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Abstract

Purpose of the Review This review summarizes the current state of the art of polygenic risk scores (PRSs) in the assessment of
risk for neurodegenerative diseases.

Recent Findings Polygenic risk scores have been used to identify the shared genetic architecture between comorbid complex
traits, disease presentations, and disease endophenotypes.

Summary The pathological and symptomatologic overlap between neurodegenerative diseases is strikingly high. In some cases,
the diagnostic decision is arbitrary depending on the first appearance of symptomatology. Genetic studies have demonstrated that
the genetic architecture of each of these diseases is different, but has a high degree of overlap. The creation of polygenic risk
scores has allowed a more accurate calculation of this overlap. However, the power of the PRS is dependent on the power of the
genome-wide association studies (GWAS) used to describe the genetic architecture. Even though not all neurodegenerative
disease GWAS have the same sample size, and thus the same power, the use of polygenic risk scores has been successful in

demonstrating the genetic overlap that has been observed phenotypically.
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Introduction

Neurodegeneration is defined as progressive neuronal vulner-
ability and loss of function. To date, this progression is un-
stoppable and the diseases are incurable. Neurodegenerative
diseases are proteinopathies; there are the accumulation and
aggregation of a pathogenic protein in the brain. The patho-
genesis of neurodegenerative diseases (ND) is characterized
by the aggregation of specific proteins in intracellular inclu-
sions or extracellular aggregates. The hallmark protein tends
to be different for each disease [1] but the overlap is striking
(Table 1). Amyloid-beta plaques (A{3) and tau tangles charac-
terize Alzheimer’s disease (AD) affected brains, and tau, but
not Af3, is also aggregated in frontotemporal dementia (FTD).
Alpha-synuclein is aggregated in Parkinson’s disease (PD)
and dementia with Lewy bodies (DLB). The proteins FUS,
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TDP-43, and SOD-1 have been found aggregated in amyotro-
phic lateral sclerosis (ALS), but TDP-43 has been found also
in FTD brains. Amyloid-beta plaques have been found in PD
brains, and alpha-synuclein aggregates are also present in sev-
eral AD brains [2]. In fact, abnormal cortical A3 deposition is
present in PD patients with dementia [3, 4].

A combination of multiple genetic, lifestyle, and environ-
mental factors modulate the risk of ND. A very low percentage
of cases show Mendelian inheritance patterns, while the ma-
jority of the cases have complex genetic architectures that
define the ND genetic predisposition. This genetic burden
interacts with lifestyle and environmental factors to predis-
pose patients to ND.

AD is the most common neurodegenerative disease. Aside
from the accumulation of amyloid beta plaques and neurofi-
brillary tangles [5], it is also characterized by the degeneration
of the subcortical hippocampal regions and the medial tempo-
ral lobe, which are associated with memory impairment [6—8].
Even though AD and FTD are both characterized by tau ag-
gregates, in FTD, the degeneration happens in the frontal and
anterior temporal lobes, rather than the hippocampus and me-
dial temporal lobe [9]. In fact, FTD and AD are sometimes
difficult to distinguish at onset and even during disease pro-
gression [10+°]. FTD also overlaps genetically, pathologically,
and neuropsychologically with ALS. ALS is characterized by
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Table 1 Protein aggregates found in neurodegenerative diseases Table2  Largest GWAS for neurodegenerative diseases
Disease Neuropathological Additional Disease Sample Year Number of
hallmark aggregates size GWAS hits
Alzheimer’s disease Amyloid beta Alpha-synuclein Alzheimer’s disease [14] 74.046 2013 22
Tau Parkinson’s disease [15] 416518 2017 44
Parkinson’s disease Alpha—synuclein Amyloid beta Frontotemporal dementia [16] 12.928 2014 10
Tau Dementia with Lewy body [17] 6197 2018
Dementia with Lewy body Alpha-synuclein Amyloid beta Amyotrophic lateral sclerosis [18] 41.398 2016
Frontotemporal dementia Tau
TDP-43
FUS .
. from the 23andMe PD cohort [15]. This study detected 44
Amyotrophic lateral SOD-1 loci. of which findi . . .
sclerosis TDP-43 oci, of whic 17 are new 1pd1ngs mlsseq in prev1ous.meta-
FUS analysis [19]. The International Genomics of Alzheimer’s

