grain and some 
extrinsic charge carriers created owing to the use of 
silver electrodes at elevated temperatures. The activation 
energy and thermistor constant show transition from 
higher to lower values, with both these factors being 
important from the point of view of applications. For 
NTCR thermistor materials, the   constant is closely 
related to resistance [39] as shown in Fig. 3, so the 
search for different pairs requires complete formulation 
changes.  is the material constant, which indicates the 
relationship between material resistance and temperature 
[37,40]:  

 
expR A

T

   
 

 (5) 

 
Table 2  Sensitivity of Ca1xZnxTiO3 (x = 0.01, 0.03, 0.05, 0.07) 

Sintering temperature 1200 ℃ 

Ca0.09Zn0.01TiO3 Ca0.07Zn0.03TiO3 Ca0.05Zn0.05TiO3 Ca0.03Zn0.07TiO3 
Measuring 

temperature (℃) 
 (K) Ea (eV)  (K) Ea (eV)  (K) Ea (eV)  (K) Ea (eV) 

300 2909 0.25 1955 0.17 2242 0.19 3448 0.30 

325 2685 0.23 1822 0.16 2131 0.18 3393 0.29 

350 2478 0.21 1699 0.15 2030 0.17 3342 0.29 

375 2286 0.19 1585 0.14 1936 0.17 3295 0.28 

400 2106 0.18 1480 0.13 1849 0.16 3251 0.28 

425 1938 0.16 1383 0.12 1769 0.15 3210 0.28 

450 1780 0.15 1292 0.11 1694 0.15 3173 0.27 

475 1630 0.14 1208 0.1 1624 0.14 3137 0.27 

500 1488 0.12 1129 0.09 1588 0.14 3104 0.27 

www.springer.com/journal/40145 
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Fig. 3  (a) Temperature dependence of activation energy calculated at different Zn concentrations (x = 0.01, 0.03, 0.05, 0.07). (b) 
Natural logarithmic scale of resistance with   value at different Zn concentrations (x = 0.01, 0.03, 0.05, 0.07). (c) Temperature 
dependence of   at different Zn concentrations (x = 0.01, 0.03, 0.05, 0.07). 

 

where R is the electrical resistance, T is the temperature 
(℃), and   is the exponential factor.  

By taking the natural log of the above equation, the 
relationship becomes: 

 
 ln R C

T


   (6)  

where C is a constant factor. 
The above equation shows the linear relationship 

between   and the natural logarithm of resistance, 
which we can see in Fig. 3(b) [41].  

Temperature dependent activation energy graphs can 
be seen in Fig. 3(a), with these following a similar 
trend to those seen in the temperature dependent 
sensitivity plots of Fig. 2(c). This signifies the 
relationship between the activation energy and   
value, which is mathematically proven by Eq. (6) [23]. 
All the graphs demonstrate the prepared samples’ 
potential towards NTCR behavior in the specified 
temperature range. Also, the linearity behavior with 
respect to temperature makes the prepared samples very 
suitable for any thermistor-based device applications. 
The linear relationship that can be seen in Fig. 3(b) 
shows that the prepared samples follow an Arrhenius 
relationship between   and logarithmic resistance 
values [29]. All of the graphs fit with the straight line 
equation, thus showing linearity behavior that is an 
important factor of any material performance at the 
device level. Based on the above analyses, all the 
prepared samples prove their potential to be used as 
thermistor in any electrical device.   decreases with 
temperature, as shown in Fig. 2(c), meaning that 
activation energy variation with respect to temperature 
in the specified temperature range is obtained from this 
study. 

3. 3  Sensitivity of ZCT 

Table 2 shows the tailoring of the sensitivity index and 

activation energy ( ) in the specified temperature 
range (300–500 ℃) with the concentration of ZCT, 
showing a lower sensitivity index than the un-doped 
CaTiO3 [38]. As the concentration of Zn increases from 
x = 0.01 to 0.03, the sensitivity of the material 
decreases; however, suddenly at x = 0.05 it starts 
increasing in between the values of x = 0.01 and 0.03. 
Upon further increasing to x = 0.07, the sensitivity 
index also continues to increase greater than that of x = 
0.01. The sensitivity index at x = 0.07 reaches the 
highest value of all samples sintered at the same 
temperature (1200 ℃). The sensitivities of different 
materials reported by other authors are presented in 
Table 3. 

aE

3. 4  Temperature coefficient of resistance  

The temperature coefficient of resistance or  was 
determined from resistance–temperature characteristic 
measurements. The temperature coefficient is commonly 
expressed in percentage per degree centigrade (%/℃) 
[30,3436]. For NTCR thermistor, the resistance 
exponential function of temperature has similarity with 
  value, and is nonlinear across the measuring 
temperature range [5,32,33]. The equation for   
value using SteinhartHart coefficient [24,27,37,38] is 
stated as follows: 

 
2

1 /
100

a T

c T

 
     (7) 

  decreases with an increase in   constant [39], 
which can be seen if the graphs from Figs. 2(c) and 3(c) 
are compared. 