the loss of motor neurons in the brain and spinal cord that
consequently results in muscle wasting, spasticity, and death,
usually within three years [8, 11]. PD is characterized by the
loss of dopaminergic neurons in the substantia nigra pars
compacta and the presence of Lewy bodies in the surviving
neurons. The presence of Lewy bodies, or aggregates of al-
pha-synuclein, is a characteristic shared with DLB, but the
diagnosis of either PD or DLB depends on the order of symp-
tom manifestation. If motor symptoms are the first to manifest,
followed by dementia symptoms within a year of PD diagno-
sis, the individual will be diagnosed with PD with Parkinson’s
disease dementia (PDD). If dementia manifests first, the diag-
nosis will be DLB, even though the person could develop
motor symptoms later on in the disease. This is an arbitrary
definition that was reached by consensus due to the overlap of
these two diseases [12, 13].

Shared Genetic Architecture
among Neurodegenerative Diseases

Early genetic studies were focused on the identification of
variants within the coding regions of proteins associated with
each neurodegenerative trait. These studies allowed the iden-
tification of variants in genes such as apolipoprotein E
(APOE) for AD and alpha-synuclein (SNCA) for PD among
others. The study of families with extreme phenotypic charac-
teristics, such as early age at onset for AD, allowed the iden-
tification of additional variants with Mendelian inheritance
patterns. However, these fully penetrant mutations in general
are present in a low percentage of ND cases.

Genome-wide association studies (GWAS) enabled the
systematic screening of the genome. The analyses and meta-
analyses of large cohorts identified additional variants with
smaller effects on risk that were more common in the popula-
tion. Currently, the largest GWAS is the meta-analysis of PD
that includes a very large number of participants (Table 2)

Project (IGAP) is the latest and largest GWS meta-analysis
published for AD (Table 2). This effort analyzed 74,046 indi-
viduals and identified 22 genetic loci. The estimated propor-
tion of variation tagged by all SNPs is =0.24, while the ge-
netic heritability of AD is 0.74 [20, 21]. The largest GWAS for
FTD is a two-stage meta-analysis with a total number of
12,928 participants (Table 2) [16]. Interestingly, additional
FTD subtype stratified analyses identified additional loci.
This evidence supports that different FTD subtypes have a
distinct genetic architecture. A two-stage meta-analysis for
DLB analyzed 6197 individuals [17]. In accordance with the
already known overlap with AD, the top GWAS hit was the
APOE loci. The largest genetic analysis for ALS analyzed
41,398 individuals and reported four loci with genome-wide
significant association [18]. GWAS chips captured 8.5% of
the genetic heritability, while the total is estimated at 65%.
Additional modeling of the data (linear mixed models) iden-
tified four additional loci. This may be indicating that the
genetic architecture of ALS is extremely heterogeneous, and
it might be more informative to subclassify it into subtypes,
similar to what was done in the FTD GWAS.

Remarkably, these studies demonstrated what was already
observed during pathological examination of ND brains. The
extent of overlap among the genetic architecture shared
among neurodegenerative diseases is surprisingly high.
Genetic studies of late-onset AD identified the ¢4 allele of
APOE, which increases the risk for AD (OR = 3.1 for hetero-
zygotes, OR = 12 for homozygotes [22]), and it is present in
approximately 15% of individuals of European ancestry. Even
though it was described for the first time in AD, the ¢4 allele
has been associated with DLB severity [23], ALS age at onset
[24], and its association with PD has also been reported [25,
26].

Autosomal-dominant AD accounts for between 1 and 5%
of total AD cases [27] and presents a dominant inheritance
pattern with variants in amyloid precursor protein (APP),
presenilin 1 (PSENI), and presenilin 2 (PSEN2) [28].
Several rare variants in PSENI have also been reported in
PD patients [29, 30]. More recent genetic studies have
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identified low frequency coding variants in TREM?2 associated
with AD [31, 32]. Afterwards, variants in the same gene were
identified in PD [33] and in FTD [34].

Mutations in LRRK?, a gene associated with PD [35], have
also been found in two families with AD [36]. FTD has been
linked to mutations in the MAPT and GRN genes [37] which
have also been found to be involved in AD and PD [38, 39e¢].
Finally, mutations in C9ORF72, SOD1, FUS, and others are
associated with both FTD and ALS [16, 18, 40-43].