3. 5  Stability factor  

We conducted simple stability tests [27] using the 
stability factor formula [14,24], which is related as the 
ratio of maximum resistance to minimum resistance.  

www.springer.com/journal/40145 
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Table 3  Sensitivity of different materials 

No. Material Sensitivity  (K) Reference

1 Ag2S–Ag 1250–2684 [41] 

2 Ni0.6Mn2.4xSnxO4 3993–4639 [42] 

3 Mn1.5xCo1.5NixO4 4427–2134 [43] 

4 La–Mn–Al–O 1065–537 [44] 

5 CaCu3xMnxTi4O12 (0 ≤ x ≤ 1) 5488–8031 [45] 

6 Mn1.56Co0.96Ni0.48O4 2972–3035 [46] 

7 Mn1.05yCo1.95xzwNixMgyAlzFewO4 3318–3771 [47] 

8 Mn–Co–Ni 3500 [48] 

9 BaFexNbxTi12xO3 1284–3574 [49] 

10 Cu0.2Ni0.5Zn1.0Mn1.3O4, 
Cu0.25Ni0.5Zn1.0Mn1.25O4, and 
Cu0.4Ni0.5Mn2.1O4 

2632–3424 [50] 

11 Mn–V–O 1393–5208 [51] 

12 La2O3-doped 
0.6Y2O3–0.4YCr0.5Mn0.5O3 

3600–11936 [52] 

13 Cu0.2Ni0.5Zn1.0Mn1.3O4 3356 [53] 

14 Mixture of spinel material and RuO2 4045 [54] 

15 Ni–Mn–Co–O 3478–3847 [55] 

16 Ni0.6Cu0.4Mn2O4 1937–3208 [56] 

17 LaNiO3 + NiMn2O4 5000 [57] 

18 BaCoII
xCoIII

2xBi1−3xO3 1140–1234 [58] 

19 Fe3+-doped Ni0.9Co0.8Mn1.3xFexO4 
(0.6 ≤ x ≤ 0.7) 

3103–3355 [59] 

20 Ni0.6Mg0.3Mn1.5−xAl0.6+xO4  
(x = 0, 0.1, 0.2, 0.4, 0.6) 

4165–5301 [60] 

21 Ni0.6Si0.2Al0.6Mn1.6O4 4817–5166 [61] 

22 NiMgxMn2−xO4 3825–4144 [62] 

23 Sr–Bi–Mn–Fe–O 3141–3693 [63] 

24 NiMnCoxFe1−xO4  
(x = 0.25, 0.5, 0.7, 0.8, 0.9) 

1396–7245 [64] 

25 BaBi1−xSbxO3 (0 ≤ x ≤ 0.5) 3392–5762 [65] 

26 BaYxBi1−xO3 2890–3392 [66] 

27 YCr1−xMnxO3 3896–11520 [67] 

28 Ni1−xCuxMn2O4 (0 ≤ x ≤ 1) 1164–1397 [68] 

29 Mn0.43Ni0.9CuFe0.67O4 1500–2000 [69] 

30 SrFe0.9Sn0.1O3δ 2611–3558 [70] 

 

From the tests, we observe the broadening and narrowing 
of data points in a specified or fixed temperature limit. 
For CaTiO3 nanocrystaline, the data point narrowing 
occurs by reduction of 50% compared to the sample 
prepared by the conventional method, whereas the 
sintering temperature decreases as the data point 
broadening doubles (Table 4). As Zn concentration 
increases, data point narrowing occurs. The above 
analysis shows that ZCT is a potential candidate for 
thermistor having good performance and good stability 
factor as shown in Table 4. 

Table 4  Stability factor of Ca1xZnxTiO3 (x = 0.01, 
0.03, 0.05, 0.07) 

Doping concentration Rmax/Rmin Stability factor log(Rmax/Rmin)

x = 0.01 30.8 1.49 

x = 0.03 22.7 1.36 

x = 0.05 23.9 1.37 

x = 0.07 12.5 1.09 

3. 6  Time domain analysis 

The present study focused on the time response analysis 
of ZCT for NTCR thermistor sensing behavior. Input 
signal was analyzed by using equivalent circuit Cole– 
Cole plots (fitted by Z-View) and from the equivalent 
circuit transfer function of different samples at 300 ℃. 
After obtaining the transfer function, input temperature 
signal was performed as step signal by using partial 
fraction and inverse Laplace transformation, and the 
time dependent equation was obtained. By using time 
dependent equation, the response graph was plotted 
and time domain specifications were observed with the 
help of MATLAB simulation as shown in Fig. 4.  
 

 
 

Fig. 4  Time response analysis of Ca1xZnxTiO3 (x = 0.01, 
0.03, 0.05, 0.07). 

www.springer.com/journal/40145 
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3. 7  Time response 

The time response is very important for design and 
analysis of control system. The variation of output with 
respect to time is known as time response behavior. In 
time domain system, time is the independent variable. 
For obtaining satisfactory performance of the system, 
the behavior of the output with respect to time must be 
within the specified limits. With the help of time 
response analysis and corresponding results, the 
stability, accuracy, and complete evaluation of the 
system can be easily studied [1–7]. 

There are two parts of the time response of any 
system: transient response and steady state response.  
The time from the initiation of the input signal to the 
settling time of a control system is the transient period 
and beyond the settling time steady state appears. It 
can be stated in three different ways as (1) delay time, 
which is the time required to reach 50% of the final 
value, for the very first time; (2) settling time, which is 
defined as the time taken by the response to reach and 
stay at a constant value; and (3) time constant, which is 
the time required for the output to rise 63.2% of final 
or steady state value. 

We consider the disc pellets as a system, where 
temperature acts as an input step signal, and output 
signal is observed in the form of electrical parameters 
such as resistance and capacitance. The delay time, 
settling time, and time constant are calculated for each 
particular temperature for a comparison point of view.  

3. 8  Time response analysis of ZCT 

From the curve fitting of the polar plot by Z-View, we 
discover that the equivalent circuit of the curves of all 
samples prepared from nano-ZCT is R C .The 
equations of the time domain response are derived 
below . 

3. 9  For Ca0.99Zn0.01TiO3  

The transfer function of the disc thermistor prepared 
from Ca0.99Zn0.01TiO3 nanomaterial sintered at 1200 ℃ 
is given as follows: 

( )

( ) 1

C s R

R s RCs



 

( ) 938780

( ) 1 938780 5.5497 11

C s

R s E s
 

   
 

1 1
( ) 938780

19194.05187
C s

s s
   

Taking inverse Laplace transform on both sides, the 
time dependent equivalent equation of Ca0.99Zn0.01TiO3 
sintered at 1200 ℃ is 

  19194.05187( ) 938780 1 e tC t    (8) 

Similar calculations are performed for other 
compositions to obtain the time response factor. 

For Ca0.97Zn0.03TiO3, Ca0.95Zn0.05TiO3, and Ca0.93-
Zn0.07TiO3, the equations are found to be respectively: 

 19032.35238( ) 1912500 1 e tC t    

 12854.84275( ) 2433500 1 e tC t    

 25177.02254( ) 2539400 1 e tC t    

Time domain specifications of Ca1xZnxTiO3 are 
given in Table 5. We obtained interesting results by 
doping Zn in CaTiO3, with all Zn-doped samples 
showing much faster response rates than un-doped 
CaTiO3 sintered at the same temperature (1200 ℃), 
i.e., approximately 10 times faster response in the case 
of doped samples than that of the un-doped CaTiO3 

[38]. As Zn concentration increases, the system moves 
faster, which can be used in the industry as a good 
temperature sensor. All the time domain response 
graphs evolved by deriving the above equations are 
shown in Fig. 4. 

4  Conclusions 

Zn-doped CaTiO3 nanocrystalline was prepared by 
high-energy ball milling. The as prepared powders 
possessed single-phase orthorhombic structure at room 
temperature. Transmission electron microscope study 
confirmed that particle size is below 50 nm. We have 
carried out electrical resistance measurements and 
calculated different thermistor parameters which showed 
that Zn-doped CaTiO3 can be used as a potential 
candidate in thermistor application at high temperatures. 
Time domain analysis showed that by doping Zn, the  

 
Table 5  Time domain specification of Ca1xZnxTiO3 

(x = 0.01, 0.03, 0.05, 0.07) 





 

Composition Code 
Sintering  

temperature 
(℃) 

Delay 
time  

td (ms) 

Settling 
time ts 
(ms) 

Time 
constant 

(ms) 

Ca0.99Zn0.01TiO3 ZCT0.01 1200 0.06 0.40 0.07 

Ca0.97Zn0.03TiO3 ZCT0.03 1200 0.06 0.35 0.075

Ca0.95Zn0.05TiO3 ZCT0.05 1200 0.07 0.55 0.08 

Ca0.93Zn0.07TiO3 ZCT0.07 1200 0.05 0.28 0.08 
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samples became more reliable towards temperature 
sensing with faster response. 
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