Polygenic Risk Scores

Polygenic risk scores (PRSs) are simple models that have been
instrumental to analyze genetic architecture and predict dis-
ease risk of complex traits, such as schizophrenia and bipolar
disorder [44]. These scores aggregate genome-wide informa-
tion to account for the phenotypic variation observed in com-
plex traits, by assuming an additive, non-multiplicative, effect
of multiple variants with variable effect sizes. This allows a
more accurate assessment of an individual’s risk for a disease,
given their genetic background, than evaluating each genetic
variation independently. PRS can highlight at-risk individuals
for closer examination and allow for the application of early
intervention strategies. In addition, PRS can be applied as
inclusion criteria for targeted clinical trials. Furthermore, the
genetic overlap between comorbid diseases, previously iden-
tified only by epidemiological or clinical studies, can be eval-
uated by PRS, to determine whether the pleiotropic effects of
variants identified in one disease leads to increased risk for
another disease. For example, major depressive disorder and
current psychological distress positively moderate the effect
of polygenic risk for obesity on body mass index [45]. Many
examples of the use of PRS can be found in the literature, such
as the identification of the genetic overlap between schizo-
phrenia and cognitive ability [46], as well as, major depressive
disorder and body mass index [45]. Our group has employed
PRS to study the extent of the overlap of the genetic architec-
ture among distinct clinical manifestations of Alzheimer’s dis-
ease [47°°].

Polygenic Risk Score Calculation

Polygenic risk scores are an estimate of disease risk carried by
the individual based on the risk alleles and the corresponding
effect sizes obtained from the GWAS summary statistics. The
GWAS summary statistics will be referred as the base and the
dataset to be evaluated as the target. There are three important
factors for PRS construction: the base and target must be from
independent datasets; quality control has to be performed on
both, the base and target GWAS; and the selection of the
significance threshold has to be evaluated to optimize predic-
tion power.

@ Springer

Several quality controls need to be applied to the base and
target datasets. First, the genome build and affected alleles
must be matched between the reference and target datasets.
Ambiguous SNPs (A/T and C/G variants) should be removed
from the datasets, since it is not possible to match them with
certainty. Because GWAS are typically performed one SNP at
a time, the identification of independent genetic signals is
challenging. In consequence, it is necessary to control for
the genetic architecture of the population defined by the link-
age disequilibrium (LD). Clumping is the standard approach
to deal with LD, as it selects the SNP with lowest p value
retaining independent associations for an area of LD. This is
preferable to pruning, which is a random process and thus
results in a representative SNP that may explain less of the
total variance of the region of LD than a clumped SNP [48]. It
is also possible to calculate PRS using variants with associa-
tion significance that pass alternative cutoff values. In this
way, PRSs allow to evaluate not only the variants with
genome-wide stringent p values, but also the suggestive ones,
or even variants with marginal p values (for example threshold
= (0.05%107°1x107%...,0.05,0.1,...,0.5)) [49¢]. Then, the
association with additional traits is usually evaluated using
logistic regressions. Additional covariates (for example sex
and age) and confounding factors (such as principal compo-
nents from population stratification) are also modeled. Given
the multiple thresholds evaluated, it is usually considered sig-
nificant statistical association when the p value < 1.00 x 10~
[49-].

The calculation of PRS can be performed using PLINK
[50], PRSice [49¢], lassosum [51¢], LDpred [52¢], or Multi-
trait analysis of GWAS (MTAG) [53]. Since the PLINK score
function uses a linear scoring system for calculating PRS, all
quality control needs to be performed on the input data before
running the calculation. Unlike PLINK, PRSice performs
clumping and removes ambiguous SNPs as a default. Also,
it allows the selection of different p value thresholds giving
the best fit scores for the data. The other three methods intro-
duce additional methodological aspects to calculate the PRS.
Lassosum uses penalized regression to correct for LD struc-
ture and adjust effect sizes, while LDpred assumes a prior for
genetic architecture and LD information from a reference pan-
el. In consequence, the choice of methodology to calculate
PRS also has to take into consideration the characteristics of
the data available for the base and target GWAS. Several man-
uscripts provide guidelines for selecting optimal approaches
[52e, 54-].

Estimates of the shared genetic architecture among traits
can be also calculated using summary statistics and not indi-
vidual genotype data. PRSice provides a convenient model to
test it based on the inverse-variance method that corresponds
to the instrumental variable method that uses individual-level
data for Mendelian randomization approaches [55]. In addi-
tion, there are additional approaches to estimate the extent of
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overlap among traits. The method linkage disequilibrium
(LD) score [56] regression estimates the genetic correlation
of two traits, analyzing all SNPs in LD. It regresses the x?
statistic against the LD scores, which is estimated summariz-
ing the LD 7 in a predefined region. The method called coloc
tests [57] whether two association signals share a common
causal variant. It employs Bayesian approaches, and it was
conceived to integrate gene analysis for one disease with ex-
pression quantitative locus, but it can also be employed to
analyze two trait-associated analyses. Another alternative
method is GNOVA (genetic covariance analyzer), which al-
lows the estimation of genetic covariance using the method
of moments [58], while allowing to stratify the variants ana-
lyzed. Finally, MTAG analyzes summary statistics to estimate
genetic correlations among traits using bivariate linkage dis-
equilibrium score regression while correcting for the possibil-
ity of overlap between samples. The research questions to be
answered, the data available, and the planned analyses should
also guide the choice of methodology.

Polygenic Risk Score in Neurodegenerative Diseases

Polygenic risk scores have been used in neurodegeneration for
both testing the genetic overlap between characteristics of the
same neurodegenerative disease, such as risk and age at onset,
and testing the genetic overlap among neurodegenerative
diseases.

Genetic Overlap within Characteristics of the Same Disease

Alzheimer’s Disease Even though many methods have been
used to calculate PRS for AD, the overall results are coinci-
dent among all of the studies. In general, the results from the
GWAS in the International Genomics of Alzheimer’s Project
(IGAP) study have been used to model the PRS [14]. The first
PRS was published in 2015. By adding the polygenic burden,
they were able to predict disease development with an area
under the ROC curve of 78% when age sex and APOE geno-
type were included [59]. In this study, a subset of the IGAP
samples was used to investigate the prediction accuracy of
models trained with the weights learned from the analysis of
the entire IGAP cohort [59]. In another study, the analysis of a
subset of the IGAP cohort with neuropathological data pro-
duced an increased area under the ROC curve (AUC = 84%)
[60]. The authors conclude that most of the missing heritabil-
ity and the moderate values under the ROC curve may be due
to the diagnostic accuracy, and thus, for non-pathologically
confirmed AD, there is room for improvement [60, 61¢¢].
The PRS has also been used to detect individuals at greater
risk for developing AD, and proved to be successful, even in
those individuals that were noncarriers of the APOE ¢4 allele.
The PRS predicted longitudinal clinical decline in older indi-
viduals that showed moderate to high depositions of amyloid

beta and or tau [62] and in clinically diagnosed AD individ-
uals [63]. Moreover, the AD PRS was found to predict the
level and rate of memory loss in a sample of non-Hispanic
whites from the Health and Retirement Study [64] and in the
ADNI (Alzheimer’s Disease Neuroimaging Initiative) cohort
[65]. In the same work, the authors evaluated the AD PRS in
non-Hispanic black participants and found similar results but
with a weaker association [64]. The authors argue that distinct
factors can limit the power of the PRS in populations with
different genetic backgrounds. The genotyping platforms
employed for the discovery analyses were designed to capture
variation among populations with European ancestry, and the
SNPs included might not be as effective in tagging the signif-
icant loci in other populations. In addition, most of the GWAS
for AD predominantly analyzed participants with European
ancestry, and allele frequencies may vary between ethnicities
and could alter the detectable effect sizes [64].

PRS has not only been utilized to improve AD diagnosis. It
has also been used to test for genetic commonalities between
characteristics of AD, like AD risk [47°e, 66°°, 67], age of
disease onset [47¢¢], and AD biomarkers [47¢, 68]. PRS has
been used to demonstrate that the genetic architecture of spo-
radic AD is shared with familial AD without Mendelian mu-
tations [66°°, 67]. Similarly, the extent of overlap of the known
genetic architecture was compared between early (< 65 years
at clinical manifestation of symptom) and late onset (>
65 years). The odd ratios between these strata are different
(1.40 for sporadic late onset and 1.75 for familial late onset
versus 2.27 for sporadic early onset) [47¢¢]. In fact, the genetic
factors included in the PRS seem to have additive effects on
age at onset [47+¢]. Finally, PRS has been associated with CSF
ptaul81-A 342 ratio and CSF tau in autosomal dominant AD
[47¢¢]. In patients without clinical dementia, the predictive
value of amyloidopathy and tauopathy seems to increase as
a function of the PRS [68].

Parkinson’s Disease The largest meta-analysis performed by
Nalls et al. [19], prior the inclusion of the 23andMe data [15],
has usually been employed as the reference to build PD-
related PRS. These PRSs have been associated with the age
at onset of PD [69¢¢], faster motor and cognitive decline [70],
and PD status [69+¢]. An initial study reported that only PRS
that included the effect of SNPs with p values below nominal
significance thresholds were significantly associated with PD
in an additional independent PD dataset [71e°], implying that
the genetic architecture of PD includes many common vari-
ants with small effects. Further studies showed that PRS based
on more significant (sentinel) SNPs are also associated with
PD risk [69¢¢]. In addition, PRSs were employed to show a
higher genetic burden in early-onset PD compared to late on-
set (maximum OR of 4.8 and p <0.001 [71e¢]). Thus far, the
PD PRS risk has not been successfully associated with CSF
alpha-synuclein levels [69e°].
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Dementia with Lewy Bodies, Frontotemporal Dementia and
Amyotrophic Lateral Sclerosis At the time of this review, no
PRS had been attempted for these diseases. Several facts can
explain the lack of a PRS in these ND. First of all, the sample
sizes for the GWAS of DLB, FTD, and ALS are not as large as
AD or PD (Table 2), not is the amount of explained heritabil-
ity. In addition, both FTD and ALS are very heterogeneous
and can be stratified in different subtypes, reducing the sample
size for each group and thus the power of the GWAS and the
PRS.

Genetic Overlap among Neurodegenerative Diseases

PRS provides the mean to compare the genetic architecture of
diseases that are suspected to have some genetic overlap. PRS
is used to test if the diseases share genetic architecture. The
PRS for AD has been found to be associated with amnestic
and nonamnestic mild cognitive impairment, whereas the PRS
for PD and FTD were only associated with nonamnestic, mild
cognitive impairment. However, using these to predict future
dementia was unsuccessful, probably due to the heterogeneity
of the population with mild cognitive impairment [72]. A re-
cent report [ 73] shows that even though the association of AD
and PD PRSs with case-control status of DLB is highly sig-
nificant, the amount of variance explained by both PRS is
relatively small (for AD is=1.33% and 0.14% considering
or not the APOE locus, and for PD is=0.37%). This adds
evidence to the fact the DLB is an entity unto itself, with
unique genetic risk factors, and not a mixture of AD and PD
[73]. Similarly, PRSs have been used to test whether AD,
ALS, and FTD are associated with cognitive function and
physical health in healthy individuals [8] and to show that,
while the three diseases showed an association with cognitive
function, the risk for ALS was not associated with physical
function.

PRSs have been used to investigate the extent of overlap of
the genetic architecture between ALS and schizophrenia [44]
and widely employed to determine the shared genetic risk
between AD and PD risk and additional characteristics of
the diseases, including age at onset, biomarker levels, and
disease progression [8, 10<]. In addition, other methods have
been employed to evaluate the genetic overlap among neuro-
degenerative diseases [10e] including fold-enrichment plots
of the nominal —logl0 (p values) for all FTD-SNPs and a
subset of SNPs determined by the significance of their asso-
ciation with PD and AD. The study concluded that there is a
genetic pleiotropy between AD, PD and FTD.

Pathway Specific PRSs
Additional research has been performed to interrogate the ex-

tent of overlap of pathway specific genetic architecture among
traits, by aggregating biological knowledge into the
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calculation of the polygenic risk to derive pathway specific
risk. In these studies, the PRS is calculated for variants located
in genes that are part of specific pathways, instead of consid-
ering the entire genome. For AD, PRSs summarizing the im-
mune, amyloid beta clearance, and cholesterol pathways were
created to predict AD-related biomarkers. In this case, the
PRSs were poor predictors of cognitive function [74e¢]. This
may be due in part to the incompleteness of pathways, such
that variants in genes not known to be part of a pathway are
excluded. Two studies have demonstrated the relationship be-
tween AD and inflammatory diseases using PRS [75, 76]. AD
risk PRS was associated with increased levels of plasma in-
flammatory biomarkers, adding additional evidence to the in-
volvement of inflammatory processes in AD [75]. While the
global increase in inflammation seen in diseases such as mul-
tiple sclerosis does not influence age-related cognitive decline,
variants that alter peripheral immunity influence microglial
density and expression of immune genes in the aging brain.
Thus, the influence of peripheral immune function on glial cell
activation warrants further study [76].

Future Directions

The research community has invested a considerable amount
of effort generating GWAS data for ND, which has proven
instrumental to the discovery of novel variants and genes as-
sociated with several disease traits. An ongoing challenge in
the field of genetics is determining the relative roles of com-
mon variants with small effects and rare variants with large
effects on disease phenotypes. Omnigenic model is a promis-
ing technique that integrates the effect of both common and
rare variants along additional gene regulatory networks to an-
alyze the genetic architecture of complex traits [77]. The pow-
er of this approach is constrained by the number of subjects
analyzed in whole genome sequencing projects, which thus
far is lower than the number of subjects included in GWAS. In
addition, it was proposed that participant stratification is a
promising strategy for genetic studies [78]. Current analyses
of FTD and ALS data support this approach.

PRS combined with pathway analysis are enabling re-
searchers to determine which model better fits complex dis-
eases such as neurodegeneration and can help to determine
whether therapeutic and preventative measures will be best
targeted to specific genes or more broadly to pathways.
Importantly, genetic studies have demonstrated the high com-
plexity of neurodegenerative traits, whose risk is modulated
by a large number of variants, with either small effect or very
low frequency in the population. Thus, genetic studies need to
include a very large number of subjects to pass stringent
genome-wide thresholds. However, the sample size collected
and meta-analysis varies considerably among diseases
(Table 2). The same concept can be applied to the efforts
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invested in constructing PRS in the different diseases.
Querying PubMed for publications that employed PRS for
ND provides a snapshot of the quantitative effort thus far
invested for the different traits. A total of 43 manuscripts were
retrieved while querying the manuscripts for AD “(PRS or
Polygenic Risk Score) AND (Alzheimer),” but for FTD, the
search produced only two manuscripts. Furthermore, a search
of very active and highly invested research areas, other than
ND, shows that PRSs are widely used, as PubMed included
218 publications for heart disease, 141 for cardiovascular dis-
ease, and 1127 for cancer.

Conclusions

Genetic studies have provided valuable insights and novel
understanding of ND. Increasing the sample size of the neu-
rodegenerative disease cohorts and performing the meta-
analyses on larger studies for FTD, DLB, and ALS will be
critical to decipher the genetic structure of each disease and to
investigate the genetic architecture shared by these neurode-
generative diseases with overlapping symptomology. In fact,
this may also aid in the creation of a clinically useful PRS for
neurodegeneration that allows the detection of individuals at
risk, so they can enroll in clinical trials of neurodegenerative
therapeutics. It is also plausible that a neurodegeneration PRS
can be further optimized or combined with other phenotypic
or molecular characteristics to specifically predict AD, FTD,
DLB, and ALS.

One limitation of PRS is that they can only provide a max-
imum accuracy [61¢¢], which is bounded to disease preva-
lence, which varies with the age and heritability. For example,
GWAS chips only capture approximately a third of the esti-
mated genetic heritability of AD (0.24 vs 0.76 [20, 21]), and
prevalence for AD varies greatly with age (from 3% in the 65—
74 age range to > 30% for those older than 85 years). Thus, the
genetic risk captured by PRSs, which is lifelong constant,
should be combined with additional biomarkers and clinical
and environmental data to select at-risk individuals for thera-
peutic interventions and to produce better diagnostic tools.

To date, no PRS for ND that combines both common and
rare variants has been calculated, which may lead to an
increase of their accuracy. Novel machine learning methods
are being developed to capture compact representations of
GWAS [79] and coupled with powerful classification
methods, namely deep neural networks, to produce highly
accurate predictions [80—82]. The parallel development of
larger cohorts, molecular phenotyping and the advance-
ment of novel and more sophisticated methods to represent
and operate multi-variant models, will allow a more precise
discernment of the overlap of the genetic architecture
among ND and predict individuals at risk with the accuracy
required in clinical settings.
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